
Brownian Motiona

• Brownian motion is a stochastic process {X(t), t ≥ 0 }
with the following properties.

1. X(0) = 0, unless stated otherwise.

2. for any 0 ≤ t0 < t1 < · · · < tn, the random variables

X(tk)−X(tk−1)

for 1 ≤ k ≤ n are independent.b

3. for 0 ≤ s < t, X(t)−X(s) is normally distributed

with mean μ(t− s) and variance σ2(t− s), where μ

and σ �= 0 are real numbers.

aRobert Brown (1773–1858).
bSo X(t)−X(s) is independent of X(r) for r ≤ s < t.
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Brownian Motion (concluded)

• The existence and uniqueness of such a process is

guaranteed by Wiener’s theorem.a

• This process will be called a (μ, σ) Brownian motion

with drift μ and variance σ2.

• Although Brownian motion is a continuous function of t

with probability one, it is almost nowhere differentiable.

• The (0, 1) Brownian motion is called the Wiener process.

• If condition 3 is replaced by “X(t)−X(s) depends only

on t− s,” we have the more general Levy process.b

aNorbert Wiener (1894–1964). He received his Ph.D. from Harvard

in 1912.
bPaul Levy (1886–1971).
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Example

• If {X(t), t ≥ 0 } is the Wiener process, then

X(t)−X(s) ∼ N(0, t− s).

• A (μ, σ) Brownian motion Y = {Y (t), t ≥ 0 } can be

expressed in terms of the Wiener process:

Y (t) = μt+ σX(t). (78)

• Note that

Y (t+ s)− Y (t) ∼ N(μs, σ2s).
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Brownian Motion as Limit of Random Walk

Claim 1 A (μ, σ) Brownian motion is the limiting case of

random walk.

• A particle moves Δx to the right with probability p

after Δt time.

• It moves Δx to the left with probability 1− p.

• Define

Xi
Δ
=

⎧⎨⎩ +1 if the ith move is to the right,

−1 if the ith move is to the left.

– Xi are independent with

Prob[Xi = 1 ] = p = 1− Prob[Xi = −1 ].
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Brownian Motion as Limit of Random Walk (continued)

• Recall

E[Xi ] = 2p− 1,

Var[Xi ] = 1− (2p− 1)2.

• Assume n
Δ
= t/Δt is an integer.

• Its position at time t is

Y (t)
Δ
= Δx (X1 +X2 + · · ·+Xn) .
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Brownian Motion as Limit of Random Walk (continued)

• Therefore,

E[Y (t) ] = n(Δx)(2p− 1),

Var[Y (t) ] = n(Δx)2
[
1− (2p− 1)2

]
.

• With Δx
Δ
= σ

√
Δt and p

Δ
= [ 1 + (μ/σ)

√
Δt ]/2,a

E[Y (t) ] = nσ
√
Δt (μ/σ)

√
Δt = μt,

Var[Y (t) ] = nσ2Δt
[
1− (μ/σ)2Δt

] → σ2t,

as Δt → 0.

aIdentical to Eq. (42) on p. 296!
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Brownian Motion as Limit of Random Walk (concluded)

• Thus, {Y (t), t ≥ 0 } converges to a (μ, σ) Brownian

motion by the central limit theorem.

• Brownian motion with zero drift is the limiting case of

symmetric random walk by choosing μ = 0.

• Similarity to the the BOPM: The p is identical to the

probability in Eq. (42) on p. 296 and Δx = lnu.

• Note that

Var[Y (t+Δt)− Y (t) ]

=Var[ΔxXn+1 ] = (Δx)2 ×Var[Xn+1 ] → σ2Δt.
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Geometric Brownian Motion

• Let X
Δ
= {X(t), t ≥ 0 } be a Brownian motion process.

• The process

{Y (t)
Δ
= eX(t), t ≥ 0 },

is called geometric Brownian motion.

• Suppose further that X is a (μ, σ) Brownian motion.

