Locking in the Forward Rate $f(n, m)$

- Buy one n-period zero-coupon bond for $1/(1 + S(n))^n$ dollars.

- Sell $(1 + S(m))^m/(1 + S(n))^n$ m-period zero-coupon bonds.\(^a\)

- No net initial investment because the cash inflow equals the cash outflow: $1/(1 + S(n))^n$.

- At time n there will be a cash inflow of 1.

- At time m there will be a cash outflow of $(1 + S(m))^m/(1 + S(n))^n$ dollars.

\(^a\)Note that $(1 + S(m))^m/(1 + S(n))^n = (1 + f(n, m))^{m-n}$ by formula (19) on p. 139.
Locking in the Forward Rate $f(n, m)$ (concluded)

- This implies the interest rate between times n and m equals $f(n, m)$ by formula (19) on p. 139.

\[
\frac{(1 + S(m))^m}{(1 + S(n))^n}
\]
Forward Loans

- We had generated the cash flow of a type of forward contract called the forward loan.

- Agreed upon today, it enables one to
 - Borrow money at time n in the future, and
 - Repay the loan at time $m > n$ with an interest rate equal to the forward rate

$$f(n, m).$$

- Can the spot rate curve be arbitrarily drawn?a

aContributed by Mr. Dai, Tian-Shyr (B82506025, R86526008, D88526006) in 1998.
Synthetic Bonds

- We had seen that

 \[
 \text{forward loan} = n\text{-period zero} - [1 + f(n, m)]^{m-n} \times m\text{-period zero}.
 \]

- Thus

 \[
 n\text{-period zero} = \text{forward loan} + [1 + f(n, m)]^{m-n} \times m\text{-period zero}.
 \]

- We have created a \textit{synthetic} zero-coupon bond with forward loans and other zero-coupon bonds.

- Useful if the \textit{n}-period zero is unavailable or illiquid.
Spot and Forward Rates under Continuous Compounding

• The pricing formula:

\[P = \sum_{i=1}^{n} Ce^{-iS(i)} + Fe^{-nS(n)}. \]

• The market discount function:

\[d(n) = e^{-nS(n)}. \]

• The spot rate is an arithmetic average of forward rates,\(^a\)

\[S(n) = \frac{f(0, 1) + f(1, 2) + \cdots + f(n-1, n)}{n}. \]

\(^a\)Compare it with formula (20) on p. 145.
Spot and Forward Rates under Continuous Compounding (continued)

• The formula for the forward rate:

\[f(i, j) = \frac{jS(j) - iS(i)}{j - i}. \]

(22)

– Compare the above formula with (19) on p. 139.

• The one-period forward rate:\(^a\)

\[f(j, j + 1) = - \ln \frac{d(j + 1)}{d(j)}. \]

\(^a\)Compare it with formula (21) on p. 145.
Spot and Forward Rates under Continuous Compounding (concluded)

- Now, the (instantaneous) forward rate curve is:

\[
f(T) \triangleq \lim_{\Delta T \to 0} f(T, T + \Delta T) = S(T) + T \frac{\partial S}{\partial T}.
\] (23)

- So \(f(T) > S(T) \) if and only if \(\frac{\partial S}{\partial T} > 0 \) (i.e., a normal spot rate curve).

- If \(S(T) < -T(\partial S/\partial T) \), then \(f(T) < 0 \).\(^a\)

\(^a\)Consistent with the plot on p. 143. Contributed by Mr. Huang, Hsien-Chun (R03922103) on March 11, 2015.
An Example

- Let the interest rates be continuously compounded.
- Suppose the spot rate curve is

\[S(T) \triangleq 0.08 - 0.05 e^{-0.18T}. \]

- Then by Eq. (23) on p. 152, the forward rate curve is

\[
\begin{align*}
 f(T) & = S(T) + TS'(T) \\
 & = 0.08 - 0.05 e^{-0.18T} + 0.009T e^{-0.18T}.
\end{align*}
\]

\(^a\text{Hull & White (1994).}\)
Unbiased Expectations Theory

- Forward rate equals the average future spot rate,

\[f(a, b) = E[S(a, b)]. \] (24)

- It does not imply that the forward rate is an accurate predictor for the future spot rate.

