
Control Variates

• Use the analytic solution of a “similar” yet “simpler”

problem to improve the solution.

• Suppose we want to estimate E[X ] and there exists a

random variable Y with a known mean μ
Δ
= E[Y ].

• Then W
Δ
= X + β(Y − μ) can serve as a “controlled”

estimator of E[X ] for any constant β.

– However β is chosen, W remains an unbiased

estimator of E[X ] as

E[W ] = E[X ] + βE[Y − μ ] = E[X ].
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Control Variates (continued)

• Note that

Var[W ] = Var[X ] + β2 Var[Y ] + 2βCov[X,Y ],

(126)

• Hence W is less variable than X if and only if

β2 Var[Y ] + 2β Cov[X, Y ] < 0. (127)
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Control Variates (concluded)

• The success of the scheme clearly depends on both β

and the choice of Y .

– For pricing American options, choose Y to be the

otherwise identical European option and μ the

Black-Scholes formula.a

– For pricing Arithmetic Asian options, choose Y to

be the otherwise identical geometric Asian option, μ

the formula (58) on p. 445, and β = −1.

• This approach is often much more effective than the

antithetic-variates method.b

aHull & White (1988).
bBoyle, Broadie, & Glasserman (1997).
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Choice of Y

• In general, the choice of Y is ad hoc,a and experiments

must be performed to assess the choice.

• Try to match calls with calls and puts with puts.b

• On many occasions, Y is a discretized version of the

derivative that gives μ.

– Discretely monitored geometric Asian option vs. the

continuously monitored version.c

• The discrepancy can be large (e.g., lookback options).d

aBut see Dai (B82506025, R86526008, D8852600), C. Chiu (B90201037,

R94922072), & Lyuu (2015, 2018).
bContributed by Ms. Teng, Huei-Wen (R91723054) on May 25, 2004.
cPriced by formulas (58) on p. 445.
dContributed by Mr. Tsai, Hwai (R92723049) on May 12, 2004.
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Optimal Choice of β

• Equation (126) on p. 909 is minimized when

β = −Cov[X, Y ]/Var[Y ].

– It is called beta.

• For this specific β,

Var[W ] = Var[X ]− Cov[X, Y ]2

Var[Y ]
=

(
1− ρ2X,Y

)
Var[X ],

where ρX,Y is the correlation between X and Y .
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Optimal Choice of β (continued)

• The variance can never increase with the optimal choice.

• The stronger X and Y are correlated, the greater the

reduction in variance.

• For example, if this correlation is nearly perfect (±1),

we could control X almost exactly.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 913



Optimal Choice of β (continued)

• Typically, neither Var[Y ] nor Cov[X, Y ] is known.

• So we cannot hope to obtain the maximum reduction in

variance.

• We can guess a β and hope that the resulting W does

indeed have a smaller variance than X .

• A second possibility is to use the simulated data to

estimate Var[Y ] and Cov[X, Y ].

– How to do it efficiently in terms of time and space?
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Optimal Choice of β (concluded)

• Observe that −β has the same sign as the correlation

between X and Y .

• Hence, if X and Y are positively correlated, β < 0,

then X is adjusted downward whenever Y > μ and

upward otherwise.

• The opposite is true when X and Y are negatively

correlated, in which case β > 0.

• Suppose a suboptimal β + ε is used instead.

• The variance increases by only ε2Var[Y ].a

aHan & Y. Lai (2010).
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A Pitfall

• A potential pitfall is to sample X and Y independently.

• In this case, Cov[X, Y ] = 0.

• Equation (126) on p. 909 becomes

Var[W ] = Var[X ] + β2 Var[Y ].

• So whatever Y is, the variance is increased!

• Lesson: X and Y must be correlated.
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Problems with the Monte Carlo Method

• The error bound is only probabilistic.

• The probabilistic error bound of O(1/
√
N ) does not

benefit from regularity of the integrand function.

• The requirement that the points be independent random

samples are wasteful because of clustering.

• In reality, pseudorandom numbers generated by

completely deterministic means are used.

• Monte Carlo simulation exhibits a great sensitivity on

the seed of the pseudorandom-number generator.
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Matrix Computation
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To set up a philosophy against physics is rash;

philosophers who have done so

have always ended in disaster.

— Bertrand Russell
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Definitions and Basic Results

• Let A
Δ
= [ aij ]1≤i≤m,1≤j≤n, or simply A ∈ Rm×n,

denote an m× n matrix.

