Multivariate Contingent Claims

- They depend on two or more underlying assets.
- The basket call on \(m \) assets has the terminal payoff
 \[
 \max \left(\sum_{i=1}^{m} \alpha_i S_i(\tau) - X, 0 \right),
 \]
 where \(\alpha_i \) is the percentage of asset \(i \).
- Basket options are essentially options on a portfolio of stocks (or index options).\(^a\)
- Option on the best of two risky assets and cash has a terminal payoff of \(\max(S_1(\tau), S_2(\tau), X) \).

\(^a\)Except that membership and weights do not change for basket options (Bennett, 2014).
Multivariate Contingent Claims (concluded)a

<table>
<thead>
<tr>
<th>Name</th>
<th>Payoff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exchange option</td>
<td>$\max(S_1(\tau) - S_2(\tau), 0)$</td>
</tr>
<tr>
<td>Better-off option</td>
<td>$\max(S_1(\tau), \ldots, S_k(\tau), 0)$</td>
</tr>
<tr>
<td>Worst-off option</td>
<td>$\min(S_1(\tau), \ldots, S_k(\tau), 0)$</td>
</tr>
<tr>
<td>Binary maximum option</td>
<td>$I{ \max(S_1(\tau), \ldots, S_k(\tau)) > X }$</td>
</tr>
<tr>
<td>Maximum option</td>
<td>$\max(\max(S_1(\tau), \ldots, S_k(\tau)) - X, 0)$</td>
</tr>
<tr>
<td>Minimum option</td>
<td>$\max(\min(S_1(\tau), \ldots, S_k(\tau)) - X, 0)$</td>
</tr>
<tr>
<td>Spread option</td>
<td>$\max(S_1(\tau) - S_2(\tau) - X, 0)$</td>
</tr>
<tr>
<td>Basket average option</td>
<td>$\max((S_1(\tau) + \cdots + S_k(\tau))/k - X, 0)$</td>
</tr>
<tr>
<td>Multi-strike option</td>
<td>$\max(S_1(\tau) - X_1, \ldots, S_k(\tau) - X_k, 0)$</td>
</tr>
<tr>
<td>Pyramid rainbow option</td>
<td>$\max(</td>
</tr>
<tr>
<td>Madonna option</td>
<td>$\max(\sqrt{(S_1(\tau) - X_1)^2} + \cdots + (S_k(\tau) - X_k)^2 - X, 0)$</td>
</tr>
</tbody>
</table>

aLyuu & Teng (R91723054) (2011).
Correlated Trinomial Model\(^a\)

- Two risky assets \(S_1\) and \(S_2\) follow

\[
\frac{dS_i}{S_i} = r\, dt + \sigma_i \, dW_i
\]

in a risk-neutral economy, \(i = 1, 2\).

- Let

\[
M_i \triangleq e^{r\Delta t},
\]

\[
V_i \triangleq M_i^2(e^{\sigma_i^2\Delta t} - 1).
\]

- \(S_i M_i\) is the mean of \(S_i\) at time \(\Delta t\).
- \(S_i^2 V_i\) the variance of \(S_i\) at time \(\Delta t\).

\(^a\)Boyle, Evnine, & Gibbs (1989).
Correlated Trinomial Model (continued)

• The value of S_1S_2 at time Δt has a joint lognormal distribution with mean $S_1S_2M_1M_2e^{\rho \sigma_1 \sigma_2 \Delta t}$, where ρ is the correlation between dW_1 and dW_2.

• Next match the 1st and 2nd moments of the approximating discrete distribution to those of the continuous counterpart.

• At time Δt from now, there are 5 distinct outcomes.
Correlated Trinomial Model (continued)

- The five-point probability distribution of the asset prices is

<table>
<thead>
<tr>
<th>Probability</th>
<th>Asset 1</th>
<th>Asset 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p_1)</td>
<td>(S_1 u_1)</td>
<td>(S_2 u_2)</td>
</tr>
<tr>
<td>(p_2)</td>
<td>(S_1 u_1)</td>
<td>(S_2 d_2)</td>
</tr>
<tr>
<td>(p_3)</td>
<td>(S_1 d_1)</td>
<td>(S_2 d_2)</td>
</tr>
<tr>
<td>(p_4)</td>
<td>(S_1 d_1)</td>
<td>(S_2 u_2)</td>
</tr>
<tr>
<td>(p_5)</td>
<td>(S_1)</td>
<td>(S_2)</td>
</tr>
</tbody>
</table>

- As usual, impose \(u_i d_i = 1 \).
Correlated Trinomial Model (continued)

- The probabilities must sum to one, and the means must be matched:

\[1 = p_1 + p_2 + p_3 + p_4 + p_5, \]
\[S_1 M_1 = (p_1 + p_2) S_1 u_1 + p_5 S_1 + (p_3 + p_4) S_1 d_1, \]
\[S_2 M_2 = (p_1 + p_4) S_2 u_2 + p_5 S_2 + (p_2 + p_3) S_2 d_2. \]
Correlated Trinomial Model (concluded)

- Let $R \triangleq M_1 M_2 e^{\rho \sigma_1 \sigma_2 \Delta t}$.
- Match the variances and covariance:
 $$S_1^2 V_1 = (p_1 + p_2) \left[(S_1 u_1)^2 - (S_1 M_1)^2 \right] + p_5 \left[S_1^2 - (S_1 M_1)^2 \right]$$
 $$+ (p_3 + p_4) \left[(S_1 d_1)^2 - (S_1 M_1)^2 \right],$$
 $$S_2^2 V_2 = (p_1 + p_4) \left[(S_2 u_2)^2 - (S_2 M_2)^2 \right] + p_5 \left[S_2^2 - (S_2 M_2)^2 \right]$$
 $$+ (p_2 + p_3) \left[(S_2 d_2)^2 - (S_2 M_2)^2 \right],$$
 $$S_1 S_2 R = (p_1 u_1 u_2 + p_2 u_1 d_2 + p_3 d_1 d_2 + p_4 d_1 u_2 + p_5) S_1 S_2.$$

- The solutions appear on p. 246 of the textbook.
Correlated Trinomial Model Simplifieda

- Let $\mu_i' \triangleq r - \sigma_i^2/2$ and $u_i \triangleq e^{\lambda \sigma_i \sqrt{\Delta t}}$ for $i = 1, 2$.