- It implies the maturity strategy and the rollover strategy produce the same result at the horizon “on average.”
Unbiased Expectations Theory and Spot Rate Curve

- It implies that a normal spot rate curve is due to the fact that the market expects the future spot rate to rise.
 - \(f(j, j + 1) > S(j + 1) \) if and only if \(S(j + 1) > S(j) \) from formula (19) on p. 139.
 - So
 \[
 E[S(j, j + 1)] > S(j + 1) > \cdots > S(1)
 \]
 if and only if \(S(j + 1) > \cdots > S(1) \).

- Conversely, the spot rate is expected to fall if and only if the spot rate curve is inverted.
A “Bad” Expectations Theory

- The expected returns\(^a\) on all possible riskless bond strategies are equal for all holding periods.

- So

\[
(1 + S(2))^2 = (1 + S(1)) E[1 + S(1, 2)]
\] \hspace{1cm} (25)

because of the equivalency between buying a two-period bond and rolling over one-period bonds.

- After rearrangement,

\[
\frac{1}{E[1 + S(1, 2)]} = \frac{1 + S(1)}{(1 + S(2))^2}.
\]

\(^a\)More precisely, the one-plus returns.
A “Bad” Expectations Theory (continued)

• Now consider two one-period strategies.
 – Strategy one buys a two-period bond for \((1 + S(2))^{-2}\) dollars and sells it after one period.
 – The expected return is
 \[
 E\left[\frac{(1 + S(1, 2))^{-1}}{(1 + S(2))^{-2}} \right].
 \]
 – Strategy two buys a one-period bond with a return of \(1 + S(1)\).
A “Bad” Expectations Theory (continued)

• The theory says the returns are equal:

\[
\frac{1 + S(1)}{(1 + S(2))^2} = E \left[\frac{1}{1 + S(1, 2)} \right].
\]

• Combine this with Eq. (25) on p. 156 to obtain

\[
E \left[\frac{1}{1 + S(1, 2)} \right] = \frac{1}{E[1 + S(1, 2)]}.
\]
A “Bad” Expectations Theory (concluded)

• But this is impossible save for a certain economy.
 – Jensen’s inequality states that $E[g(X)] > g(E[X])$
 for any nondegenerate random variable X and
 strictly convex function g (i.e., $g''(x) > 0$).
 – Use

 \[g(x) \triangleq (1 + x)^{-1} \]

 to prove our point.
Local Expectations Theory

• The expected rate of return of any bond over a single period equals the prevailing one-period spot rate:

\[E \left[\frac{(1 + S(1, n))^{-(n-1)}}{(1 + S(n))^{-n}} \right] = 1 + S(1) \text{ for all } n > 1. \]

• This theory is the basis of many interest rate models.
Duration, in Practice

- We had assumed parallel shifts in the spot rate curve.

- To handle more general shifts, define a vector $[c_1, c_2, \ldots, c_n]$ that characterizes the shift.
 - Parallel shift: $[1, 1, \ldots, 1]$.
 - Twist: $[1, 1, \ldots, 1, -1, \ldots, -1]$,
 $[1.8, 1.6, 1.4, 1, 0, -1, -1.4, \ldots]$, etc.
 -

- At least one c_i should be 1 as the reference point.
Duration in Practice (concluded)

• Let

\[P(y) \triangleq \sum_i C_i/(1 + S(i) + yc_i)^i \]

be the price associated with the cash flow \(C_1, C_2, \ldots \).