• It can also be represented as [ a1, a2, . . . , an ] where

ai ∈ Rm are vectors.

– Vectors are column vectors unless stated otherwise.

• A is a square matrix when m = n.

• The rank of a matrix is the largest number of linearly

independent columns.
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Definitions and Basic Results (continued)

• A square matrix A is said to be symmetric if AT = A.

• A real n× n matrix

A
Δ
= [ aij ]i,j

is diagonally dominant if | aii | >
∑

j �=i | aij | for

1 ≤ i ≤ n.

– Such matrices are nonsingular.

• The identity matrix is the square matrix

I
Δ
= diag[ 1, 1, . . . , 1 ].
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Definitions and Basic Results (concluded)

• A matrix has full column rank if its columns are linearly

independent.

• A real symmetric matrix A is positive definite if

xTAx =
∑
i,j

aijxixj > 0

for any nonzero vector x.

• A matrix A is positive definite if and only if there exists

a matrix W such that A = WTW and W has full

column rank.
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Cholesky Decomposition

• Positive definite matrices can be factored as

A = LLT,

called the Cholesky decomposition or Cholesky

factorization.

– Above, L is a lower triangular matrix.

– It can be computed by Crout’s algorithm in

quadratic time.a

aGolub and Van Loan (1989).
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Generation of Multivariate Distribution

• Let x
Δ
= [x1, x2, . . . , xn ]T be a vector random variable

with a positive-definite covariance matrix C.

• As usual, assume E[x ] = 0.

• This covariance structure can be matched by Py.

– y
Δ
= [ y1, y2, . . . , yn ]

T is a vector random variable

with a covariance matrix equal to the identity matrix.

– C = PPT is the Cholesky decomposition of C.a

aWhat if C is not positive definite? See Y. Y. Lai (R93942114) &

Lyuu (2007).
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Generation of Multivariate Distribution (concluded)

• For example, suppose

C =

⎡
⎣ 1 ρ

ρ 1

⎤
⎦ .

• Then PPT = C, wherea

P =

⎡
⎣ 1 0

ρ
√
1− ρ2

⎤
⎦ .

aRecall Eq. (28) on p. 179.
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Generation of Multivariate Normal Distribution

• Suppose we want to generate the multivariate normal

distribution with a covariance matrix C = PPT.

– First, generate independent standard normal

distributions y1, y2, . . . , yn.

– Then

P [ y1, y2, . . . , yn ]
T

has the desired distribution.
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Multivariate Derivatives Pricing

• Generating the multivariate normal distribution is

essential for the Monte Carlo pricing of multivariate

derivatives.a

• For example, the rainbow option on k assets has payoff

max(max(S1, S2, . . . , Sk)−X, 0)

at maturity.

• The closed-form formula is a multi-dimensional

integral.b

aRecall pp. 819ff.
bJohnson (1987); C. Y. Chen (D95723006) & Lyuu (2009).
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Multivariate Derivatives Pricing (concluded)

• Suppose dSj/Sj = r dt+ σj dWj, 1 ≤ j ≤ k, where C is

the correlation matrix for dW1, dW2, . . . , dWk.

• Let C = PPT.

• Let ξ consist of k independent random variables from

N(0, 1).

• Let ξ′ = Pξ.

• Similar to Eq. (125) on p. 863, for each asset 1 ≤ j ≤ k,

Si+1 = Sie
(r−σ2

j/2)Δt+σj

√
Δt ξ′j

by Eq. (125) on p. 863.
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Least-Squares Problems

• The least-squares (LS) problem is concerned with

min
x∈Rn

‖ Ax− b ‖,

where A ∈ Rm×n, b ∈ Rm, and m ≥ n.

• The LS problem is called regression analysis in statistics

and is equivalent to minimizing the mean-square error.

• Often abbreviated as

Ax = b.
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Polynomial Regression

• In polynomial regression, x0 + x1x+ · · ·+ xnx
n is used

to fit the data { (a1, b1), (a2, b2), . . . , (am, bm) }.
• This leads to the LS problem,⎡

⎢⎢⎢⎢⎢⎢⎣

1 a1 a21 · · · an1

1 a2 a22 · · · an2
...

...
...

. . .
...

1 am a2m · · · anm

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

x0

x1

...

xn

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎣

b1

b2
...

bm

⎤
⎥⎥⎥⎥⎥⎥⎦
.