- The following simpler scheme is often good enough:

\begin{align*}
 p_1 &= \frac{1}{4} \left[\frac{1}{\lambda^2} + \frac{\sqrt{\Delta t}}{\lambda} \left(\frac{\mu_1'}{\sigma_1} + \frac{\mu_2'}{\sigma_2} \right) + \frac{\rho}{\lambda^2} \right], \\
 p_2 &= \frac{1}{4} \left[\frac{1}{\lambda^2} + \frac{\sqrt{\Delta t}}{\lambda} \left(\frac{\mu_1'}{\sigma_1} - \frac{\mu_2'}{\sigma_2} \right) - \frac{\rho}{\lambda^2} \right], \\
 p_3 &= \frac{1}{4} \left[\frac{1}{\lambda^2} + \frac{\sqrt{\Delta t}}{\lambda} \left(-\frac{\mu_1'}{\sigma_1} - \frac{\mu_2'}{\sigma_2} \right) + \frac{\rho}{\lambda^2} \right], \\
 p_4 &= \frac{1}{4} \left[\frac{1}{\lambda^2} + \frac{\sqrt{\Delta t}}{\lambda} \left(-\frac{\mu_1'}{\sigma_1} + \frac{\mu_2'}{\sigma_2} \right) - \frac{\rho}{\lambda^2} \right], \\
 p_5 &= 1 - \frac{1}{\lambda^2}.
\end{align*}

aMadan, Milne, & Shefrin (1989).
Correlated Trinomial Model Simplified (continued)

- All of the probabilities lie between 0 and 1 if and only if

\[-1 + \lambda \sqrt{\Delta t} \left| \frac{\mu'_1}{\sigma_1} + \frac{\mu'_2}{\sigma_2} \right| \leq \rho \leq 1 - \lambda \sqrt{\Delta t} \left| \frac{\mu'_1}{\sigma_1} - \frac{\mu'_2}{\sigma_2} \right|,\]

\[1 \leq \lambda.\] \hspace{1cm} (116)

\[-1 + O(\sqrt{\Delta t}) < \rho < 1 - O(\sqrt{\Delta t}),\]

such as the above one.\(^a\)

\(^a\)W. Kao (R98922093) (2011); W. Kao (R98922093), Lyuu, & Wen (D94922003) (2014).
Correlated Trinomial Model Simplified (continued)

- But this model cannot price 2-asset 2-barrier options accurately.\(^a\)

- Few multivariate trees are both optimal and able to handle multiple barriers.\(^b\)

- An alternative is to use orthogonalization.\(^c\)

\(^a\)See Y. Chang (B89704039, R93922034), Hsu (R7526001, D89922012), & Lyuu (2006); W. Kao (R98922093), Lyuu, & Wen (D94922003) (2014) for solutions.

\(^b\)See W. Kao (R98922093), Lyuu, & Wen (D94922003) (2014) for an exception.

\(^c\)Hull & White (1990); Dai (B82506025, R86526008, D8852600), C. Wang (F95922018), & Lyuu (2013).
Correlated Trinomial Model Simplified (concluded)

• Suppose we allow each asset’s volatility to be a function of time.a

• There are k assets.

• Can you build an optimal multivariate tree that can handle two barriers on each asset in time $O(n^{k+1})$?b

aRecall p. 315.

bSee Y. Zhang (R05922052) (2019) for a complete solution.
Extrapolation

• It is a method to speed up numerical convergence.

• Say \(f(n) \) converges to an unknown limit \(f \) at rate of \(1/n \):

\[
f(n) = f + \frac{c}{n} + o\left(\frac{1}{n}\right). \tag{118}
\]

• Assume \(c \) is an unknown constant independent of \(n \).
 – Convergence is basically monotonic and smooth.
Extrapolation (concluded)

• From two approximations \(f(n_1) \) and \(f(n_2) \) and ignoring the smaller terms,

\[
f(n_1) = f + \frac{c}{n_1},
\]

\[
f(n_2) = f + \frac{c}{n_2}.
\]

• A better approximation to the desired \(f \) is

\[
f = \frac{n_1 f(n_1) - n_2 f(n_2)}{n_1 - n_2}.
\] (119)

• This estimate should converge faster than \(1/n \).\(^a\)

• The Richardson extrapolation uses \(n_2 = 2n_1 \).

\(^a\)It is identical to the forward rate formula (22) on p. 150!
Improving BOPM with Extrapolation

- Consider standard European options.
- Denote the option value under BOPM using n time periods by $f(n)$.
- It is known that BOPM convergences at the rate of $1/n$,\(^a\) consistent with Eq. (118) on p. 830.
- The plots on p. 306 (redrawn on next page) show that convergence to the true option value oscillates with n.
- Extrapolation is inapplicable at this stage.

Improving BOPM with Extrapolation (concluded)

• Take the at-the-money option in the left plot on p. 833.

• The sequence with odd n turns out to be monotonic and smooth (see the left plot on p. 835).\(^a\)

• Apply extrapolation (119) on p. 831 with $n_2 = n_1 + 2$, where n_1 is odd.

• Result is shown in the right plot on p. 835.

• The convergence rate is amazing.

• See Exercise 9.3.8 (p. 111) of the text for ideas in the general case.

\(^a\)This can be proved (L. Chang & Palmer, 2007; F. Diener & M. Diener, 2004).
Numerical Methods
All science is dominated by the idea of approximation.
— Bertrand Russell
Finite-Difference Methods

- Place a grid of points on the space over which the desired function takes value.
- Then approximate the function value at each of these points (p. 839).
- Solve the equation numerically by introducing difference equations in place of derivatives.
Example: Poisson’s Equation

- It is \(\frac{\partial^2 \theta}{\partial x^2} + \frac{\partial^2 \theta}{\partial y^2} = -\rho(x, y) \), which describes the electrostatic field.

- Replace second derivatives with finite differences through central difference.

- Introduce evenly spaced grid points with distance of \(\Delta x \) along the \(x \) axis and \(\Delta y \) along the \(y \) axis.