• Define duration as

\[-\left. \frac{\partial P(y)/P(0)}{\partial y} \right|_{y=0} \quad \text{or} \quad -\frac{P(\Delta y) - P(-\Delta y)}{2P(0)\Delta y}. \]

• Modified duration equals the above when

\[[c_1, c_2, \ldots, c_n] = [1, 1, \ldots, 1], \]

\[S(1) = S(2) = \cdots = S(n). \]
Some Loose Ends on Dates

- Holidays.
- Weekends.
- Business days \((T + 2, \text{ etc.}) \).
- Shall we treat a year as 1 year whether it has 365 or 366 days?
Fundamental Statistical Concepts
There are three kinds of lies:
lies, damn lies, and statistics.
— Misattributed to Benjamin Disraeli
(1804–1881)

If 50 million people believe a foolish thing,
it’s still a foolish thing.
— George Bernard Shaw (1856–1950)

One death is a tragedy,
but a million deaths are a statistic.
— Josef Stalin (1879–1953)
Moments

• The variance of a random variable X is defined as

$$\text{Var}[X] \triangleq E\left[(X - E[X])^2 \right].$$

• The covariance between random variables X and Y is

$$\text{Cov}[X, Y] \triangleq E\left[(X - \mu_X)(Y - \mu_Y) \right],$$

where μ_X and μ_Y are the means of X and Y, respectively.

• Random variables X and Y are uncorrelated if

$$\text{Cov}[X, Y] = 0.$$
Correlation

- The standard deviation of X is the square root of the variance,
 \[\sigma_X \overset{\Delta}{=} \sqrt{\text{Var}[X]} \,.
 \]
- The correlation (or correlation coefficient) between X and Y is
 \[\rho_{X,Y} \overset{\Delta}{=} \frac{\text{Cov}[X,Y]}{\sigma_X \sigma_Y} \,, \]
 provided both have nonzero standard deviations.

aWilmott (2009), “the correlations between financial quantities are notoriously unstable.” It may even break down “at high-frequency time intervals” (Budish, Cramton, & Shim, 2015).
Variance of Sum

- Variance of a weighted sum of random variables equals

\[
\text{Var} \left[\sum_{i=1}^{n} a_i X_i \right] = \sum_{i=1}^{n} \sum_{j=1}^{n} a_i a_j \text{Cov}[X_i, X_j].
\]

- It becomes

\[
\sum_{i=1}^{n} a_i^2 \text{Var}[X_i]
\]

when \(X_i \) are uncorrelated.\(^a\)

\(^a\)Bienaymé (1853).
Conditional Expectation

- “$X | I$” denotes X conditional on the information set I.
- The information set can be another random variable’s value or the past values of X, say.
- The conditional expectation

$$E[X | I]$$

is the expected value of X conditional on I.
 - It is a random variable.
- The law of iterated conditional expectations\(^a\) says

$$E[X] = E[E[X | I]].$$

\(^a\)Or the tower law.
Conditional Expectation (concluded)

• If I_2 contains at least as much information as I_1, then

$$E[X | I_1] = E[E[X | I_2] | I_1].$$

(26)

- I_1 contains price information up to time t_1, and I_2 contains price information up to a later time $t_2 > t_1$.

• In general,

$$I_1 \subseteq I_2 \subseteq \cdots$$

means the players never forget past data so the information sets are increasing over time.\(^a\)

\(^a\)Hirsa & Neftci (2014). This idea is used in sigma fields and filtration in probability theory.
The Normal Distribution

• A random variable X has the normal distribution with mean μ and variance σ^2 if its probability density function is

$$\frac{1}{\sigma \sqrt{2\pi}} e^{-(x-\mu)^2/(2\sigma^2)}.$$

• This is expressed by $X \sim N(\mu, \sigma^2)$.

• The standard normal distribution has zero mean, unit variance, and the following distribution function

$$\text{Prob}[X \leq z] = N(z) \triangleq \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} e^{-x^2/2} \, dx.$$
Moment Generating Function

- The moment generating function of random variable X is defined as

$$\theta_X(t) \triangleq E[e^{tX}].$$

- The moment generating function of $X \sim N(\mu, \sigma^2)$ is

$$\theta_X(t) = \exp\left[\mu t + \frac{\sigma^2 t^2}{2}\right]. \quad (27)$$
The Multivariate Normal Distribution

- If \(X_i \sim N(\mu_i, \sigma_i^2) \) are independent, then
 \[
 \sum_i X_i \sim N \left(\sum_i \mu_i, \sum_i \sigma_i^2 \right).
 \]

- Let \(X_i \sim N(\mu_i, \sigma_i^2) \), which may not be independent.