• Consult p. 273 of the textbook for solutions.
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American Option Pricing by Simulation

• The continuation value of an American option is the

conditional expectation of the payoff from keeping the

option alive now.

• The option holder must compare the immediate exercise

value and the continuation value.

• In standard Monte Carlo simulation, each path is

treated independently of other paths.

• But the exercise decision cannot be reached by looking

at just one path.
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The Least-Squares Monte Carlo Approach

• Estimate the continuation value from the cross-sectional

information in the simulation with least squares.a

• The result is a function of the state for estimating it.

• Use the estimated continuation value for each path to

determine its cash flow.

• This is called least-squares Monte Carlo (LSM).

aLongstaff & Schwartz (2001).
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The Least-Squares Monte Carlo Approach (concluded)

• LSM is provably convergent.a

• LSM can be easily parallelized.b

– Partition the paths into subproblems and perform

LSM on each independently.

– The speedup is close to linear (i.e., proportional to

the number of cores).

• Surprisingly, accuracy is not affected.

aClément, Lamberton, & Protter (2002); Stentoft (2004).
bK. Huang (B96902079, R00922018) (2013); C. W. Chen (B97902046,

R01922005) (2014); C. W. Chen (B97902046, R01922005), K. Huang

(B96902079, R00922018) & Lyuu (2015).
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A Numerical Example

• Consider a 3-year American put on a

non-dividend-paying stock.

• The put is exercisable at years 0, 1, 2, and 3.

• The strike price X = 105.

• The annualized riskless rate is r = 5%.

– The annual discount factor equals 0.951229.

• The current stock price is 101.

• We use 8 price paths to illustrate the algorithm.
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A Numerical Example (continued)

Stock price paths

Path Year 0 Year 1 Year 2 Year 3

1 101 97.6424 92.5815 107.5178

2 101 101.2103 105.1763 102.4524

3 101 105.7802 103.6010 124.5115

4 101 96.4411 98.7120 108.3600

5 101 124.2345 101.0564 104.5315

6 101 95.8375 93.7270 99.3788

7 101 108.9554 102.4177 100.9225

8 101 104.1475 113.2516 115.0994
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A Numerical Example (continued)

• We use the basis functions 1, x, x2.

– Other basis functions are possible.a

• The plot next page shows the final estimated optimal

exercise strategy given by LSM.

• We now proceed to tackle our problem.

• The idea is to calculate the cash flow along each path,

using information from all paths.

aLaguerre polynomials, Hermite polynomials, Legendre polynomials,

Chebyshev polynomials, Gedenbauer polynomials, or Jacobi polynomi-

als.
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A Numerical Example (continued)

Cash flows at year 3

Path Year 0 Year 1 Year 2 Year 3

1 — — — 0

2 — — — 2.5476

3 — — — 0

4 — — — 0

5 — — — 0.4685

6 — — — 5.6212

7 — — — 4.0775

8 — — — 0
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A Numerical Example (continued)

• The cash flows at year 3 are the put’s payoffs.

• Only 4 paths are in the money: 2, 5, 6, 7.

• Some of the cash flows may not occur if the put is

exercised earlier, which we will find out later.

• Incidentally, the European counterpart has a value of

0.9512293 × 2.5476 + 0.4685 + 5.6212 + 4.0775

8
= 1.3680.
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A Numerical Example (continued)

• We move on to year 2.

• For each state that is in the money at year 2, we must

decide whether to exercise it.

• There are 6 paths for which the put is in the money: 1,

3, 4, 5, 6, 7.a

• Only in-the-money paths will be used in the regression

because they are where early exercise is possible.

– If there were none, move on to year 1.

aRecall p. 935.
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A Numerical Example (continued)

• Let x denote the stock price at year 2 for each of those 6

paths.

• Let y denote the corresponding discounted future cash

flow (at year 3) if the put is not exercised at year 2.
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A Numerical Example (continued)

Regression at year 2

Path x y

1 92.5815 0× 0.951229

2 — —

3 103.6010 0× 0.951229

4 98.7120 0× 0.951229

5 101.0564 0.4685× 0.951229

6 93.7270 5.6212× 0.951229

7 102.4177 4.0775× 0.951229

8 — —
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A Numerical Example (continued)

• We regress y on 1, x, and x2.

• The result is

f(x) = 22.08− 0.313114× x+ 0.00106918× x2.

