Brownian Motion?

e Brownian motion is a stochastic process { X (t),t >0}

with the following properties.

1. X(0) = 0, unless stated otherwise.
2. forany 0 <tyg <t; <---<t,, the random variables

X(tk) — X(tk_l)

for 1 < k < n are independent.P

3. for 0 <s<t, X(t)— X(s) is normally distributed

with mean pu(t — s) and variance o?(t — s), where pu

and o # 0 are real numbers.

2Robert Brown (1773-1858).
PSo X (t) — X(s) is independent of X(r) for r < s < .
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Brownian Motion (concluded)

The existence and uniqueness of such a process is
guaranteed by Wiener’s theorem.?

This process will be called a (u,0) Brownian motion

with drift ¢ and variance o?2.

Although Brownian motion is a continuous function of ¢

with probability one, it is almost nowhere differentiable.
The (0, 1) Brownian motion is called the Wiener process.

If condition 3 is replaced by “ X (t) — X(s) depends only

on t —s,” we have the more general Levy process.”

2Norbert Wiener (1894-1964). He received his Ph.D. from Harvard
in 1912.
PPaul Levy (1886-1971).
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Example

o If { X(¢),t >0} is the Wiener process, then
X(t)— X(s) ~ N(0,t—s).

e A (u,0) Brownian motion ¥ ={Y (¢),t >0} can be

expressed in terms of the Wiener process:
Y(t)=put+oX(t). (78)

e Note that

Y(t+s)—Y(t) ~ N(us,o°s).
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Brownian Motion as Limit of Random Walk

Claim 1 A (u,0) Brownian motion is the limiting case of
random walk.

e A particle moves Ax to the right with probability p
after At time.

e It moves Ax to the left with probability 1 — p.
e Define

A +1 if the 2th move is to the right,

X;
—1 if the 2th move is to the left.

— X, are independent with

Prob| X; =1]=p=1—Prob[ X; = —1].
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Brownian Motion as Limit of Random Walk (continued)
e Recall
Bl X |
V&I’[XZ']

o Assume n 2 t/At is an integer.

e Its position at time ¢ is

Y(£) 2 Az (X1 4+ Xo+ -+ Xn).
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Brownian Motion as Limit of Random Walk (continued)

e Therefore,

Var[Y(t)] = n(Az)* [1—(2p —1)*].

With Az 2 o/Af and p 2 |14 (u/o)VAL]/22

ElY(t)] = noVAt(u/o)VAt= ut,
Var[Y(t)] = no’At[1— (u/o)’At] — ot

as At — 0.
2Identical to Eq. (42) on p. 296!
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Brownian Motion as Limit of Random Walk (concluded)

Thus, {Y(t),t > 0} converges to a (u,c) Brownian
motion by the central limit theorem.

Brownian motion with zero drift is the limiting case of

symmetric random walk by choosing p© = 0.

Similarity to the the BOPM: The p is identical to the
probability in Eq. (42) on p. 296 and Az = Inu.

Note that

Var[Y(t + At) — Y (t) ]
=Var[ Az X,41] = (Az)? x Var[ X,,11] — 0 At.
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Geometric Brownian Motion

Let X 2 { X (t),t >0} be a Brownian motion process.

The process
{y(n2e® =0}
is called geometric Brownian motion.

Suppose further that X is a (u, o) Brownian motion.

By assumption, Y (0) = e’ = 1.
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Geometric Brownian Motion (concluded)

e X(t) ~ N(ut,0°t) with moment generating function

B[eX0] = B[y ()] = ert o772

from Eq. (27) on p 171.
e In particular,®
E[Y(t)] = ettt/
Var[Y(t)] = E[Y(t)*]| — E[Y ()]

2 2
_ 2utto’t (ea t 1) .

2Recall Egs. (29) on p. 180.
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An Argument for Long-Term Investment?®

Suppose the stock follows the geometric Brownian

motion

S(t) = S(0) N Bt = §(0) !N/t >,

where pu > 0.

The annual rate of return has a normal distribution:

0.2

e The larger the ¢, the likelier the return is positive.

e The smaller the ¢, the likelier the return is negative.

aContributed by Dr. King, Gow-Hsing on April 9, 2015. See
http://www.cb.idv.tw/phpbb3/viewtopic.php?f=7&t=1025
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Continuous-Time Financial Mathematics
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A proof is that which convinces a reasonable man;

a rigorous proof is that which convinces an

unreasonable man.