- Suppose
 \[
 \sum_{i=1}^n t_i X_i \sim N \left(\sum_{i=1}^n t_i \mu_i, \sum_{i=1}^n \sum_{j=1}^n t_i t_j \text{Cov}[X_i, X_j] \right)
 \]
 for every linear combination \(\sum_{i=1}^n t_i X_i \) with \(\sum_{i=1}^n \sum_{j=1}^n t_i t_j \text{Cov}[X_i, X_j] \neq 0 \).
The Multivariate Normal Distribution (concluded)

- Then X_i are said to have a multivariate normal distribution.\(^{a}\)

- With $M \equiv C^{-1}$ and the (i, j)th entry of the matrix M being $M_{i,j}$, the probability density function for the X_i is

\[
\frac{1}{\sqrt{(2\pi)^n \det(C)}} \exp \left[-\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} (X_i - \mu_i) M_{ij} (X_j - \mu_j) \right],
\]

with a positive-definite covariance matrix

\[
C \overset{\Delta}{=} \left[\text{Cov}[X_i, X_j] \right]_{1 \leq i, j \leq n}.
\]

\(^{a}\)Corrected by Mr. Huang, Guo-Hua (R98922107) on March 10, 2010.
Generation of Univariate Normal Distributions

- Let X be uniformly distributed over $(0, 1]$ so that
 \[
 \text{Prob}[X \leq x] = x, \quad 0 < x \leq 1.
 \]

- Repeatedly draw two samples x_1 and x_2 from X until
 \[
 \omega \overset{\Delta}{=} (2x_1 - 1)^2 + (2x_2 - 1)^2 < 1.
 \]

- Then $c(2x_1 - 1)$ and $c(2x_2 - 1)$ are independent standard normal variables where\(^a\)
 \[
 c \overset{\Delta}{=} \sqrt{-2(\ln \omega)}/\omega.
 \]

\(^a\)As they are normally distributed, to prove independence, it suffices to prove that they are uncorrelated, which is easy. Thanks to a lively class discussion on March 5, 2014.
A Dirty Trick and a Right Attitude

• Let ξ_i are independent and uniformly distributed over $(0, 1)$.

• A simple method to generate the standard normal variable is to calculatea

$$\left(\sum_{i=1}^{12} \xi_i \right) - 6.$$

• But why use 12?

• Recall the mean and variance of ξ_i are $1/2$ and $1/12$, respectively.

aJäckel (2002), “this is not a highly accurate approximation and should only be used to establish ballpark estimates.”
A Dirty Trick and a Right Attitude (concluded)

• The general formula is

\[
\frac{\left(\sum_{i=1}^{n} \xi_i\right) - (n/2)}{\sqrt{n/12}}.
\]

• Choosing \(n = 12\) yields a formula without the need of division and square-root operations.\(^a\)

• Always blame your random number generator last.\(^b\)

• Instead, check your programs first.

\(^a\)Contributed by Mr. Chen, Shih-Hang (R02723031) on March 5, 2014.

\(^b\)“The fault, dear Brutus, lies not in the stars but in ourselves that we are underlings.” William Shakespeare (1564–1616), *Julius Caesar*.

©2023 Prof. Yuh-Dauh Lyuu, National Taiwan University
Generation of Bivariate Normal Distributions

- Pairs of normally distributed variables with correlation ρ can be generated as follows.

- Let X_1 and X_2 be independent standard normal variables.