• f(x) estimates the continuation value conditional on the

stock price at year 2.

• We next compare the immediate exercise value and the

estimated continuation value.a

aThe f(102.4177) entry on the next page was corrected by Mr. Tu,

Yung-Szu (B79503054, R83503086) on May 25, 2017.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 944



A Numerical Example (continued)

Optimal early exercise decision at year 2

Path Exercise Continuation

1 12.4185 f(92.5815) = 2.2558

2 — —

3 1.3990 f(103.6010) = 1.1168

4 6.2880 f(98.7120) = 1.5901

5 3.9436 f(101.0564) = 1.3568

6 11.2730 f(93.7270) = 2.1253

7 2.5823 f(102.4177) = 1.2266

8 — —
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A Numerical Example (continued)

• The put should be exercised in all 6 paths: 1, 3, 4, 5, 6,

7.

• Now, any positive cash flow at year 3 vanishes for these

paths as the put has been exercised before it.a

– They are paths 5, 6, 7.

• The cash flows on p. 939 become the ones on next slide.

aRecall p. 935.
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A Numerical Example (continued)

Cash flows at years 2 & 3

Path Year 0 Year 1 Year 2 Year 3

1 — — 12.4185 0

2 — — 0 2.5476

3 — — 1.3990 0

4 — — 6.2880 0

5 — — 3.9436 0

6 — — 11.2730 0

7 — — 2.5823 0

8 — — 0 0
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A Numerical Example (continued)

• We move on to year 1.

• For each state that is in the money at year 1, we must

decide whether to exercise it.

• There are 5 paths for which the put is in the money: 1,

2, 4, 6, 8.a

• Only in-the-money paths will be used in the regression

because they are where early exercise is possible.

– If there were none, move on to year 0.

aRecall p. 935.
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A Numerical Example (continued)

• Let x denote the stock price at year 1 for each of those 5

paths.

• Let y denote the corresponding discounted future cash

flow if the put is not exercised at year 1.

• From p. 947, we have the following table.
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A Numerical Example (continued)

Regression at year 1

Path x y

1 97.6424 12.4185× 0.951229

2 101.2103 2.5476× 0.9512292

3 — —

4 96.4411 6.2880× 0.951229

5 — —

6 95.8375 11.2730× 0.951229

7 — —

8 104.1475 0× 0.951229
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A Numerical Example (continued)

• We regress y on 1, x, and x2.

• The result is

f(x) = −420.964 + 9.78113× x− 0.0551567× x2.

• f(x) estimates the continuation value conditional on the

stock price at year 1.

• We next compare the immediate exercise value and the

estimated continuation value.
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A Numerical Example (continued)

Optimal early exercise decision at year 1

Path Exercise Continuation

1 7.3576 f(97.6424) = 8.2230

2 3.7897 f(101.2103) = 3.9882

3 — —

4 8.5589 f(96.4411) = 9.3329

5 — —

6 9.1625 f(95.8375) = 9.83042

7 — —

8 0.8525 f(104.1475) = −0.551885
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A Numerical Example (continued)

• The put should be exercised for 1 path only: 8.

– Note that its f(104.1475) < 0.

• Now, any positive future cash flow vanishes for this path.

– But there is none.

• The cash flows on p. 947 become the ones on next slide.

• They also confirm the plot on p. 938.
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A Numerical Example (continued)

Cash flows at years 1, 2, & 3

Path Year 0 Year 1 Year 2 Year 3

1 — 0 12.4185 0

2 — 0 0 2.5476

3 — 0 1.3990 0

4 — 0 6.2880 0

5 — 0 3.9436 0

6 — 0 11.2730 0

7 — 0 2.5823 0

8 — 0.8525 0 0
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A Numerical Example (continued)

• We move on to year 0.

• The continuation value is, from p 954,

(12.4185× 0.9512292 + 2.5476× 0.9512293

+1.3990× 0.9512292 + 6.2880× 0.9512292

+3.9436× 0.9512292 + 11.2730× 0.9512292

+2.5823× 0.9512292 + 0.8525× 0.951229)/8

= 4.66263.
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A Numerical Example (concluded)

• As this is larger than the immediate exercise value of

105− 101 = 4,

the put should not be exercised at year 0.

• Hence the put’s value is estimated to be 4.66263.

• Compare this with the European put’s value of 1.3680.a

aRecall p. 940.
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Time Series Analysis
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The historian is a prophet in reverse.