• By assumption, Y (0) = e0 = 1.
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Geometric Brownian Motion (concluded)

• X(t) ∼ N(μt, σ2t) with moment generating function

E
[
esX(t)

]
= E [Y (t)s ] = eμts+(σ2ts2/2)

from Eq. (27) on p 171.

• In particular,a

E[Y (t) ] = eμt+(σ2t/2),

Var[Y (t) ] = E
[
Y (t)2

]− E[Y (t) ]2

= e2μt+σ2t
(
eσ

2t − 1
)
.

aRecall Eqs. (29) on p. 180.
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An Argument for Long-Term Investmenta

• Suppose the stock follows the geometric Brownian

motion

S(t) = S(0) eN(μt,σ2t) = S(0) etN(μ,σ2/t ), t ≥ 0,

where μ > 0.

• The annual rate of return has a normal distribution:

N

(
μ,

σ2

t

)
.

• The larger the t, the likelier the return is positive.

• The smaller the t, the likelier the return is negative.
aContributed by Dr. King, Gow-Hsing on April 9, 2015. See

http://www.cb.idv.tw/phpbb3/viewtopic.php?f=7&t=1025
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Continuous-Time Financial Mathematics
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A proof is that which convinces a reasonable man;

a rigorous proof is that which convinces an

unreasonable man.

— Mark Kac (1914–1984)

The pursuit of mathematics is a

divine madness of the human spirit.

— Alfred North Whitehead (1861–1947),

Science and the Modern World
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Stochastic Integrals

• Use W
Δ
= {W (t), t ≥ 0 } to denote the Wiener process.

• The goal is to develop integrals of X from a class of

stochastic processes,a

It(X)
Δ
=

∫ t

0

X dW, t ≥ 0.

• It(X) is a random variable called the stochastic integral

of X with respect to W .

• The stochastic process { It(X), t ≥ 0 } will be denoted

by
∫
X dW .

aKiyoshi Ito (1915–2008).
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Stochastic Integrals (concluded)

• Typical requirements for X in financial applications are:

– Prob[
∫ t

0
X2(s) ds < ∞ ] = 1 for all t ≥ 0 or the

stronger
∫ t

0
E[X2(s) ] ds < ∞.

– The information set at time t includes the history of

X and W up to that point in time.

– But it contains nothing about the evolution of X or

W after t (nonanticipating, so to speak).

– The future cannot influence the present.
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Ito Integral

• A theory of stochastic integration.

• As with calculus, it starts with step functions.

• A stochastic process {X(t) } is simple if there exist

0 = t0 < t1 < · · ·
such that

X(t) = X(tk−1) for t ∈ [ tk−1, tk), k = 1, 2, . . .

for any realization (see figure on next page).a

aIt is right-continuous.
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Ito Integral (continued)

• The Ito integral of a simple process is defined as

It(X)
Δ
=

n−1∑
k=0

X(tk)[W (tk+1)−W (tk) ], (79)

where tn = t.

– The integrand X is evaluated at tk, not tk+1.

• Define the Ito integral of more general processes as a

limiting random variable of the Ito integral of simple

stochastic processes.
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Ito Integral (continued)

• Let X = {X(t), t ≥ 0 } be a general stochastic process.

• Then there exists a random variable It(X), unique

almost certainly, such that It(Xn) converges in

probability to It(X) for each sequence of simple

stochastic processes X1, X2, . . . such that Xn converges

in probability to X .

• If X is continuous with probability one, then It(Xn)

converges in probability to It(X) as

δn
Δ
= max

1≤k≤n
(tk − tk−1)

goes to zero.
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Ito Integral (concluded)

• It is a fundamental fact that
∫
X dW is continuous

almost surely.

• The following theorem says the Ito integral is a

martingale.a

Theorem 18 The Ito integral
∫
X dW is a martingale.

• A corollary is the mean value formula

E

[∫ b

a

X dW

]
= 0.

aExercise 14.1.1 covers simple stochastic processes.
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Discrete Approximation and Nonanticipation

• Recall Eq. (79) on p. 592.