- Set

\[
U \overset{\Delta}{=} aX_1, \\
V \overset{\Delta}{=} a\rho X_1 + a\sqrt{1 - \rho^2} X_2.
\]
Generation of Bivariate Normal Distributions (continued)

- U and V are the desired random variables with

\[
\text{Var}[U] = \text{Var}[V] = a^2, \\
\text{Cov}[U, V] = \rho a^2.
\]

- Note that the mapping from (X_1, X_2) to (U, V) is a one-to-one correspondence for $a \neq 0$.
Generation of Bivariate Normal Distributions (concluded)

- The mapping in matrix form is

\[
\begin{bmatrix}
U \\
V
\end{bmatrix} = a \begin{bmatrix}
1 & 0 \\
\rho & \sqrt{1 - \rho^2}
\end{bmatrix} \begin{bmatrix}
X_1 \\
X_2
\end{bmatrix}. \tag{28}
\]
The Lognormal Distribution

- A random variable Y is said to have a lognormal distribution if $\ln Y$ has a normal distribution.

- Let $X \sim N(\mu, \sigma^2)$ and $Y \overset{\Delta}{=} e^X$.

- The mean and variance of Y are

\[
\begin{align*}
\mu_Y &= e^{\mu + \sigma^2/2}, \\
\sigma^2_Y &= e^{2\mu + \sigma^2} \left(e^{\sigma^2} - 1\right),
\end{align*}
\]

(respectively).\(^a\)

\(^a\)They follow from $E[Y^n] = e^{\mu n + n^2 \sigma^2/2}$.

©2023 Prof. Yuh-Dauh Lyuu, National Taiwan University
The Lognormal Distribution (continued)

- Conversely, suppose Y is lognormally distributed with mean μ and variance σ^2.

- Then $\ln Y$ has a normal distribution with

 $$E[\ln Y] = \ln \left[\frac{\mu}{\sqrt{1 + (\sigma/\mu)^2}} \right],$$
 $$\text{Var}[\ln Y] = \ln \left[1 + (\sigma/\mu)^2 \right].$$

- If X and Y are joint-lognormally distributed, then

 $$E[XY] = E[X]E[Y]e^{\text{Cov}[\ln X, \ln Y]},$$
 $$\text{Cov}[X,Y] = E[X]E[Y] \left(e^{\text{Cov}[\ln X, \ln Y]} - 1 \right).$$
The Lognormal Distribution (concluded)

- Let Y be lognormally distributed such that $\ln Y \sim N(\mu, \sigma^2)$.
- Then

$$\int_a^{\infty} y f(y) \, dy = e^{\mu+\sigma^2/2} N\left(\frac{\mu - \ln a}{\sigma} + \sigma\right).$$ \hspace{1cm} (30)
Option Basics
The shift toward options as the center of gravity of finance […]
— Merton H. Miller (1923–2000)

Too many potential physicists and engineers spend their careers shifting money around in the financial sector, instead of applying their talents to innovating in the real economy.
— Barack Obama (2016)
Calls and Puts

- A call gives its holder the right to buy a unit of the underlying asset by paying a strike price.\(^a\)

\(^a\)The cash flow at expiration is contingent.
Calls and Puts (continued)

- A put gives its holder the right to sell a unit of the underlying asset for the strike price.

\[\text{strike price} \]

\[\text{option premium} \]

\[\text{stock} \]
Calls and Puts (concluded)

• An embedded option has to be traded along with the underlying asset.

• How to price options?
 – It can be traced to Aristotle’s (384 B.C.–322 B.C.) *Politics*, if not earlier.
Exercise

• When a call is exercised, the holder pays the strike price in exchange for the stock.

• When a put is exercised, the holder receives from the writer the strike price in exchange for the stock.

• Some options can be exercised prior to the expiration date.
 – This is called early exercise.
American and European

- American options can be exercised at any time up to the expiration date.
- European options can only be exercised at expiration.
- An American option is worth at least as much as an otherwise identical European option.
Convenient Conventions

• C: call value.
• P: put value.
• X: strike price.
• S: stock price.\(^a\)
• D: dividend.