— Friedrich von Schlegel (1772–1829)
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GARCH Option Pricing

• Options can be priced when the underlying asset’s

return follows a GARCH (generalized autoregressive

conditional heteroskedastic) process.a

• Let St denote the asset price at date t.

• Let h2
t be the conditional variance of the return over

the period [ t, t+ 1) given the information at date t.

– “One day” is merely a convenient term for any

elapsed time Δt.

aBollerslev (1986) and Taylor (1986). They are the “most popular

models for time-varying volatility” (Alexander, 2001). A Bloomberg

quant said to me on Feb 29, 2008, that GARCH is seldom used in trading.
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GARCH Option Pricing (continued)

• Adopt the following risk-neutral process for price:a

ln
St+1

St
= r − h2

t

2
+ htεt+1, (128)

where

h2
t+1 = β0 + β1h

2
t + β2h

2
t (εt+1 − c)2, (129)

εt+1 ∼ N(0, 1) given information at date t,

r = daily riskless return,

c ≥ 0.

• This is called the nonlinear asymmetric GARCH (or

NGARCH) model.
aDuan (1995).
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GARCH Option Pricing (continued)

• The five unknown parameters of the model are c, h0, β0,

β1, and β2.

• It is postulated that β0, β1, β2 ≥ 0 to make the

conditional variance positive.

• There are other inequalities to satisfy such as

β1 + β2 < 1 (see text).

• It can be shown that h2
t ≥ min

[
h2
0, β0/(1− β1)

]
.a

aLyuu & C. Wu (R90723065) (2005).
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GARCH Option Pricing (continued)

• It captures the volatility clustering in asset returns first

noted by Mandelbrot (1963).a

– When c = 0, a large εt+1 results in a large ht+1,

which in turns tends to yield a large ht+2, and so on.

• It also captures the negative correlation between the

asset return and changes in its (conditional) volatility.b

– For c > 0, a positive εt+1 (good news) tends to

decrease ht+1, whereas a negative εt+1 (bad news)

tends to do the opposite.
a“. . . large changes tend to be followed by large changes—of either

sign—and small changes tend to be followed by small changes . . . ”
bNoted by Black (1976): Volatility tends to rise in response to “bad

news” and fall in response to “good news.”
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GARCH Option Pricing (continued)

• This is called the leverage effect.

– A falling stock price raises the fixed costs, relatively

speaking.a

– Thus c is called the leverage effect parameter.

• With yt
Δ
= lnSt denoting the logarithmic price, the

model becomes

yt+1 = yt + r − h2
t

2
+ htεt+1. (130)

• The pair (yt, h
2
t ) completely describes the current state.

aBlack (1992).
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GARCH Option Pricing (concluded)

• The conditional mean and variance of yt+1 are clearly

E[ yt+1 | yt, h2
t ] = yt + r − h2

t

2
, (131)

Var[ yt+1 | yt, h2
t ] = h2

t . (132)

• Finally, given (yt, h
2
t ), the correlation between yt+1 and

ht+1 equals

− 2c√
2 + 4c2

,

which is negative for c > 0.
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GARCH Model: Inferences

• Suppose the parameters c, h0, β0, β1, and β2 are given.

• Then we can recover h1, h2, . . . , hn and ε1, ε2, . . . , εn

from the prices

S0, S1, . . . , Sn

under the GARCH model (128) on p. 960.

• This is useful in statistical inferences.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 965



The Ritchken-Trevor (RT) Algorithma

• The GARCH model is a continuous-state model.

• To approximate it, we turn to trees with discrete states.

• Path dependence in GARCH makes the tree for asset

prices explode exponentially.b

• We need to mitigate this combinatorial explosion.

aRitchken & Trevor (1999).
bWhy?
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The RT Algorithm (continued)

• Partition a day into n periods.

• Three states follow each state (yt, h
2
t ) after a period.

• As the trinomial model combines, each state at date t is

followed by 2n+ 1 states at date t+ 1.a

• These 2n+ 1 values must approximate the distribution

of (yt+1, h
2
t+1) to guarantee convergence.

• So the conditional moments (131)–(132) at date t+ 1

on p. 964 must be matched by the trinomial model.

aRecall p. 739.
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The RT Algorithm (continued)

• It remains to pick the jump size and the three branching

probabilities.

• The role of σ in the Black-Scholes option pricing model

is played by ht in the GARCH model.