- The finite-difference form is

\[
-\rho(x_i, y_j) = \frac{\theta(x_{i+1}, y_j) - 2\theta(x_i, y_j) + \theta(x_{i-1}, y_j)}{(\Delta x)^2} \\
\quad + \frac{\theta(x_i, y_{j+1}) - 2\theta(x_i, y_j) + \theta(x_i, y_{j-1})}{(\Delta y)^2}.
\]
Example: Poisson’s Equation (concluded)

- In the above, $\Delta x \equiv x_i - x_{i-1}$ and $\Delta y \equiv y_j - y_{j-1}$ for $i, j = 1, 2, \ldots$.

- When the grid points are evenly spaced in both axes so that $\Delta x = \Delta y = h$, the difference equation becomes

$$-h^2 \rho(x_i, y_j) = \theta(x_{i+1}, y_j) + \theta(x_{i-1}, y_j)$$
$$+ \theta(x_i, y_{j+1}) + \theta(x_i, y_{j-1}) - 4\theta(x_i, y_j).$$

- Given boundary values, we can solve for the x_is and the y_js within the square $[-L, L]$.

- From now on, $\theta_{i,j}$ will denote the finite-difference approximation to the exact $\theta(x_i, y_j)$.
Explicit Methods

• Consider the diffusion equation\(^a\)
\[
D \left(\frac{\partial^2 \theta}{\partial x^2} \right) - \left(\frac{\partial \theta}{\partial t} \right) = 0, \quad D > 0.
\]

• Use evenly spaced grid points \((x_i, t_j)\) with distances \(\Delta x\) and \(\Delta t\), where \(\Delta x \triangleq x_{i+1} - x_i\) and \(\Delta t \triangleq t_{j+1} - t_j\).

• Employ central difference for the second derivative and forward difference for the time derivative to obtain

\[
\left. \frac{\partial \theta(x, t)}{\partial t} \right|_{t = t_j} = \frac{\theta(x, x_{j+1}) - \theta(x, x_j)}{\Delta t} + \cdots, \tag{120}
\]

\[
\left. \frac{\partial^2 \theta(x, t)}{\partial x^2} \right|_{x = x_i} = \frac{\theta(x_{i+1}, t) - 2\theta(x_i, t) + \theta(x_{i-1}, t)}{(\Delta x)^2} + \cdots. \tag{121}
\]

\(^a\)It is a parabolic partial differential equation.
Explicit Methods (continued)

- Next, assemble Eqs. (120) and (121) into a single equation at \((x_i, t_j)\).
- But we need to decide how to evaluate \(x\) in the first equation and \(t\) in the second.
- Since central difference around \(x_i\) is used in Eq. (121), we might as well use \(x_i\) for \(x\) in Eq. (120).
- Two choices are possible for \(t\) in Eq. (121).
- The first choice uses \(t = t_j\) to yield the following finite-difference equation,

\[
\frac{\theta_{i,j+1} - \theta_{i,j}}{\Delta t} = D \frac{\theta_{i+1,j} - 2\theta_{i,j} + \theta_{i-1,j}}{(\Delta x)^2}.
\]

(122)
Explicit Methods (continued)

- The stencil of grid points involves four values, $\theta_{i,j+1}$, $\theta_{i,j}$, $\theta_{i+1,j}$, and $\theta_{i-1,j}$.

- Rearrange Eq. (122) on p. 843 as

$$
\theta_{i,j+1} = \frac{D \Delta t}{(\Delta x)^2} \theta_{i+1,j} + \left(1 - \frac{2D \Delta t}{(\Delta x)^2}\right) \theta_{i,j} + \frac{D \Delta t}{(\Delta x)^2} \theta_{i-1,j}.
$$

(123)

- We can calculate $\theta_{i,j+1}$ from $\theta_{i,j}$, $\theta_{i+1,j}$, $\theta_{i-1,j}$, at the previous time t_j (see exhibit (a) on next page).
Explicit Methods (concluded)

• Starting from the initial conditions at t_0, that is, $\theta_{i,0} = \theta(x_i, t_0)$, $i = 1, 2, \ldots$, we calculate

$$\theta_{i,1}, \quad i = 1, 2, \ldots$$

• And then

$$\theta_{i,2}, \quad i = 1, 2, \ldots$$

• And so on.
Stability

- The explicit method is numerically unstable unless

\[\Delta t \leq \left(\Delta x \right)^2 / (2D). \]

- A numerical method is unstable if the solution is highly sensitive to changes in initial conditions.

- The stability condition may lead to high running times and memory requirements.

- For instance, halving \(\Delta x \) would imply quadrupling \((\Delta t)^{-1} \), resulting in a running time 8 times as much.
Explicit Method and Trinomial Tree

• Recall Eq. (123) on p. 844:

\[\theta_{i,j+1} = \frac{D \Delta t}{(\Delta x)^2} \theta_{i+1,j} + \left(1 - \frac{2D \Delta t}{(\Delta x)^2}\right) \theta_{i,j} + \frac{D \Delta t}{(\Delta x)^2} \theta_{i-1,j}. \]

• When the stability condition is satisfied, the three coefficients for \(\theta_{i+1,j} \), \(\theta_{i,j} \), and \(\theta_{i-1,j} \) all lie between zero and one and sum to one.

• They can be interpreted as probabilities.

• So the finite-difference equation becomes identical to backward induction on trinomial trees!
Explicit Method and Trinomial Tree (concluded)

- The freedom in choosing Δx corresponds to similar freedom in the construction of trinomial trees.

- The explicit finite-difference equation is also identical to backward induction on a binomial tree.a
 - Let the binomial tree take 2 steps each of length $\Delta t/2$.
 - It is now a trinomial tree.

aHilliard (2014).
Implicit Methods

- Suppose we use $t = t_{j+1}$ in Eq. (121) on p. 842 instead.
- The finite-difference equation becomes

$$\frac{\theta_{i,j+1} - \theta_{i,j}}{\Delta t} = D \frac{\theta_{i+1,j+1} - 2 \theta_{i,j+1} + \theta_{i-1,j+1}}{(\Delta x)^2}.$$ \hspace{1cm} (124)

- The stencil involves $\theta_{i,j}, \theta_{i,j+1}, \theta_{i+1,j+1},$ and $\theta_{i-1,j+1}$.
- This method is now implicit:
 - The value of any one of the three quantities at t_{j+1} cannot be calculated unless the other two are known.
 - See exhibit (b) on p. 845.
Implicit Methods (continued)

- Equation (124) can be rearranged as

\[
\theta_{i-1,j+1} - (2 + \gamma) \theta_{i,j+1} + \theta_{i+1,j+1} = -\gamma \theta_{i,j},
\]

where \(\gamma \triangleq (\Delta x)^2/(D\Delta t) \).