\(^a\)Assume $S \geq 0$. Contributed by Mr. Tang, Bert (B08902102) on March 10, 2021.
Payoff, Mathematically Speaking

- The payoff of a call at expiration is
 \[C = \max(0, S - X). \]

- The payoff of a put at expiration is
 \[P = \max(0, X - S). \]

- A call will be exercised only if the stock price is higher than the strike price.

- A put will be exercised only if the stock price is less than the strike price.
Payoff, Mathematically Speaking (continued)

- At any time t before the expiration date, we call

$$\max(0, S_t - X)$$

the intrinsic value of a call.

- At any time t before the expiration date, we call

$$\max(0, X - S_t)$$

the intrinsic value of a put.
Payoff, Mathematically Speaking (concluded)

- A call is in the money if \(S > X \), at the money if \(S = X \), and out of the money if \(S < X \).

- A put is in the money if \(S < X \), at the money if \(S = X \), and out of the money if \(S > X \).

- Options that are in the money at expiration should be exercised.\(^a\)

- Finding an option’s value at any time before expiration is a major intellectual breakthrough.

\(^a\)About 11% of option holders let in-the-money options expire worthless.
Cash Dividends

• Exchange-traded stock options are not cash dividend-protected (or simply protected).
 – The option contract is not adjusted for *cash* dividends.

• The stock price falls by an amount roughly equal to the amount of the cash dividend as it goes ex-dividend.

• Cash dividends are detrimental for calls.

• The opposite is true for puts.
Stock Splits and Stock Dividends

• Options are adjusted for stock splits.
• After an n-for-m stock split, m shares become n shares.
• Accordingly, the strike price is only m/n times its previous value, and the number of shares covered by one option becomes n/m times its previous value.
• Exchange-traded stock options are adjusted for stock dividends.
• We assume options are unprotected.
Example

- Consider an option to buy 100 shares of a company for $50 per share.

- A 2-for-1 split changes the term to a strike price of $25 per share for 200 shares.
Short Selling

- Short selling\(^a\) involves selling an asset that is *not* owned with the intention of buying it back later.

 - If you short 1,000 XYZ shares, the broker borrows them from another client to sell them in the market.

 - This action generates proceeds for the investor.

 - The investor can close out the short position by buying 1,000 XYZ shares.

- Clearly, the investor profits if the stock price falls.

\(^a\)Or shorting.
Payoff of Stock

Long a stock

Short a stock
Short Selling (concluded)

• Not all assets can be shorted.

• In reality, short selling is not simply the opposite of going long.\(^a\)

Covered Position: Hedge

• A hedge combines an option with its underlying stock in such a way that one protects the other against loss.

• Covered call: A long position in stock with a short call.a
 – It is “covered” because the stock can be delivered to the buyer of the call if the call is exercised.

• Protective put: A long position in stock with a long put.

• Both strategies break even only if the stock price rises above a certain level, so they are bullish.

aA short position has a payoff opposite in sign to that of a long position.
Solid lines are profits of the portfolio one month before maturity, assuming the portfolio is set up when $S = 95$ then.
Covered Position: Spread

• A spread consists of options of the same type and on the same underlying asset but with different strike prices or expiration dates.

• We use X_L, X_M, and X_H to denote the strike prices with

\[X_L < X_M < X_H. \]
Covered Position: Spread (continued)

- A bull call spread consists of a long X_L call and a short X_H call with the same expiration date.
 - The initial investment is $C_L - C_H$.
 - The payoff is nonnegative.
 - The maximum payoff is $X_H - X_L$.
 * When both are exercised at expiration.
 - The maximum profit is $(X_H - X_L) - (C_L - C_H)$.
 - The maximum loss is $C_L - C_H$.
 * When neither is exercised at expiration.
Bull spread (call)
Covered Position: Spread (continued)

• If we buy \((X_H - X_L)^{-1}\) units of the bull call spread and
 \(X_H - X_L \to 0\), a (Heaviside) step function emerges as the payoff.

• This payoff defines the binary (or digital) call.

• The binary call thus costs

\[
- \frac{\partial C}{\partial X},
\]

today.