• As a jump size proportional to σ/
√
n is picked in the

BOPM, a comparable magnitude will be chosen here.

• Define γ
Δ
= h0, though other multiples of h0 are

possible.

• Let

γn
Δ
=

γ√
n
.
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The RT Algorithm (continued)

• The jump size will be some integer multiple η of γn.

• We call η the jump parameter (see next page).

• Clearly, the magnitude of η tends to grow with ht.

• The middle branch does not change the underlying

asset’s price.
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(0, 0)
yt

(1, 1)

(1, 0)

(1,−1)

�
�
ηγn

�� 1 day

The seven values on the right approximate the distribution

of logarithmic price yt+1.
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The RT Algorithm (continued)

• The probabilities for the up, middle, and down branches

are

pu =
h2
t

2η2γ2
+

r − (h2
t/2)

2ηγ
√
n

, (133)

pm = 1− h2
t

η2γ2
, (134)

pd =
h2
t

2η2γ2
− r − (h2

t/2)

2ηγ
√
n

. (135)
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The RT Algorithm (continued)

• It can be shown that:

– The trinomial model takes on 2n+ 1 values at date

t+ 1 for yt+1 .

– These values match yt+1’s mean.

– These values match yt+1’s variance asymptotically.

• The central limit theorem guarantees convergence to the

continuous-space model as n increases.a

aAssume the probabilities are valid.
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The RT Algorithm (continued)

• We can dispense with the intermediate nodes between

dates to create a (2n+ 1)-nomial tree.a

• The resulting model is multinomial with 2n+ 1

branches from any state (yt, h
2
t ).

• There are two reasons behind this manipulation.

– Interdate nodes are created merely to approximate

the continuous-state model after one day.

– Keeping the interdate nodes results in a tree that is

n times larger.b

aSee p. 974.
bContrast it with the case on p. 410.
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yt

�
�
ηγn

�� 1 day

This heptanomial model is the outcome of the trinomial tree

on p. 970 after the intermediate nodes are removed.
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The RT Algorithm (continued)

• A node with logarithmic price yt + 	ηγn at date t+ 1

follows the current node at date t with price yt, where

−n ≤ 	 ≤ n.

• To reach that price in n periods, the number of up

moves must exceed that of down moves by exactly 	.

• The probability this happens is

P (	)
Δ
=

∑
ju,jm,jd

n!

ju! jm! jd!
pjuu pjmm pjdd ,

with ju, jm, jd ≥ 0, n = ju + jm + jd, and 	 = ju − jd.
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The RT Algorithm (continued)

• A simple way to calculate the P (	)s starts by notinga

(
pux+ pm + pdx

−1
)n

=

n∑
�=−n

P (	)x�.

(136)

– Convince yourself that the “accounting” is done

correctly.

• So we expand (pux+ pm + pdx
−1)n and retrieve the

probabilities by reading off the coefficients.

• It can be computed in O(n2) time, if not less.

aC. Wu (R90723065) (2003); Lyuu & C. Wu (R90723065) (2003, 2005).
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The RT Algorithm (continued)

• The updating rule (129) on p. 960 must be modified to

account for the adoption of the discrete-state model.

• The logarithmic price yt + 	ηγn at date t+ 1 following

state (yt, h
2
t ) is associated with this variance:

h2
t+1 = β0 + β1h

2
t + β2h

2
t (ε

′
t+1 − c)2, (137)

– Above, the z-scorea

ε′t+1 =
	ηγn − (r − h2

t /2)

ht
, 	 = 0,±1,±2, . . . ,±n,

is a discrete random variable with 2n+ 1 values.

aNote that the mean of ε′t+1 is r − (h2
t /2).
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The RT Algorithm (continued)

• Different h2
t may require different η so that the

probabilities (133)–(135) on p. 971 lie between 0 and 1.

• This implies varying jump sizes ηγn.

• The necessary requirement pm ≥ 0 implies η ≥ ht/γ.

• Hence we try

η = �ht/γ 	, �ht/γ 	+ 1, �ht/γ 	+ 2, . . .

until valid probabilities are obtained or until their

nonexistence is confirmed.
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The RT Algorithm (continued)

• The sufficient and necessary condition for valid

probabilities to exist isa

| r − (h2
t /2) |

2ηγ
√
n

≤ h2
t

2η2γ2
≤ min

(
1− | r − (h2

t/2) |
2ηγ

√
n

,
1

2

)
.