— Mark Kac (1914-1984)

The pursuit of mathematics is a

divine madness of the human spirit.

— Alfred North Whitehead (1861-1947),
Science and the Modern World
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Stochastic Integrals

Use W 2 {W(t),t >0} to denote the Wiener process.

The goal is to develop integrals of X from a class of

stochastic processes,®

t
It(X)é/ Xdw, t>0.
0

[;(X) is a random variable called the stochastic integral
of X with respect to W.

The stochastic process {1;(X),t > 0} will be denoted
by [XdW.

aKiyoshi Ito (1915-2008).
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Stochastic Integrals (concluded)

e Typical requirements for X in financial applications are:

— Prob[fOtXQ(s) ds <oo]=1 forall t >0 or the
stronger fg E[X?(s)]ds < 0.

— The information set at time ¢ includes the history of
X and W up to that point in time.

— But it contains nothing about the evolution of X or

W after t (nonanticipating, so to speak).

— The future cannot influence the present.
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lto Integral

e A theory of stochastic integration.
e As with calculus, it starts with step functions.

e A stochastic process { X(t) } is simple if there exist
O=tyg<t; <---
such that
X(t) = X(tg—1) for t € [tp_1,tr), k=1,2,...

for any realization (see figure on next page).?

21t is right-continuous.
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Ito Integral (continued)

e The Ito integral of a simple process is defined as

LX) 2 S X () Wlter) - W)l (19)
k=0

where t,, = t.
— The integrand X is evaluated at tg, not tx.;.
e Define the Ito integral of more general processes as a

limiting random variable of the Ito integral of simple

stochastic processes.
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Ito Integral (continued)

o Let X ={X(t),t >0} be a general stochastic process.

e Then there exists a random variable I;(X), unique
almost certainly, such that I;(X,,) converges in
probability to I;(X) for each sequence of simple
stochastic processes X7, Xo,... such that X,, converges

in probability to X.
If X is continuous with probability one, then I;(X,,)
converges in probability to I;(X) as

max (tk — tkz—l)
1<k<n

goes to zero.
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Ito Integral (concluded)

e It is a fundamental fact that f X dW 1is continuous
almost surely.

e The following theorem says the Ito integral is a

martingale.?

Theorem 18 The Ito integral [ X dW is a martingale.

e A corollary is the mean value formula

b
5 /XdW]o.

dExercise 14.1.1 covers simple stochastic processes.
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Discrete Approximation and Nonanticipation
e Recall Eq. (79) on p. 592.

e The following simple stochastic process { X(t)} can be

used in place of X to approximate fg X dW,

AN

X(S) = X(tk_1> for s € [tkz—latkz>7 k = 1,2,. .. 5 N

e Note the nonanticipating feature of X.

— The information up to time s,
{X(t),W(t),0<t< s},

cannot determine the future evolution of X or W.
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Discrete Approximation and Nonanticipation
(concluded)

e Suppose, unlike Eq. (79) on p. 592, we defined the

stochastic integral from

S Xty ) [ Wlts1) — W(te) |
k=0

e Then we would be using the following different simple

stochastic process in the approximation,
Y(s) 2 X(t) for s € [tp_1,t6), k=1,2,...,n.

This clearly anticipates the future evolution of X.?

@See Exercise 14.1.2 for an example where it matters.
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lto Process

The stochastic process X = { X;,t > 0} that solves

t t
Xt:XO+/ a(XS,s)ds+/ b(Xs,s)dWs, t>0
0 0

is called an Ito process.

— X 1s a scalar starting point.
{a(Xs,t):t >0} and {b(Xs,t):t >0} are
stochastic processes satistying certain regularity

conditions.
a(X,t): the drift.
b(X;,t): the diffusion.
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Ito Process (continued)

e Typical regularity conditions are:*

— Forall T >0,z R*, and 0 <t < T,
laz,t) [+ bz, 1) | < C(1+ |z ])

for some constant C.P

— (Lipschitz continuity) For all T' > 0, x € R", and
0<t<T,
la(z,t) —aly,t) | + bz, t) = b(y,?) | < D]z —y|

for some constant D.