• The following simple stochastic process { X̂(t) } can be

used in place of X to approximate
∫ t

0
X dW ,

X̂(s)
Δ
= X(tk−1) for s ∈ [ tk−1, tk), k = 1, 2, . . . , n.

• Note the nonanticipating feature of X̂.

– The information up to time s,

{ X̂(t),W (t), 0 ≤ t ≤ s },

cannot determine the future evolution of X or W .
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Discrete Approximation and Nonanticipation
(concluded)

• Suppose, unlike Eq. (79) on p. 592, we defined the

stochastic integral from

n−1∑
k=0

X(tk+1)[W (tk+1)−W (tk) ].

• Then we would be using the following different simple

stochastic process in the approximation,

Ŷ (s)
Δ
= X(tk) for s ∈ [ tk−1, tk), k = 1, 2, . . . , n.

• This clearly anticipates the future evolution of X .a

aSee Exercise 14.1.2 for an example where it matters.
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Ito Process

• The stochastic process X = {Xt, t ≥ 0 } that solves

Xt = X0 +

∫ t

0

a(Xs, s) ds+

∫ t

0

b(Xs, s) dWs, t ≥ 0

is called an Ito process.

– X0 is a scalar starting point.

– { a(Xt, t) : t ≥ 0 } and { b(Xt, t) : t ≥ 0 } are

stochastic processes satisfying certain regularity

conditions.

– a(Xt, t): the drift.

– b(Xt, t): the diffusion.
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Ito Process (continued)

• Typical regularity conditions are:a

– For all T > 0, x ∈ R
n, and 0 ≤ t ≤ T ,

| a(x, t) |+ | b(x, t) | ≤ C(1 + |x |)
for some constant C.b

– (Lipschitz continuity) For all T > 0, x ∈ R
n, and

0 ≤ t ≤ T ,

| a(x, t)− a(y, t) |+ | b(x, t)− b(y, t) | ≤ D |x− y |
for some constant D.

aØksendal (2007).
bThis condition is not needed in time-homogeneous cases, where a

and b do not depend on t.
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Ito Process (continued)

• A shorthanda is the following stochastic differential

equationb (SDE) for the Ito differential dXt,

dXt = a(Xt, t) dt+ b(Xt, t) dWt. (80)

– Or simply

dXt = at dt+ bt dWt.

– This is Brownian motion with an instantaneous drift

at and an instantaneous variance b2t .

• X is a martingale if at = 0.c

aPaul Langevin (1872–1946) in 1904.
bLike any equation, an SDE contains an unknown, the process Xt.
cRecall Theorem 18 (p. 594).
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Ito Process (concluded)

• From calculus, we would expect
∫ t

0
W dW = W (t)2/2.

• But W (t)2/2 is not a martingale, hence wrong!

• The correct answer is [W (t)2 − t ]/2.

• A popular representation of Eq. (80) is

dXt = at dt+ bt
√
dt ξ, (81)

where ξ ∼ N(0, 1).
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Euler Approximation

• Define tn
Δ
= nΔt.

• The following approximation follows from Eq. (81),

X̂(tn+1)

=X̂(tn) + a(X̂(tn), tn)Δt+ b(X̂(tn), tn)ΔW (tn). (82)

• It is called the Euler or Euler-Maruyama method.

• Recall that ΔW (tn) should be interpreted as

W (tn+1)−W (tn),

not W (tn)−W (tn−1)!
a

aRecall Eq. (79) on p. 592.

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 602



Euler Approximation (concluded)

• With the Euler method, one can obtain a sample path

X̂(t1), X̂(t2), X̂(t3), . . .

from a sample path

W (t0),W (t1),W (t2), . . . .

• Under mild conditions, X̂(tn) converges to X(tn).
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More Discrete Approximations

• Under fairly loose regularity conditions, Eq. (82) on

p. 602 can be replaced by

X̂(tn+1)

=X̂(tn) + a(X̂(tn), tn)Δt+ b(X̂(tn), tn)
√
Δt Y (tn).