• The plot on p. 980 uses n = 1 to illustrate our points

for a 3-day model.

• For example, node (1, 1) of date 1 and node (2, 3) of

date 2 pick η = 2.

aC. Wu (R90723065) (2003); Lyuu & C. Wu (R90723065) (2003, 2005).
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y0

(1, 1)

(2, 3)

(2, 0)

(2,−1)

�
�
γn = γ1

�� 3 days
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The RT Algorithm (continued)

• The topology of the tree is not a standard combining

multinomial tree.

• For example, a few nodes on p. 980 such as nodes (2, 0)

and (2,−1) have multiple jump sizes.

• The reason is path dependency of the model.

– Two paths can reach node (2, 0) from the root node,

each with a different variance h2
t for the node.

– One variance results in η = 1.

– The other results in η = 2.
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The RT Algorithm (concluded)

• The number of possible values of h2
t at a node can be

exponential.

– Because each path may result in a different h2
t .

• To address this problem, we record only the maximum

and minimum h2
t at each node.a

• Therefore, each node on the tree contains only two

states (yt, h
2
max) and (yt, h

2
min).

• Each of (yt, h
2
max) and (yt, h

2
min) carries its own η and

set of 2n+ 1 branching probabilities.

aCakici & Topyan (2000). But see p. 1017 for a potential problem.
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Negative Aspects of the Ritchken-Trevor Algorithma

• A small n may yield inaccurate option prices.

• But the tree will grow exponentially if n is large enough.

– Specifically, n > (1− β1)/β2 when r = c = 0.

• A large n has another serious problem: The tree cannot

grow beyond a certain date.

• Thus the choice of n may be quite limited in practice.

• The RT algorithm can be modified to be free of

shortened maturity and exponential complexity.b

aLyuu & C. Wu (R90723065) (2003, 2005).
bIts size is only O(T 2) if n ≤ (

√
(1− β1)/β2 − c)2, where T is the

number of days to maturity!
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Numerical Examples

• Assume

– S0 = 100, y0 = lnS0 = 4.60517.

– r = 0.

– n = 1.

– h2
0 = 0.0001096, γ = h0 = 0.010469.

– γn = γ/
√
n = 0.010469.

– β0 = 0.000006575, β1 = 0.9, β2 = 0.04, and c = 0.
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Numerical Examples (continued)

• A daily variance of 0.0001096 corresponds to an annual

volatility of

√
365× 0.0001096 ≈ 20%.

• Let h2(i, j) denote the variance at node (i, j).

• Initially, h2(0, 0) = h2
0 = 0.0001096.
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Numerical Examples (continued)

• Let h2
max(i, j) denote the maximum variance at node

(i, j).

• Let h2
min(i, j) denote the minimum variance at node

(i, j).

• Initially, h2
max(0, 0) = h2

min(0, 0) = h2
0.

• The resulting 3-day tree is depicted on p. 987.
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Numerical Examples (continued)

• A top number inside a gray box refers to the minimum

variance h2
min for the node.

• A bottom number inside a gray box refers to the

maximum variance h2
max for the node.

• Variances are multiplied by 100,000 for readability.

• The top number inside a white box refers to the η for

h2
min.

• The bottom number inside a white box refers to the η

for h2
max.
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Numerical Examples (continued)

• Let us see how the numbers are calculated.

• Start with the root node, node (0, 0).

• Try η = 1 in Eqs. (133)–(135) on p. 971 first to obtain

pu = 0.4974,

pm = 0,

pd = 0.5026.

• As they are valid, the three branches from the root node

take single jumps.
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Numerical Examples (continued)

• Move on to node (1, 1).

• It has one predecessor node—node (0, 0)—and it takes

an up move to reach node (1, 1).

• So apply updating rule (137) on p. 977 with 	 = 1 and

h2
t = h2(0, 0).

• The result is h2(1, 1) = 0.000109645.
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Numerical Examples (continued)

• Because �h(1, 1)/γ 	 = 2, we try η = 2 in

Eqs. (133)–(135) on p. 971 first to obtain

pu = 0.1237,

pm = 0.7499,

pd = 0.1264.

• As they are valid, the three branches from node (1, 1)

take double jumps.
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Numerical Examples (continued)

• Carry out similar calculations for node (1, 0) with

	 = 0 in updating rule (137) on p. 977.

• Carry out similar calculations for node (1,−1) with

	 = −1 in updating rule (137).