- This equation is unconditionally stable.

- Suppose the boundary conditions are given at \(x = x_0 \) and \(x = x_{N+1} \).

- After \(\theta_{i,j} \) has been calculated for \(i = 1, 2, \ldots, N \), the values of \(\theta_{i,j+1} \) at time \(t_{j+1} \) can be computed as the solution to the following tridiagonal linear system,
Implicit Methods (continued)

\[
\begin{bmatrix}
 a & 1 & 0 & \cdots & \cdots & \cdots & 0 \\
 1 & a & 1 & 0 & \cdots & \cdots & 0 \\
 0 & 1 & a & 1 & 0 & \cdots & 0 \\
 \vdots & \vdots & \ddots & \vdots & \ddots & \ddots & \vdots \\
 \vdots & \vdots & \ddots & \vdots & \ddots & \ddots & \vdots \\
 0 & \cdots & \cdots & 0 & 1 & a & 1 \\
 0 & \cdots & \cdots & \cdots & 0 & 1 & a \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
 \theta_{1,j+1} \\
 \theta_{2,j+1} \\
 \theta_{3,j+1} \\
 \vdots \\
 \vdots \\
 \theta_{N,j+1} \\
\end{bmatrix}
=
\begin{bmatrix}
 -\gamma \theta_{1,j} - \theta_{0,j+1} \\
 -\gamma \theta_{2,j} \\
 -\gamma \theta_{3,j} \\
 \vdots \\
 \vdots \\
 -\gamma \theta_{N-1,j} \\
 -\gamma \theta_{N,j} - \theta_{N+1,j+1} \\
\end{bmatrix},
\]

where \(a \triangleq -2 - \gamma \).
Implicit Methods (concluded)

- Tridiagonal systems can be solved in \(O(N) \) time and \(O(N) \) space.
 - Never invert a matrix to solve a tridiagonal system.

- The matrix above is nonsingular when \(\gamma \geq 0 \).
 - A square matrix is nonsingular if its inverse exists.
Crank-Nicolson Method

• Take the average of explicit method (122) on p. 843 and implicit method (124) on p. 850:

\[
\frac{\theta_{i,j+1} - \theta_{i,j}}{\Delta t} = \frac{1}{2} \left(D \frac{\theta_{i+1,j} - 2\theta_{i,j} + \theta_{i-1,j}}{(\Delta x)^2} + D \frac{\theta_{i+1,j+1} - 2\theta_{i,j+1} + \theta_{i-1,j+1}}{(\Delta x)^2} \right).
\]

• After rearrangement,

\[
\gamma \theta_{i,j+1} - \frac{\theta_{i+1,j+1} - 2\theta_{i,j+1} + \theta_{i-1,j+1}}{2} = \gamma \theta_{i,j} + \frac{\theta_{i+1,j} - 2\theta_{i,j} + \theta_{i-1,j}}{2}.
\]

• This is an unconditionally stable implicit method with excellent rates of convergence.
Stencil

\[x_{i+1} \]
\[x_i \]
\[x_{i+1} \]

\[t_j \quad t_{j+1} \]
Numerically Solving the Black-Scholes PDE (94) on p. 685

- See text.
- Brennan and Schwartz (1978) analyze the stability of the implicit method.
Monte Carlo Simulation

- Monte Carlo simulation is a sampling scheme.
- In many important applications within finance and without, Monte Carlo is one of the few feasible tools.
- When the time evolution of a stochastic process is not easy to describe analytically, Monte Carlo may very well be the only strategy that succeeds consistently.

\(^a\)A top 10 algorithm (Dongarra & Sullivan, 2000).
The Big Idea

• Assume X_1, X_2, \ldots, X_n have a joint distribution.

• $\theta \triangleq E[g(X_1, X_2, \ldots, X_n)]$ for some function g is desired.

• We generate

$$(x_1^{(i)}, x_2^{(i)}, \ldots, x_n^{(i)}), \quad 1 \leq i \leq N$$

independently with the same joint distribution as (X_1, X_2, \ldots, X_n).

• Output $Y \triangleq (1/N) \sum_{i=1}^{N} Y_i$, where

$$Y_i \triangleq g\left(x_1^{(i)}, x_2^{(i)}, \ldots, x_n^{(i)}\right).$$
The Big Idea (concluded)

- \(Y_1, Y_2, \ldots, Y_N \) are independent and identically distributed random variables.
- Each \(Y_i \) has the same distribution as
 \[
 Y \stackrel{\Delta}{=} g(X_1, X_2, \ldots, X_n).
 \]
- Since the average of these \(N \) random variables, \(\overline{Y} \), satisfies \(E[\overline{Y}] = \theta \), it can be used to estimate \(\theta \).
- The strong law of large numbers says that this procedure converges almost surely.
- The number of replications (or independent trials), \(N \), is called the sample size.
Accuracy

• The Monte Carlo estimate and true value may differ owing to two reasons:
 1. Sampling variation.
 2. The discreteness of the sample paths.a

• The first can be controlled by the number of replications.

• The second can be controlled by the number of observations along the sample path.

aThis may not be an issue if the financial derivative only requires discrete sampling along time, such as the \textit{discrete} barrier option.
Accuracy and Number of Replications

- The statistical error of the sample mean \bar{Y} of the random variable Y grows as $1/\sqrt{N}$.
 - Because $\text{Var}[\bar{Y}] = \text{Var}[Y]/N$.

- In fact, this convergence rate is asymptotically optimal.a

- So the variance of the estimator \bar{Y} can be reduced by a factor of $1/N$ by doing N times as much work.