– Y (t0), Y (t1), . . . are independent and identically

distributed with zero mean and unit variance.
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More Discrete Approximations (concluded)

• An even simpler discrete approximation scheme:

X̂(tn+1)

=X̂(tn) + a(X̂(tn), tn)Δt+ b(X̂(tn), tn)
√
Δt ξ.

– Prob[ ξ = 1 ] = Prob[ ξ = −1 ] = 1/2.

– Note that E[ ξ ] = 0 and Var[ ξ ] = 1.

• This is a binomial model.

• As Δt goes to zero, X̂ converges to X .a

aHe (1990).
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Trading and the Ito Integral

• Consider an Ito process

dSt = μt dt+ σt dWt.

– St is the vector of security prices at time t.

• Let φt be a trading strategy denoting the quantity of

each type of security held at time t.

– Hence the stochastic process φtSt is the value of the

portfolio φt at time t.

• φt dSt
Δ
= φt(μt dt+ σt dWt) represents the change in the

value from security price changes occurring at time t.
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Trading and the Ito Integral (concluded)

• The equivalent Ito integral,

GT (φ)
Δ
=

∫ T

0

φt dSt =

∫ T

0

φtμt dt+

∫ T

0

φtσt dWt,

measures the gains realized by the trading strategy over

the period [ 0, T ].
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Ito’s Lemmaa

A smooth function of an Ito process is itself an Ito process.

Theorem 19 Suppose f : R → R is twice continuously

differentiable and dX = at dt+ bt dW . Then f(X) is the

Ito process,

f(Xt)

= f(X0) +

∫ t

0

f ′(Xs) as ds+

∫ t

0

f ′(Xs) bs dW

+
1

2

∫ t

0

f ′′(Xs) b
2
s ds

for t ≥ 0.

aIto (1944).
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Ito’s Lemma (continued)

• In differential form, Ito’s lemma becomes

df(X)

= f ′(X) a dt+ f ′(X) b dW +
1

2
f ′′(X) b2 dt (83)

=
[
f ′(X) a+ 1

2 f
′′(X) b2

]
dt+ f ′(X) b dW.

• Compared with calculus, the interesting part is the third

term on the right-hand side of Eq. (83).

• A convenient formulation of Ito’s lemma is

df(X) = f ′(X) dX +
1

2
f ′′(X)(dX)2. (84)
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Ito’s Lemma (continued)

• We are supposed to multiply out

(dX)2 = (a dt+ b dW )2 symbolically according to

× dW dt

dW dt 0

dt 0 0

– The (dW )2 = dt entry is justified by a known result.

• Hence (dX)2 = (a dt+ b dW )2 = b2 dt in Eq. (84).

• This form is easy to remember because of its similarity

to the Taylor expansion.
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Ito’s Lemma (continued)

Theorem 20 (Higher-Dimensional Ito’s Lemma) Let

W1,W2, . . . ,Wn be independent Wiener processes and

X
Δ
= (X1, X2, . . . , Xm) be a vector process. Suppose

f : Rm → R is twice continuously differentiable and Xi is

an Ito process with dXi = ai dt+
∑n

j=1 bij dWj. Then

df(X) is an Ito process with the differential,

df(X) =
m∑
i=1

fi(X) dXi +
1

2

m∑
i=1

m∑
k=1

fik(X) dXi dXk,

where fi
Δ
= ∂f/∂Xi and fik

Δ
= ∂2f/∂Xi∂Xk.
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Ito’s Lemma (continued)

• The multiplication table for Theorem 20 is

× dWi dt

dWk δik dt 0

dt 0 0

in which

δik =

⎧⎨⎩ 1, if i = k,

0, otherwise.
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Ito’s Lemma (continued)

• In applying the higher-dimensional Ito’s lemma, usually

one of the variables, say X1, is time t and dX1 = dt.

• In this case, b1j = 0 for all j and a1 = 1.

• As an example, let

dXt = at dt+ bt dWt.