• Single jump η = 1 works for both nodes.

• The resulting variances are

h2(1, 0) = 0.000105215,

h2(1,−1) = 0.000109553.
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Numerical Examples (continued)

• Node (2, 0) has 2 predecessor nodes, (1, 0) and (1,−1).

• Both have to be considered in deriving the variances.

• Let us start with node (1, 0).

• Because it takes a middle move to reach node (2, 0), we

apply updating rule (137) on p. 977 with 	 = 0 and

h2
t = h2(1, 0).

• The result is h2
t+1 = 0.000101269.
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Numerical Examples (continued)

• Now move on to the other predecessor node (1,−1).

• Because it takes an up move to reach node (2, 0), apply

updating rule (137) on p. 977 with 	 = 1 and

h2
t = h2(1,−1).

• The result is h2
t+1 = 0.000109603.

• We hence record

h2
min(2, 0) = 0.000101269,

h2
max(2, 0) = 0.000109603.
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Numerical Examples (continued)

• Consider state h2
max(2, 0) first.

• Because �hmax(2, 0)/γ 	 = 2, we first try η = 2 in

Eqs. (133)–(135) on p. 971 to obtain

pu = 0.1237,

pm = 0.7500,

pd = 0.1263.

• As they are valid, the three branches from node (2, 0)

with the maximum variance take double jumps.
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Numerical Examples (continued)

• Now consider state h2
min(2, 0).

• Because �hmin(2, 0)/γ 	 = 1, we first try η = 1 in

Eqs. (133)–(135) on p. 971 to obtain

pu = 0.4596,

pm = 0.0760,

pd = 0.4644.

• As they are valid, the three branches from node (2, 0)

with the minimum variance take single jumps.
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Numerical Examples (continued)

• Node (2,−1) has 3 predecessor nodes.

• Start with node (1, 1).

• Because it takes one down move to reach node (2,−1),

we apply updating rule (137) on p. 977 with 	 = −1

and h2
t = h2(1, 1).a

• The result is h2
t+1 = 0.0001227.

aNote that it is not � = −2. The reason is that h(1, 1) has η = 2 (p.

991).
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Numerical Examples (continued)

• Now move on to predecessor node (1, 0).

• Because it also takes a down move to reach node

(2,−1), we apply updating rule (137) on p. 977 with

	 = −1 and h2
t = h2(1, 0).

• The result is h2
t+1 = 0.000105609.
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Numerical Examples (continued)

• Finally, consider predecessor node (1,−1).

• Because it takes a middle move to reach node (2,−1),

we apply updating rule (137) on p. 977 with 	 = 0 and

h2
t = h2(1,−1).

• The result is h2
t+1 = 0.000105173.

• We hence record

h2
min(2,−1) = 0.000105173,

h2
max(2,−1) = 0.0001227.
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Numerical Examples (continued)

• Consider state h2
max(2,−1).

• Because �hmax(2,−1)/γ 	 = 2, we first try η = 2 in

Eqs. (133)–(135) on p. 971 to obtain

pu = 0.1385,

pm = 0.7201,

pd = 0.1414.

• As they are valid, the three branches from node (2,−1)

with the maximum variance take double jumps.
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Numerical Examples (continued)

• Next, consider state h2
min(2,−1).

• Because �hmin(2,−1)/γ 	 = 1, we first try η = 1 in

Eqs. (133)–(135) on p. 971 to obtain

pu = 0.4773,

pm = 0.0404,

pd = 0.4823.

• As they are valid , the three branches from node (2,−1)

with the minimum variance take single jumps.
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Numerical Examples (concluded)

• Other nodes at dates 2 and 3 can be handled similarly.

• In general, if a node has k predecessor nodes, then up to

2k variances will be calculated using the updating rule.

– This is because each predecessor node keeps two

variance numbers.

• But only the maximum and minimum variances will be

kept.
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Negative Aspects of the RT Algorithm Revisiteda

• Recall the problems mentioned on p. 983.

• In our case, combinatorial explosion occurs when

n >
1− β1

β2
=

1− 0.9

0.04
= 2.5

(see the next plot).

• Suppose we are willing to accept the exponential

running time and pick n = 100 to seek accuracy.

• But the problem of shortened maturity forces the tree to

stop at date 9!

aLyuu & C. Wu (R90723065) (2003, 2005).
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Dotted line: n = 3; dashed line: n = 4; solid line: n = 5.
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