- This is amazing because the same order of convergence holds independently of the dimension n.

aThe Berry-Esseen theorem.
Accuracy and Number of Replications (concluded)

- In contrast, classic numerical integration schemes have an error bound of $O(N^{-c/n})$ for some constant $c > 0$.
- The required number of evaluations thus grows exponentially in n to achieve a given level of accuracy.
 - The curse of dimensionality.
- The Monte Carlo method is more efficient than alternative procedures for multivariate derivatives for n large.
Monte Carlo Option Pricing

- For the pricing of European options on a dividend-paying stock, we may proceed as follows.

- Assume

\[\frac{dS}{S} = \mu \, dt + \sigma \, dW. \]

- Stock prices \(S_1, S_2, S_3, \ldots \) at times \(\Delta t, 2\Delta t, 3\Delta t, \ldots \) can be generated via

\[
S_{i+1} = S_i e^{(\mu-\sigma^2/2) \Delta t + \sigma \sqrt{\Delta t} \, \xi}, \quad \xi \sim N(0, 1), \quad (125)
\]

by Eq. (87) on p. 619.
Monte Carlo Option Pricing (continued)

• If we discretize \(dS/S = \mu \, dt + \sigma \, dW \) directly, we will obtain
 \[
 S_{i+1} = S_i + S_i \mu \Delta t + S_i \sigma \sqrt{\Delta t} \, \xi.
 \]

• But this is locally normally distributed, not lognormally, hence biased.\(^a\)

• In practice, this is not expected to be a major problem as long as \(\Delta t \) is sufficiently small.

\(^a\)Contributed by Mr. Tai, Hui-Chin (\textbf{R97723028}) on April 22, 2009.
Monte Carlo Option Pricing (continued)

Non-dividend-paying stock prices in a risk-neutral economy can be generated by setting $\mu = r$ and $\Delta t = T$.

1: $C := 0$; \{Accumulated terminal option value.\}
2: \textbf{for} $i = 1, 2, 3, \ldots, N$ \textbf{do}
3: \hspace{1em} $P := S \times e^{(r-\sigma^2/2)T+\sigma\sqrt{T} \xi}$, $\xi \sim N(0, 1)$;
4: \hspace{1em} $C := C + \max(P - X, 0)$;
5: \hspace{1em} \textbf{end for}
6: \textbf{return} Ce^{-rT}/N;
Monte Carlo Option Pricing (concluded)

Pricing Asian options is also easy.

1: \(C := 0; \)
2: \(\text{for } i = 1, 2, 3, \ldots, N \text{ do} \)
3: \(P := S; \quad M := S; \)
4: \(\text{for } j = 1, 2, 3, \ldots, n \text{ do} \)
5: \(P := P \times e^{(r - \sigma^2/2)(T/n) + \sigma \sqrt{T/n} \xi}; \)
6: \(M := M + P; \)
7: \(\text{end for} \)
8: \(C := C + \max(M/(n+1) - X, 0); \)
9: \(\text{end for} \)
10: \(\text{return } Ce^{-rT}/N; \)
How about American Options?

• Standard Monte Carlo simulation is inappropriate for American options because of early exercise.
 – Given a sample path S_0, S_1, \ldots, S_n, how to decide which S_i is an early-exercise point?
 – What is the option price at each S_i if the option is not exercised?

• It is difficult to determine the early-exercise point based on one single path.

• But Monte Carlo simulation can be modified to price American options with small biases.\(^a\)

Obtaining Profit and Loss of Delta Hedgea

- Profit and loss of delta hedge should be calculated under the real-world probability measure.b

- So stock prices should be sampled from

\[
\frac{dS}{S} = \mu \, dt + \sigma \, dW.
\]

- Suppose backward induction on a tree under the risk-neutral measure is performed for the delta.c

aContributed by Mr. Lu, Zheng-Liang (D00922011) on August 12, 2021.
bRecall p. 711.
cBecause, say, no closed-form formulas are available for the delta.
Obtaining Profit and Loss of Delta Hedge (concluded)

- Note that one needs a delta per stock price.
- So Nn trees are needed for the distribution of the profit and loss from N paths with $n + 1$ stock prices per path.
- These are a lot of trees!
- How to do it efficiently?\(^a\)

\(^a\)Hint: Eq. (43) on p. 299.
Delta and Common Random Numbers

- In estimating delta, it is natural to start with the finite-difference estimate

\[e^{-r\tau} \frac{E[P(S + \epsilon)] - E[P(S - \epsilon)]}{2\epsilon} \]

- \(P(x) \) is the terminal payoff of the derivative security when the underlying asset’s initial price equals \(x \).

- Use simulation to estimate \(E[P(S + \epsilon)] \) first.
- Use another simulation to estimate \(E[P(S - \epsilon)] \).
- Finally, apply the formula to approximate the delta.
- This is also called the bump-and-revalue method.
Delta and Common Random Numbers (concluded)

- This method is not recommended because of its high variance.

- A much better approach is to use common random numbers to lower the variance:
 \[e^{-r\tau} E \left[\frac{P(S + \epsilon) - P(S - \epsilon)}{2\epsilon} \right]. \]

- Here, the same random numbers are used for \(P(S + \epsilon) \) and \(P(S - \epsilon) \).

- This holds for gamma and cross gamma.\(^a\)

\(^a\)For multivariate derivatives.
Problems with the Bump-and-Revalue Method

• Consider the binary option with payoff

\[
\begin{cases}
1, & \text{if } S(T) > X, \\
0, & \text{otherwise}.
\end{cases}
\]

• Then

\[
P(S+\epsilon) - P(S-\epsilon) = \begin{cases}
1, & \text{if } S + \epsilon > X \text{ and } S - \epsilon < X, \\
0, & \text{otherwise}.
\end{cases}
\]

• So the finite-difference estimate per run for the (undiscounted) delta is 0 or \(O(1/\epsilon)\).

• This means high variance.
Problems with the Bump-and-Revalue Method (concluded)

• The price of the binary option equals

\[e^{-r\tau} N(x - \sigma \sqrt{\tau}). \]

 – It equals \textit{minus} the derivative of the European call with respect to \(X \).
 – It also equals \(X \tau \) times the rho of a European call (p. 362).