• Consider the process f(Xt, t).
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Ito’s Lemma (continued)

• Then

df

=
∂f

∂Xt
dXt +

∂f

∂t
dt+

1

2

∂2f

∂X2
t

(dXt)
2

=
∂f

∂Xt
(at dt+ bt dWt) +

∂f

∂t
dt

+
1

2

∂2f

∂X2
t

(at dt+ bt dWt)
2

=

(
∂f

∂Xt
at +

∂f

∂t
+

1

2

∂2f

∂X2
t

b2t

)
dt+

∂f

∂Xt
bt dWt. (85)
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Ito’s Lemma (continued)

Theorem 21 (Alternative Ito’s Lemma) Let

W1,W2, . . . ,Wm be Wiener processes and

X
Δ
= (X1, X2, . . . , Xm) be a vector process. Suppose

f : Rm → R is twice continuously differentiable and Xi is

an Ito process with dXi = ai dt+ bi dWi. Then df(X) is the

following Ito process,

df(X) =
m∑
i=1

fi(X) dXi +
1

2

m∑
i=1

m∑
k=1

fik(X) dXi dXk.
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Ito’s Lemma (concluded)

• The multiplication table for Theorem 21 is

× dWi dt

dWk ρik dt 0

dt 0 0

• Above, ρik denotes the correlation between dWi and

dWk.
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Geometric Brownian Motion

• Consider geometric Brownian motion

Y (t)
Δ
= eX(t).

– X(t) is a (μ, σ) Brownian motion.

– By Eq. (78) on p. 577,

dX = μ dt+ σ dW.

• Note that

∂Y

∂X
= Y,

∂2Y

∂X2
= Y.
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Geometric Brownian Motion (continued)

• Ito’s formula (83) on p. 609 implies

dY = Y dX + (1/2)Y (dX)2

= Y (μ dt+ σ dW ) + (1/2)Y (μ dt+ σ dW )2

= Y (μ dt+ σ dW ) + (1/2)Y σ2 dt.

• Hence

dY

Y
=

(
μ+ σ2/2

)
dt+ σ dW. (86)

• The annualized instantaneous rate of return is μ+ σ2/2

(not μ).a

aConsistent with Lemma 10 (p. 301).
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Geometric Brownian Motion (continued)

• Alternatively, from Eq. (78) on p. 577,

Xt = X0 + μt+ σWt,

admits an explicit (strong) solution.

• Hence

Yt = Y0 e
μt+σWt , (87)

a strong solution to the SDE (86) where Y0 = eX0 .
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Geometric Brownian Motion (concluded)

• On the other hand, suppose

dY

Y
= μ dt+ σ dW.

• Then X(t)
Δ
= lnY (t) follows

dX =
(
μ− σ2/2

)
dt+ σ dW.
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Exponential Martingale

• The Ito process

dXt = btXt dWt

is a martingale.a

• It is called an exponential martingale.

• By Ito’s formula (83) on p. 609,

X(t) = X(0) exp

[
−1

2

∫ t

0

b2s ds+

∫ t

0

bs dWs

]
.

aRecall Theorem 18 (p. 594).
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Product of Geometric Brownian Motion Processes

• Let

dY

Y
= a dt+ b dWY ,

dZ

Z
= f dt+ g dWZ .

• Assume dWY and dWZ have correlation ρ.

• Consider the Ito process

U
Δ
= Y Z.
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Product of Geometric Brownian Motion Processes
(continued)

• Apply Ito’s lemma (Theorem 21 on p. 615):

dU = Z dY + Y dZ + dY dZ

= ZY (a dt+ b dWY ) + Y Z(f dt+ g dWZ)

+Y Z(a dt+ b dWY )(f dt+ g dWZ)

= U(a+ f + bgρ) dt+ Ub dWY + Ug dWZ .

• The product of correlated geometric Brownian motion

processes thus remains geometric Brownian motion.
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Product of Geometric Brownian Motion Processes
(continued)

• Note that

Y = exp
[(
a− b2/2

)
dt+ b dWY

]
,

Z = exp
[(
f − g2/2

)
dt+ g dWZ

]
,

U = exp
[ (

a+ f − (
b2 + g2

)
/2
)
dt+ b dWY + g dWZ

]
.