2(ksendal (2007).
PThis condition is not needed in time-homogeneous cases, where a

and b do not depend on .
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Ito Process (continued)

e A shorthand? is the following stochastic differential
equation® (SDE) for the Ito differential dX,

dXt = CL(Xt, t) dt + b(Xt, t) th (80)

— Or simply
dXt = Q¢ dt + bt th

— This is Brownian motion with an instantaneous drift

a; and an instantaneous variance b2,

e X is a martingale if a; = 0.¢

2Paul Langevin (1872—-1946) in 1904.

PTike any equation, an SDE contains an unknown, the process X;.
“Recall Theorem 18 (p. 594).
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Ito Process (concluded)

From calculus, we would expect fg W aw =W (t)?/2.

But W (t)?/2 is not a martingale, hence wrong!
The correct answer is [W ()% —t]/2.

A popular representation of Eq. (80) is
dX; = a; dt + bV dt €,

where & ~ N(0,1).
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Euler Approximation

Define ¢, 2 DAL

The following approximation follows from Eq. (81),

A~

X(thrl)
=X (tn) + a(X(tn), tn) At + b(X (tn), tn) AW (tn).

It is called the Euler or Euler-Maruyama method.

Recall that AW (t,,) should be interpreted as
W(tni1) = Witn),

not Wit,) — W(t,—1)!®

2Recall Eq. (79) on p. 592.
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Euler Approximation (concluded)

e With the Euler method, one can obtain a sample path

AN

X(tl)a 55@2)7 X(tS)a SRR
from a sample path

W(to), W(t1), W(ts), ... .

e Under mild conditions, X (t,,) converges to X (ty).
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More Discrete Approximations

e Under fairly loose regularity conditions, Eq. (82) on
p. 602 can be replaced by

AN

X(thrl)
=X (tn) + a(X (tn), tn) At + b(X (£0), tn) VALY (£,).

— Y (t9),Y(t1),... are independent and identically

distributed with zero mean and unit variance.
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More Discrete Approximations (concluded)

e An even simpler discrete approximation scheme:

X(thrl)

AN

=X (t) + a(X (tn), tn) At + b(X (t), tn)VALE.

— Prob|é = 1] =Prob[¢ =—-1] =1/2.
— Note that E[¢] =0 and Var[{]| = 1.

e This is a binomial model.

AN

e As At goes to zero, X converges to X.?

aHe (1990).
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Trading and the lto Integral

e Consider an Ito process
dSt — Ut dt -+ Oy th
— S} is the vector of security prices at time t.

e Let ¢, be a trading strategy denoting the quantity of
each type of security held at time ¢.

— Hence the stochastic process @,S5; is the value of the
portfolio ¢, at time t.

e ¢, dS, 2 ¢, (e dt + oy dWy) represents the change in the

value from security price changes occurring at time ¢.
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Trading and the Ito Integral (concluded)

e The equivalent Ito integral,

T T T
Gr(¢) 2 /0 b, dS; = /0 Bopie dt + /0 $,00 AWV,

measures the gains realized by the trading strategy over
the period [0,7].
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lto's Lemma?

A smooth function of an Ito process is itself an Ito process.

Theorem 19 Suppose f: R — R 1is twice continuously

differentiable and dX = a;dt + by dW. Then f(X) is the
Ito process,

aTto (1944).
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Ito’s Lemma (continued)

e In differential form, Ito’s lemma becomes

df (X))

F(X)adt+ f/(X)bdW + % FUX)b2dt (83)

[f’(X)a+

O

} dt + f'(X)bdW.

e Compared with calculus, the interesting part is the third
term on the right-hand side of Eq. (83).

e A convenient formulation of Ito’s lemma is

FX)AX + 5 f/(XO@X?. (84)
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Ito’s Lemma (continued)

e We are supposed to multiply out
(dX)? = (adt + bdW)? symbolically according to

X dW  dt
dW | dt 0
dt 0 0

— The (dW)? = dt entry is justified by a known result.
e Hence (dX)? = (adt +bdW)? = b*dt in Eq. (84).

e This form is easy to remember because of its similarity

to the Taylor expansion.
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Ito’s Lemma (continued)

Theorem 20 (Higher-Dimensional Ito’s Lemma) Let
Wi, Wo, ... , W, be independent Wiener processes and