• Its delta is

\[\frac{N'(x - \sigma \sqrt{\tau})}{S \sigma \sqrt{\tau}}. \]
Gamma

- The finite-difference formula for gamma is

\[e^{-r\tau} E \left[\frac{P(S + \epsilon) - 2 \times P(S) + P(S - \epsilon)}{\epsilon^2} \right] . \]

- For a correlation option with multiple underlying assets, the finite-difference formula for the cross gamma \(\partial^2 P(S_1, S_2, \ldots) / (\partial S_1 \partial S_2) \) is:

\[e^{-r\tau} E \left[\frac{P(S_1 + \epsilon_1, S_2 + \epsilon_2) - P(S_1 - \epsilon_1, S_2 + \epsilon_2)}{4\epsilon_1\epsilon_2} \right. \\
\left. -P(S_1 + \epsilon_1, S_2 - \epsilon_2) + P(S_1 - \epsilon_1, S_2 - \epsilon_2) \right] . \]
Gamma (continued)

- Choosing an ϵ of the right magnitude can be challenging.
 - If ϵ is too large, inaccurate Greeks result.
 - If ϵ is too small, unstable Greeks result.

- This phenomenon is sometimes called the curse of differentiation.a

\(^a\)Aït-Sahalia & Lo (1998); Bondarenko (2003).
Gamma (continued)

- In general, suppose (in some sense)

\[
\frac{\partial^i}{\partial \theta^i} e^{-r\tau} E[P(S)] = e^{-r\tau} E \left[\frac{\partial^i P(S)}{\partial \theta^i} \right]
\]

holds for all \(i > 0 \), where \(\theta \) is a parameter of interest.\(^{a}\)

- A common requirement is Lipschitz continuity.\(^{b}\)

- Then Greeks become integrals.

- As a result, we avoid \(\epsilon \), finite differences, and resimulation.

\(^{a}\)The \(\partial^i P(S)/\partial \theta^i \) within \(E[\cdot] \) may not be partial differentiation in the classic sense.

\(^{b}\)Broadie & Glasserman (1996).
Gamma (continued)

- This is indeed possible for a broad class of payoff functions.\(^a\)

 - Roughly speaking, any payoff function that is equal to a sum of products of differentiable functions and indicator functions with the right kind of support.

 - For example, the payoff of a call is

\[
\max(S(T) - X, 0) = (S(T) - X)I\{S(T) - X \geq 0\}.
\]

 - The results are too technical to cover here (see next page).

\(^a\)Teng (R91723054) (2004); Lyuu & Teng (R91723054) (2011).
Suppose $h(\theta, x) \in \mathcal{H}$ with pdf $f(x)$ for x and $g_j(\theta, x) \in \mathcal{G}$ for $j \in \mathcal{B}$, a finite set of natural numbers.

Then
\[
\frac{\partial}{\partial \theta} \int_{\mathbb{R}} h(\theta, x) \prod_{j \in \mathcal{B}} 1\{g_j(\theta, x) > 0\}(x) f(x) \, dx
\]
\[
= \int_{\mathbb{R}} h_{\theta}(\theta, x) \prod_{j \in \mathcal{B}} 1\{g_j(\theta, x) > 0\}(x) f(x) \, dx
\]
\[
+ \sum_{l \in \mathcal{B}} \left[h(\theta, x)J_l(\theta, x) \prod_{j \in \mathcal{B}\setminus l} 1\{g_j(\theta, x) > 0\}(x) f(x) \right]_{x = \chi_l(\theta)},
\]

where
\[
J_l(\theta, x) = \text{sign} \left(\frac{\partial g_l(\theta, x)}{\partial x_k} \right) \frac{\partial g_l(\theta, x)/\partial \theta}{\partial g_l(\theta, x)/\partial x} \text{ for } l \in \mathcal{B}.
\]
Gamma (concluded)

- Similar results have been derived for Levy processes.\(^a\)
- Formulas are also recently obtained for credit derivatives.\(^b\)
- In queueing networks, this is called infinitesimal perturbation analysis (IPA).\(^c\)

\(^a\)Lyuu, Teng (R91723054), & S. Wang (2013).
\(^b\)Lyuu, Teng (R91723054), Tseng, & S. Wang (2014, 2019).
\(^c\)Cao (1985); Y. C. Ho & Cao (1985).
Biases in Pricing Continuously Monitored Options with Monte Carlo

- We are asked to price a continuously monitored up-and-out call with barrier H.
- The Monte Carlo method samples the stock price at n discrete time points t_1, t_2, \ldots, t_n.
- A sample path
 \[S(t_0), S(t_1), \ldots, S(t_n) \]
 is produced.
 - Here, $t_0 = 0$ is the current time, and $t_n = T$ is the expiration time of the option.
Biases in Pricing Continuously Monitored Options with Monte Carlo (continued)

- If all of the sampled prices are below the barrier, this sample path pays $\max(S(t_n) - X, 0)$.
- Repeat these steps and average the payoffs for a Monte Carlo estimate.
1: $C := 0$
2: for $i = 1, 2, 3, \ldots, N$ do
3: \hspace{1em} $P := S$; hit := 0;
4: for $j = 1, 2, 3, \ldots, n$ do
5: \hspace{2em} $P := P \times e^{(r-\sigma^2/2)(T/n)+\sigma\sqrt{T/n}}\xi$; \{By Eq. (125) on p. 863.\}
6: \hspace{2em} if $P \geq H$ then
7: \hspace{3em} hit := 1;
8: \hspace{3em} break;
9: \hspace{2em} end if
10: end for
11: if hit = 0 then
12: \hspace{1em} $C := C + \max(P - X, 0)$;
13: end if
14: end for
15: return Ce^{-rT}/N;
Biases in Pricing Continuously Monitored Options with Monte Carlo (continued)

- This estimate is biased.a
 - Suppose none of the sampled prices on a sample path equals or exceeds the barrier H.
 - It remains possible for the continuous sample path that passes through them to hit the barrier between sampled time points (see plot on next page).
 - Hence the knock-out probability is underestimated.

aShevchenko (2003).
Biases in Pricing Continuously Monitored Options with Monte Carlo (concluded)

• The bias can be lowered by increasing the number of observations along the sample path.
 – For trees, the knock-out probability may decrease as the number of time steps is increased.