• The strong solutions are:

Y (t) = exp
[(
a− b2/2

)
t+ bWY (t)

]
,

Z(t) = exp
[(
f − g2/2

)
t+ gWZ(t)

]
,

U(t) = exp
[ (

a+ f − (
b2 + g2

)
/2
)
t+ b dWY + gWZ(t)

]
.
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Product of Geometric Brownian Motion Processes
(concluded)

• lnU is Brownian motion with a mean equal to the sum

of the means of lnY and lnZ.

• This holds even if Y and Z are correlated.

• Finally, lnY and lnZ have correlation ρ.
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Quotients of Geometric Brownian Motion Processes

• Suppose Y and Z are drawn from p. 622.

• Let

U
Δ
= Y/Z.

• We now show thata

dU

U
= (a− f + g2 − bgρ) dt+ b dWY − g dWZ .

(88)

• Keep in mind that dWY and dWZ have correlation ρ.

aExercise 14.3.6 of the textbook is erroneous.
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Quotients of Geometric Brownian Motion Processes
(concluded)

• The multidimensional Ito’s lemma (Theorem 21 on

p. 615) can be employed to show that

dU

= (1/Z) dY − (Y/Z2) dZ − (1/Z2) dY dZ + (Y/Z3) (dZ)2

= (1/Z)(aY dt+ bY dWY )− (Y/Z2)(fZ dt+ gZ dWZ)

−(1/Z2)(bgY Zρ dt) + (Y/Z3)(g2Z2 dt)

= U(a dt+ b dWY )− U(f dt+ g dWZ)

−U(bgρ dt) + U(g2 dt)

= U(a− f + g2 − bgρ) dt+ Ub dWY − Ug dWZ .
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Forward Price

• Suppose S follows

dS

S
= μ dt+ σ dW.

• Consider functional F (S, t)
Δ
= Sey(T−t) for constants y

and T .

• As F is a function of two variables, we need the various

partial derivatives of F (S, t) with respect to S and t.

• Note that in partial differentiation with respect to one

variable, other variables are held constant.a

aContributed by Mr. Sun, Ao (R05922147) on April 26, 2017.
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Forward Prices (continued)

• Now,

∂F

∂S
= ey(T−t),

∂2F

∂S2
= 0,

∂F

∂t
= −ySey(T−t).

• Thena

dF = ey(T−t) dS − ySey(T−t) dt

= Sey(T−t) (μ dt+ σ dW )− ySey(T−t) dt

= F (μ− y) dt+ Fσ dW.

aOne can also prove it by Eq. (85) on p. 614.
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Forward Prices (concluded)

• Thus F follows

dF

F
= (μ− y) dt+ σ dW.

• This result has applications in forward and futures

contracts.

• In Eq. (60) on p. 490, μ = r = y.

• So
dF

F
= σ dW,

a martingale.a

aIt is consistent with p. 566. Furthermore, it explains why Black’s

formulas (68)–(69) on p. 518 use the same volatility σ as the stock’s.
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Ornstein-Uhlenbeck (OU) Process

• The OU process:

dX = −κX dt+ σ dW,

where κ, σ ≥ 0.

• For t0 ≤ s ≤ t and X(t0) = x0, it is known that

E[X(t) ] = e−κ(t−t0) E[x0 ],

Var[X(t) ] =
σ2

2κ

(
1− e−2κ(t−t0)

)
+ e−2κ(t−t0) Var[x0 ],

Cov[X(s),X(t) ] =
σ2

2κ
e−κ(t−s)

[
1− e−2κ(s−t0)

]

+e−κ(t+s−2t0) Var[x0 ].
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Ornstein-Uhlenbeck Process (continued)

• X(t) is normally distributed if x0 is a constant or

normally distributed.

– E[x0 ] = x0 and Var[x0 ] = 0 if x0 is a constant.