X 2 (X1, Xo,...,X,) be a vector process. Suppose

f: R™ — R 1s twice continuously differentiable and X; 1is
an Ito process with dX; = a; dt + Z?Zl bij dW;. Then

df (X)) is an Ito process with the differential,

) =3 A0 X+ 3 303 filX) dX; dX,
1=1

1=1 k=1

where f; 2 0f/0X; and fi = 0% f/0X,;0X}.
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Ito’s Lemma (continued)

e The multiplication table for Theorem 20 is

dWy | d;dt 0
dt 0 0

in which
1, if ¢+ =k,
Ok =

0, otherwise.
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Ito’s Lemma (continued)

In applying the higher-dimensional Ito’s lemma, usually

one of the variables, say X, is time ¢t and dX; = dt.
In this case, by; =0 for all j and a1 = 1.

As an example, let

dXt — Q¢ dt + bt th

Consider the process f(Xi,t).
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Ito’s Lemma (continued)

df

of of O*f
ax, WXt gt zaxg
af of
ax; ot

(dX¢)?

(CLt dt + bt th>
0° f
+§axf

_(of L of 18, of

dt

(ay dt + by dW)?
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Ito’s Lemma (continued)

Theorem 21 (Alternative Ito’s Lemma) Let

Wi, Wo, ... , W,, be Wiener processes and

X 2 (X1, Xo,...,X,n) be a vector process. Suppose

f: R™ — R 1s twice continuously differentiable and X; 1is
an Ito process with dX; = a; dt + b; dW,;. Then df(X) is the

following Ito process,

) =3 A0 dX;+ 3 303 filX) dX; dX
1=1

1=1 k=1
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Ito’s Lemma (concluded)

e The multiplication table for Theorem 21 is

X dWZ dt
de Pik dt 0
dt 0 0

e Above, p;i. denotes the correlation between dW,; and
dWy..
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Geometric Brownian Motion

e Consider geometric Brownian motion

Y(t) 2 X0,

— X (t) is a (u,0) Brownian motion.

— By Eq. (78) on p. 577,
dX = pdt+ odW.

e Note that
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Geometric Brownian Motion (continued)
e [to’s formula (83) on p. 609 implies
dY YdX +(1/2)Y (dX)?
Y (udt +odW)+ (1/2)Y (udt + o dW)?
Y (pdt 4+ o dW) + (1/2) Yo? dt.

ay

S = (u+0°/2) dt + o dW. (86)

e The annualized instantaneous rate of return is p -+ o2 /2
(not p).?

2Consistent with Lemma 10 (p. 301).
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Geometric Brownian Motion (continued)

e Alternatively, from Eq. (78) on p. 577,
Xy = Xo + pt + o Wy,

admits an explicit (strong) solution.

e Hence
L t+o W.
Y. =Y, el t,

a strong solution to the SDE (86) where Yy = e,
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Geometric Brownian Motion (concluded)

e On the other hand, suppose

dY

e Then X () 2 In Y (t) follows

dX = (p—0°/2) dt + o dW.
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Exponential Martingale

e The Ito process

dXt — tht th
is a martingale.?
e It is called an exponential martingale.

e By Ito’s formula (83) on p. 609,

1 [t t
X (0) exp [—5/ bgds—l—/ bs dWS].
0 0

2Recall Theorem 18 (p. 594).
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Product of Geometric Brownian Motion Processes

o et

ay
Y
dz

—  adt+bdWy,

= dt d :
7 Jdt+gdWy

e Assume dWy and dW, have correlation p.

e Consider the Ito process

a

U=YZ.
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Product of Geometric Brownian Motion Processes
(continued)

e Apply Ito’s lemma (Theorem 21 on p. 615):

dU ZdY +YdZ +dY dZ
ZY (adt +bdWy) + Y Z(f dt + gdWz)
+Y Z(adt +bdWy)(f dt + gdWy)
U(a+ f+bgp)dt +UbdWy + UgdWy.