• However, even daily sampling may not suffice.

• The computational cost also rises as a result.
Brownian Bridge Approach to Pricing Barrier Options

- We desire an unbiased estimate which can be calculated efficiently.

- The above-mentioned payoff should be multiplied by the probability p that a continuous sample path does not hit the barrier conditional on the sampled prices.

 – Formally,

 \[p \triangleq \text{Prob}[S(t) < H, 0 \leq t \leq T \mid S(t_0), S(t_1), \ldots, S(t_n)] . \]

- This methodology is called the Brownian bridge approach.
Brownian Bridge Approach to Pricing Barrier Options (continued)

- As a barrier is not hit over a time interval if and only if the maximum stock price over that period is at most H,
 $$p = \text{Prob} \left[\max_{0 \leq t \leq T} S(t) < H \mid S(t_0), S(t_1), \ldots, S(t_n) \right].$$

- Luckily, the conditional distribution of the maximum over a time interval given the beginning and ending stock prices is known.
Brownian Bridge Approach to Pricing Barrier Options (continued)

Lemma 22 Assume S follows $dS/S = \mu \, dt + \sigma \, dW$ and define a

$$
\zeta(x) \triangleq \exp \left[-\frac{2 \ln(x/S(t)) \ln(x/S(t + \Delta t))}{\sigma^2 \Delta t} \right].
$$

(1) If $H > \max(S(t), S(t + \Delta t))$, then

$$
\text{Prob} \left[\max_{t \leq u \leq t + \Delta t} S(u) < H \ \bigg| \ S(t), S(t + \Delta t) \right] = 1 - \zeta(H).
$$

(2) If $h < \min(S(t), S(t + \Delta t))$, then

$$
\text{Prob} \left[\min_{t \leq u \leq t + \Delta t} S(u) > h \ \bigg| \ S(t), S(t + \Delta t) \right] = 1 - \zeta(h).
$$

aHere, Δt is an arbitrary positive real number.
Brownian Bridge Approach to Pricing Barrier Options (continued)

- Lemma 22 gives the probability that the barrier is not hit in a time interval, given the starting and ending stock prices.

- For our up-and-out\(^a\) call, choose \(n = 1 \).

- As a result,

\[
p = \begin{cases}
1 - \exp \left[-\frac{2 \ln(H/S(0)) \ln(H/S(T))}{\sigma^2 T} \right], & \text{if } H > \max(S(0), S(T)), \\
0, & \text{otherwise.}
\end{cases}
\]

\(^a\)So \(S(0) < H \) by definition.
Brownian Bridge Approach to Pricing Barrier Options (continued)

The following algorithm works for up-and-out and down-and-out calls.

1: \(C := 0; \)
2: \textbf{for} \(i = 1, 2, 3, \ldots, N \) \textbf{do}
3: \(P := S \times e^{(r-q-\sigma^2/2)T+\sigma\sqrt{T} \xi()}; \)
4: \textbf{if} \((S < H \text{ and } P < H) \text{ or } (S > H \text{ and } P > H) \textbf{ then}\)
5: \(C := C + \max(P - X, 0) \times \left\{ 1 - \exp \left[-\frac{2 \ln(H/S) \times \ln(H/P)}{\sigma^2 T} \right] \right\}; \)
6: \textbf{end if}
7: \textbf{end for}
8: \textbf{return } Ce^{-rT}/N;
Brownian Bridge Approach to Pricing Barrier Options (concluded)

- The idea can be generalized.
- For example, we can handle more complex barrier options.
- Consider an up-and-out call with barrier H_i for the time interval $(t_i, t_{i+1}]$, $0 \leq i < m$.
- This option contains m barriers.
- Multiply the probabilities for the m time intervals to obtain the desired probability adjustment term.
Pricing Barrier Options without Brownian Bridge

• Let T_h denote the amount of time for a process X_t to hit h for the first time.

• It is called the first passage time or the first hitting time.

• Suppose X_t is a (μ, σ) Brownian motion:

$$dX_t = \mu \, dt + \sigma \, dW_t, \quad t \geq 0.$$
Pricing Barrier Options without Brownian Bridge (continued)

- The first passage time T_h follows the inverse Gaussian (IG) distribution with probability density function:\(^a\)

\[
\frac{|h - X(0)|}{\sigma t^{3/2} \sqrt{2\pi}} e^{-\frac{(h - X(0) - \mu x)^2}{2\sigma^2 x}}.
\]

- For pricing a barrier option with barrier H by simulation, the density function becomes

\[
\frac{\ln(H/S(0))}{\sigma t^{3/2} \sqrt{2\pi}} e^{-\frac{[\ln(H/S(0)) - (r - \sigma^2/2) x]^2}{2\sigma^2 x}}.
\]

\(^a\)A. N. Borodin & Salminen (1996), with Laplace transform

\[
E[e^{-\lambda T_h}] = e^{-|h - X(0)| \sqrt{2\lambda}}, \lambda > 0.
\]
Pricing Barrier Options without Brownian Bridge (concluded)

• Draw an x from this distributiona.

• If $x > T$, a knock-in option fails to knock in, whereas a knock-out option does not knock out.

• If $x \leq T$, the opposite is true.

• If the barrier option survives at maturity T, then draw an $S(T)$ to calculate its payoff.

• Repeat the above process and average the discounted payoff.

aThe IG distribution can be very efficiently sampled (Michael, Schucany, & Haas, 1976).
Brownian Bridge Approach to Pricing Lookback Options

- By Lemma 22(1) (p. 888),

\[F_{\text{max}}(y) \triangleq \text{Prob} \left[\max_{0 \leq t \leq T} S(t) < y \mid S(0), S(T) \right] \]

\[= 1 - \exp \left[-\frac{2 \ln(y/S(0)) \ln(y/S(T))}{\sigma^2 T} \right]. \]

- So \(F_{\text{max}} \) is the conditional distribution function of the maximum stock price.