 – Recall that \(C\) is the (standard) call’s price.

• This formula is model independent!
Covered Position: Spread (continued)

- Writing an X_H put and buying an X_L put with identical expiration date creates the bull put spread.\(^a\)

- A bear spread amounts to selling a bull spread.

- It profits from declining stock prices.

\(^a\)See https://www.businesstoday.com.tw/article/category/80392/post/201803070 for a sad example in Taiwan on February 6, 2018.
Covered Position: Spread (continued)

- Three calls or three puts with different strike prices and the same expiration date create a butterfly spread.
 - The spread is long one \(X_L \) call, long one \(X_H \) call, and short two \(X_M \) calls.

- Same as long a bull call spread with strike prices \(X_L \) and \(X_M \) and short a bull call spread with strike prices \(X_M \) and \(X_H \).

- A butterfly spread has a positive payoff at expiration only if the asset price falls between \(X_L \) and \(X_H \).
Butterfly

Stock price

Profit

©2023 Prof. Yuh-Dauh Lyuu, National Taiwan University
Covered Position: Spread (continued)

- Assume $X_M = (X_H + X_L)/2$.

- Take a position in $(X_M - X_L)^{-1}$ units of the butterfly spread.

- When $X_H - X_L \to 0$, it approximates a state contingent claim,\(^a\) which pays 1 only in the state $S = X_M$.\(^b\)

\(^a\)Alternatively, Arrow security.

\(^b\)See Exercise 7.4.5 of the textbook.
Covered Position: Spread (concluded)

• The price of a state contingent claim is called a state price.

• The state price equals\(^a\)

\[
\frac{\partial^2 C}{\partial X^2}.
\]

• In fact, the FV of \(\frac{\partial^2 C}{\partial X^2}\) is the probability density of the stock price \(S_T = X\) at option’s maturity.\(^b\)

• You can buy a butterfly spread if you believe the probability of \(S_T \approx X\) is higher than this probability.

\(^a\)One can also use the put (see Exercise 9.3.6 of the textbook).
\(^b\)Breeden & Litzenberger (1978). This formula is model independent!
Covered Position: Combination

- A combination consists of options of different types on the same underlying asset.
 - These options must be either all bought or all written.

- Straddle: A long call and a long put with the same strike price and expiration date.
 - Since it profits from high volatility, a person who buys a straddle is “long volatility.”
 - Selling a straddle benefits from low volatility.
Covered Position: Combination (concluded)

- Strangle: Identical to a straddle except that the call’s strike price is higher than the put’s.
Strangle

Profit vs. Stock Price

©2023 Prof. Yuh-Dauh Lyuu, National Taiwan University
Arbitrage in Option Pricing
All general laws are attended with inconveniences, when applied to particular cases.
— David Hume (1711–1776)

The problem with QE is it works in practice, but it doesn’t work in theory.
— Ben Bernanke (2014)
Arbitrage

- The no-arbitrage principle says there is no free lunch.
- It supplies the argument for option pricing.
- A riskless arbitrage opportunity is one that, without any initial investment, generates nonnegative returns under all circumstances and positive returns under some.
- In an efficient market, such opportunities do not exist (for long).\(^a\)

\(^a\)Forbes (2013), “In the real world of investments, however, there are obvious arguments against the EMH [efficient market hypothesis]. There are investors who have beaten the market—Warren Buffett.”
Portfolio Dominance Principle

- Consider two portfolios A and B.
- Suppose A’s payoff is at least as good as B’s under all circumstances and better under some.
- Then A should be more valuable than B.
Two Simple Corollaries

- A portfolio yielding a zero return in every possible scenario must have a zero PV.a
 - Short the portfolio if its PV is positive.
 - Buy it if its PV is negative.
 - In both cases, a free lunch is created.

- Two portfolios that yield the same return at time T must have the same price before time T.b

aLyft, Inc. (2019), “We have incurred net losses each year since our inception and we may not be able to achieve or maintain profitability in the future.”

bAristotle, “those who are equal should have everything alike.”