e The product of correlated geometric Brownian motion

processes thus remains geometric Brownian motion.
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Product of Geometric Brownian Motion Processes
(continued)

e Note that
exp [(a —b%/2) dt + bdWy],

exp :(f—g2/2) dt+gdWZ} :
exp :(a—l—f— (62+92) /2) dt—l—deY-l-gdWZ] :

e The strong solutions are:

exp [(a—b%/2) t+ bWy (1)],
exp :(f—92/2)t—|—9WZ(t)] ;
exp|[(a+ f— (b°+g°) /2) t+bdWy + gWz(t)].
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Product of Geometric Brownian Motion Processes
(concluded)

e InU is Brownian motion with a mean equal to the sum
of the means of InY and InZ.

e This holds even if Y and Z are correlated.

e Finally, InY and In Z have correlation p.
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Quotients of Geometric Brownian Motion Processes

e Suppose Y and Z are drawn from p. 622.

o Let

U2vY/Z.

e We now show that?

aU W
7:(a—f—|—g2—bg,())d?f—l—deY—LC]d Z-
(88)

e Keep in mind that dWy and dW; have correlation p.

2 xercise 14.3.6 of the textbook is erroneous.
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Quotients of Geometric Brownian Motion Processes
(concluded)

e The multidimensional Ito’s lemma (Theorem 21 on
p. 615) can be employed to show that

dU
(1/2)dY — (Y/)Z*)dZ — (1)Z°)dY dZ + (Y/Z?) (dZ)*

(1/2)(aY dt 4 bY dWy) — (Y/Z*)(fZ dt + gZ dW z)
—(1/Z%)(bgY Zpdt) + (Y/Z")(g° Z" dt)
Uladt+bdWy) —U(fdt +gdWyz)

—U(bgpdt) + U(g” dt)

U(a— f+g° —bgp)dt +UbdWy —UgdWy.
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Forward Price

Suppose S follows

d
gS = pdt 4+ odW.

Consider functional F'(S,t) 2 Sev(T—=1) for constants Y

and T'.

As F'is a function of two variables, we need the various
partial derivatives of F'(S,t) with respect to S and ¢.

Note that in partial differentiation with respect to one

variable, other variables are held constant.?

2Contributed by Mr. Sun, Ao (R05922147) on April 26, 2017.
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Forward Prices (continued)

8_F — y(T—1)
0S ’
0°F
052
8_F
ot

0,

—ySe¥(T=1),

V(T 4S — ySe¥(T=1) gt
SeV T (udt + o dW) — ySe¥ T dt
F(p—y)dt+ FodW.

20ne can also prove it by Eq. (85) on p. 614.
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Forward Prices (concluded)

Thus F' follows

dF
- = (u—1y)dt+ odW.

This result has applications in forward and futures

contracts.
In Eq. (60) on p. 490, u =1 = y.

So

dF
7 = UdW,

a martingale.®

2]t is consistent with p. 566. Furthermore, it explains why Black’s
formulas (68)—(69) on p. 518 use the same volatility o as the stock’s.
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Ornstein-Uhlenbeck (OU) Process
e The OU process:

dX = —r X dt + o dW,
where k,0 > 0.

o For ty) < s <t and X(t9) = zo, it is known that

E[X(t)] e 1710 Bl ],
2
Var|[ X (1) ] (1 — 6_2“(75_750)) + e~ 2r(t=t0) Var[ zg ],

Cov] X (s), X ()]

e r(t—s) [1 _ e 2r(s—to) }

2k

+eF(t+s=2%) var[ z0].
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Ornstein-Uhlenbeck Process (continued)

e X(¢) is normally distributed if x( is a constant or

normally distributed.

— Elzg] =29 and Var|zg| =0 if x( is a constant.
e X is said to be a normal process.

e The OU process has the following mean-reverting
property if £ > 0.
— When X > 0, X is pulled toward zero.

— When X < 0, it is pulled toward zero again.
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Ornstein-Uhlenbeck Process (continued)

e A generalized version:
dX = k(p— X) dt + odW,
where x,0 > 0.

e Given X (ty) = xg, a constant, it is known that

E[X(1)] ot (o — p)e ") (89)

Var| X (t) | g—/{ [1 — e 2nt=to) |

for t5 <t.
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Ornstein-Uhlenbeck Process (concluded)

The mean and standard deviation are roughly p and
o /v 2k , respectively.

For large t, the probability of X < 0 is extremely
unlikely in any finite time interval when p > 0 is large
relative to o/v2k.

The process is mean-reverting.

— X tends to move toward u.