Brownian Bridge Approach to Pricing Lookback Options (continued)

• A random variable with that distribution can be generated by $F_{\max}^{-1}(x)$, where x is uniformly distributed over $(0, 1)$.\(^{\text{a}}\)

• Note that

\[
x = 1 - \exp \left[-\frac{2 \ln(y/S(0)) \ln(y/S(T))}{\sigma^2 T} \right].
\]

\(^{\text{a}}\)This is called the inverse-transform technique (see p. 259 of the textbook).
Brownian Bridge Approach to Pricing Lookback Options (continued)

• Equivalently,

\[
\ln(1 - x) = -\frac{2 \ln(y/S(0)) \ln(y/S(T))}{\sigma^2 T} = -\frac{2}{\sigma^2 T} \{ [\ln(y) - \ln S(0)] [\ln(y) - \ln S(T)] \}.
\]
Brownian Bridge Approach to Pricing Lookback Options (continued)

- There are two solutions for \(\ln y \).
- But only one is consistent with \(y \geq \max(S(0), S(T)) \):

\[
\ln y = \ln(S(0)S(T)) + \sqrt{\left(\ln \frac{S(T)}{S(0)} \right)^2 - 2\sigma^2 T \ln(1 - x)} - 2\sigma^2 T \ln(1 - x).
\]
Brownian Bridge Approach to Pricing Lookback Options (concluded)

The following algorithm works for the lookback put on the maximum.

1: \(C := 0; \)
2: \(\textbf{for } i = 1, 2, 3, \ldots , N \ \textbf{do} \)
3: \(P := S \times e^{(r-q-\sigma^2/2)T+\sigma \sqrt{T} \xi()} \); \{By Eq. (125) on p. 863.\}
4: \(Y := \exp \left[\frac{\ln(SP)+\sqrt{(\ln \frac{P}{S})^2-2\sigma^2T \ln[1-U(0,1)]}}{2} \right] ; \)
5: \(C := C + (Y - P); \)
6: \(\textbf{end for} \)
7: \(\textbf{return } Ce^{-rT}/N; \)
Pricing Lookback Options without Brownian Bridge

• Suppose we do not draw \(S(T) \) in simulation.

• Now, the distribution function of the maximum logarithmic stock price is

\[
\text{Prob} \left[\max_{0 \leq t \leq T} \ln \frac{S(t)}{S(0)} < y \right] = 1 - N \left(\frac{-y + \left(r - q - \frac{\sigma^2}{2} \right) T}{\sigma \sqrt{T}} \right) \]

\[
- e ^ {2y \left(r - q - \frac{\sigma^2}{2} \right) \frac{T}{\sigma^2}} \frac{\sigma \sqrt{T}}{\sigma^2} N \left(\frac{-y - \left(r - q - \frac{\sigma^2}{2} \right) T}{\sigma \sqrt{T}} \right), \quad y \geq 0.
\]

• The inverse of that is much harder to calculate.

\(^a\)A. N. Borodin & Salminen (1996).
Variance Reduction

- The *statistical* efficiency of Monte Carlo simulation can be measured by the variance of its output.
- If this variance can be lowered without changing the expected value, fewer replications are needed.
- Methods that work in this manner are called variance-reduction techniques.
- Such techniques become practical when the added costs are outweighed by the reduction in sampling.
Variance Reduction: Antithetic Variates

- We want to estimate \(E[g(X_1, X_2, \ldots, X_n)] \).
- Let \(Y_1 \) and \(Y_2 \) be random variables with the same distribution as \(g(X_1, X_2, \ldots, X_n) \).
- Then
 \[
 \text{Var} \left[\frac{Y_1 + Y_2}{2} \right] = \frac{\text{Var}[Y_1]}{2} + \frac{\text{Cov}[Y_1, Y_2]}{2}.
 \]
 - \(\text{Var}[Y_1]/2 \) is the variance of the Monte Carlo method with two independent replications.
- The variance \(\text{Var}[(Y_1 + Y_2)/2] \) is smaller than \(\text{Var}[Y_1]/2 \) when \(Y_1 \) and \(Y_2 \) are negatively correlated.
Variance Reduction: Antithetic Variates (continued)

• For each simulated sample path X, a second one is obtained by *reusing* the first path’s random numbers.

• This yields a second sample path Y.

• Two estimates are then obtained: One based on X and the other on Y.

• If N independent sample paths are generated, the antithetic-variates estimator averages over $2N$ estimates.
Variance Reduction: Antithetic Variates (continued)

- Consider process $dX = a_t \, dt + b_t \sqrt{dt} \, \xi$.

- Let g be a function of n samples X_1, X_2, \ldots, X_n on the sample path.

- Suppose one simulation run has realizations $\xi_1, \xi_2, \ldots, \xi_n$ for the normally distributed fluctuation term ξ.

- This generates samples x_1, x_2, \ldots, x_n.

- The first estimate is then $g(\mathbf{x})$, where $\mathbf{x} \triangleq (x_1, x_2 \ldots, x_n)$.
Variance Reduction: Antithetic Variates (concluded)

- The antithetic-variates method does not sample n more numbers from ξ for the second estimate $g(\mathbf{x}')$.
- Instead, generate the sample path $\mathbf{x}' \triangleq (x'_1, x'_2 \ldots, x'_n)$ from $-\xi_1, -\xi_2, \ldots, -\xi_n$.
- Compute $g(\mathbf{x}')$.
- Output $(g(\mathbf{x}) + g(\mathbf{x}'))/2$.
- Repeat the above steps.
Variance Reduction: Conditioning

- We are interested in estimating $E[X]$.
- Suppose here is a random variable Z such that $E[X | Z = z]$ can be efficiently and precisely computed.
- $E[X] = E[E[X | Z]]$ by the law of iterated conditional expectations.
- Hence the random variable $E[X | Z]$ is also an unbiased estimator of $E[X]$.
Variance Reduction: Conditioning (concluded)

- As

\[\text{Var}[E[X | Z]] \leq \text{Var}[X], \]

\(E[X | Z] \) has a smaller variance than observing \(X \) directly.

- First, obtain a random observation \(z \) on \(Z \).

- Then calculate \(E[X | Z = z] \) as our estimate.
 - There is no need to resort to simulation in computing \(E[X | Z = z] \).

- The procedure is repeated to reduce the variance.