— Useful for modeling term structure, stock price

volatility, and stock price return.®

2See Knutson, Wimmer, Kuhnen, & Winkielman (2008) for the bio-

logical basis for mean reversion in financial decision making.
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Square-Root Process

e Suppose X is an OU process.

e Consider
V2 X2

e [to’s lemma says V' has the differential,

% 2X dX + (dX)?
WV (—kVV dt + o dW) + o dt
(—2/{‘/ + 02) dt + 20V V dW,

a square-root process.
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Square-Root Process (continued)

e In general, the square-root process has the SDE,
dX = k(p — X)dt + oV X dW,

where k,0 >0, u >0, and X(0) > 0 is a constant.

e Like the OU process, it possesses mean reversion: X
tends to move toward pu, but the volatility is

proportional to v X instead of a constant.
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Square-Root Process (continued)

When X hits zero and p > 0, the probability is one

that it will not move below zero.

— Zero is a reflecting boundary.

Hence, the square-root process is a good candidate for

modeling interest rates.?

The OU process, in contrast, allows negative interest

rates.P

e The two processes are related.©

2Cox, Ingersoll, & Ross (1985).

PSome rates did go negative in Europe in 2015.
“Recall p. 635.
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Square-Root Process (concluded)

e The random variable 2¢X(t) follows the noncentral

chi-square distribution,®
4
X (—F‘f ,2¢X(0) 6_“) ,
o

where ¢ 2 (26/02)(1 — e *)~1 and © > 0.

e Given X(0) = zg, a constant,

E[X(t)] = zoe ™+ pu (1 — e_’“> :

Var| X ()] xo % (e7"* — e ") 4+ ;_/1 (1-— e_’“‘t>2 :

for t > 0.
2William Feller (1906-1970) in 1951.
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Modeling Stock Prices

e The most popular stochastic model for stock prices has

been the geometric Brownian motion,

d
FS = pdt + odW.

e The logarithmic price X 21nS follows

0.2

by Eq. (86) on p. 618.
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Local-Volatility Models

e The deterministic-volatility model for “smile” posits

d
?S = (rt—qt)dt—l—U(S,t)dW,

where instantaneous volatility o(.5,%) is called the

local-volatility function.®

— “The most popular model after Black-Scholes is a
local volatility model as it is the only completely

consistent volatility model.”

e A (weak) solution exists if So(5,t) is continuous and

grows at most linearly in S and ¢.P

2Derman & Kani (1994); Dupire (1994).
PSkorokhod (1961); Achdou & Pironneau (2005).
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Local-Volatility Models (continued)

e One needs to recover the local volatility surface o(S,t)

from the implied volatility surface.

Theoretically,®

oC oC
&+ (rr —qr) X 5% + qrC
O'(X, T)2 — 9 oT ( T qT) 0X qr .

2 02C
X 0X?2 (90)

— (' is the call price at time ¢ = 0 (today) with strike
price X and time to maturity 7.

— o(X,T) is the local volatility that will prevail at
future time T and stock price Sp = X.

2Dupire (1994); Andersen & Brotherton-Ratcliffe (1998).
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Local-Volatility Models (continued)

e For more general models, this equation gives the
expectation as seen from today, under the risk-neural
probability, of the instantaneous variance at time 1T’
given that S = X.2

e In practice, the (S, t)? derived by Dupire’s formula (90)
may have spikes, vary wildly, or even be negative.

e The term 9*C/0X? in the denominator often results in

numerical instability:.

2Derman & Kani (1997); R. W. Lee (2001); Derman & M. B. Miller
(2016).

©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 642



Local-Volatility Models (continued)

e Denote the implied volatility surface by (X, T) and the
local volatility surface by o(S,t).

e The relation between (X, T) and o(X,T) is®

2 +257 [S2 + (rr — qr) X 22

(1= 8) + X207 [ - 23 () + X33

3 0X 0X 4

Tt

In(X/St) —|—/t (gs — 7s) ds.

2Andreasen (1996); Andersen & Brotherton-Ratcliffe (1998);
Gatheral (2003); Wilmott (2006); Kamp (2009).
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Local-Volatility Models (continued)

e Although this version may be more stable than Eq. (90)
on p. 641, it is expected to suffer from the same

problems.

e Small changes to the implied volatility surface may

produce big changes to the local volatility surface.
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Implied and Local Volatility Surfaces®

Implied Vol Surface Local Vol Surface
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2Contributed by Mr. Lok, U Hou (D99922028) on April 5, 2014.

©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 645



Local-Volatility Models (continued)

e In reality, option prices only exist for a finite set of

maturities and strike prices.

e Hence interpolation and extrapolation may be needed to
construct the volatility surface.?

e But then some implied volatility surfaces generate

option prices that allow arbitrage opportunities.”

2Doing it to the option prices produces worse results (Li, 2000/2001).
PSee Rebonato (2004) for an example.
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Local-Volatility Models (concluded)

There exist conditions for a set of option prices to be
arbitrage-free.?

Some adopt parameterized implied volatility surfaces

that guarantee freedom from certain arbitrages.®

For some vanilla equity options, the Black-Scholes model
seems better than the local-volatility model in predictive

power.©

The exact opposite is concluded for hedging in equity

index markets!d

2Kahalé (2004); Davis & Hobson (2007).

PGatheral & Jacquier (2014).
“Dumas, Fleming, & Whaley (1998).

dCrépey (2004); Derman & M. B. Miller (2016).
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Local-Volatility Models: Popularity

Hirsa and Neftci (2014), “most traders and firms
actively utilize this [local-volatility] model.”

Bennett (2014), “Of all the four volatility regimes,
sticky local volatility] is arguably the most realistic and

fairly prices skew.”

Derman & M. B. Miller (2016), “Right or wrong, local
volatility models have become popular and ubiquitousin

modeling the smile.”
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Implied Trees

The trees for the local-volatility model are called implied

trees.?

Their construction requires option prices at all strike

prices and maturities.

— That is, an implied volatility surface.

The local volatility model does not imply that the

implied tree must combine.

e Exponential-sized implied trees exist.”

2Derman & Kani (1994); Dupire (1994); Rubinstein (1994).
PCharalambousa, Christofidesb, & Martzoukosa (2007); Gong & Xu

(2019).
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Implied Trees (continued)

e How to construct a valid implied tree with efficiency has

been open for a long time.?

— Reasons may include: noise and nonsynchrony in
data, arbitrage opportunities in the smoothed and
interpolated /extrapolated implied volatility surface,
wrong model, wrong algorithms, nonlinearity,

instability, etc.

e Inversion is an ill-posed numerical problem.”

2Rubinstein (1994); Derman & Kani (1994); Derman, Kani, & Chriss
(1996); Jackwerth & Rubinstein (1996); Jackwerth (1997); Coleman,
Kim, Li, & Verma (2000); Li (2000/2001); Rebonato (2004); Moriggia,
Muzzioli, & Torricelli (2009).

b Ayache, Henrotte, Nassar, & X. Wang (2004).
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Implied Trees (continued)

It is finally solved for separable local volatilities.?

— The local-volatility function o(S,t) is separable® if
o(S,t) = 01(5) oa(t).

e A solution is also available for any upper- and

lower-bounded o¢.¢

aLok (D99922028) & Lyuu (2015, 2016, 2017).

PBrace, Gatarek, & Musiela (1997); Rebonato (2004).
“Lok (D99922028) & Lyuu (2016, 2017, 2020).
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Implied Trees* (concluded)
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2Plot supplied by Prof. Lok, U Hou (D99922028) on May 4, 2019.
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Delta Hedge under the Local-Volatility Model

e Delta by the implied tree differs from delta by the
Black-Scholes model’s implied volatility:.

— The latter is by formula (46) or (47) (p. 343) after
calculating the implied volatility from the same

option price by the implied tree.

e Hence the profits and losses of their delta hedges will
differ.

e The next plot shows the best 100 out of 100,000 random
paths where the implied tree delta outperforms the
Black-Scholes delta.?

2In terms of profits and losses. Plot supplied by Mr. Chiu, Tzu-Hsuan
(R08723061) on November 20, 2021. We are hedging a long call.
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Delta Hedge under the Local-Volatility Model
(concluded)

e The next plot shows the best 100 out of 100,000 random

paths where the Black-Scholes delta outperforms the

implied tree delta.?

2Plot supplied by Mr. Chiu, Tzu-Hsuan (R08723061) on November
20, 2021. We are again hedging a long call.
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