• X is said to be a normal process.

• The OU process has the following mean-reverting

property if κ > 0.

– When X > 0, X is pulled toward zero.

– When X < 0, it is pulled toward zero again.
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Ornstein-Uhlenbeck Process (continued)

• A generalized version:

dX = κ(μ−X) dt+ σ dW,

where κ, σ ≥ 0.

• Given X(t0) = x0, a constant, it is known that

E[X(t) ] = μ+ (x0 − μ) e−κ(t−t0), (89)

Var[X(t) ] =
σ2

2κ

[
1− e−2κ(t−t0)

]
,

for t0 ≤ t.
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Ornstein-Uhlenbeck Process (concluded)

• The mean and standard deviation are roughly μ and

σ/
√
2κ , respectively.

• For large t, the probability of X < 0 is extremely

unlikely in any finite time interval when μ > 0 is large

relative to σ/
√
2κ .

• The process is mean-reverting.

– X tends to move toward μ.

– Useful for modeling term structure, stock price

volatility, and stock price return.a

aSee Knutson, Wimmer, Kuhnen, & Winkielman (2008) for the bio-

logical basis for mean reversion in financial decision making.
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Square-Root Process

• Suppose X is an OU process.

• Consider

V
Δ
= X2.

• Ito’s lemma says V has the differential,

dV = 2X dX + (dX)2

= 2
√
V (−κ

√
V dt+ σ dW ) + σ2 dt

=
(−2κV + σ2

)
dt+ 2σ

√
V dW,

a square-root process.
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Square-Root Process (continued)

• In general, the square-root process has the SDE,

dX = κ(μ−X) dt+ σ
√
X dW,

where κ, σ > 0, μ ≥ 0, and X(0) ≥ 0 is a constant.

• Like the OU process, it possesses mean reversion: X

tends to move toward μ, but the volatility is

proportional to
√
X instead of a constant.
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Square-Root Process (continued)

• When X hits zero and μ ≥ 0, the probability is one

that it will not move below zero.

– Zero is a reflecting boundary.

• Hence, the square-root process is a good candidate for

modeling interest rates.a

• The OU process, in contrast, allows negative interest

rates.b

• The two processes are related.c

aCox, Ingersoll, & Ross (1985).
bSome rates did go negative in Europe in 2015.
cRecall p. 635.
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Square-Root Process (concluded)

• The random variable 2cX(t) follows the noncentral

chi-square distribution,a

χ

(
4κμ

σ2
, 2cX(0) e−κt

)
,

where c
Δ
= (2κ/σ2)(1− e−κt)−1 and μ > 0.

• Given X(0) = x0, a constant,

E[X(t) ] = x0e
−κt + μ

(
1− e−κt

)
,

Var[X(t) ] = x0
σ2

κ

(
e−κt − e−2κt

)
+ μ

σ2

2κ

(
1− e−κt

)2
,

for t ≥ 0.
aWilliam Feller (1906–1970) in 1951.
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Modeling Stock Prices

• The most popular stochastic model for stock prices has

been the geometric Brownian motion,

dS

S
= μ dt+ σ dW.

• The logarithmic price X
Δ
= lnS follows

dX =

(
μ− σ2

2

)
dt+ σ dW

by Eq. (86) on p. 618.
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Local-Volatility Models

• The deterministic-volatility model for “smile” posits

dS

S
= (rt − qt) dt+ σ(S, t) dW,

where instantaneous volatility σ(S, t) is called the

local-volatility function.a

– “The most popular model after Black-Scholes is a

local volatility model as it is the only completely

consistent volatility model.”

• A (weak) solution exists if Sσ(S, t) is continuous and

grows at most linearly in S and t.b

aDerman & Kani (1994); Dupire (1994).
bSkorokhod (1961); Achdou & Pironneau (2005).

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 640



Local-Volatility Models (continued)

• One needs to recover the local volatility surface σ(S, t)

from the implied volatility surface.

• Theoretically,a

σ(X,T )2 = 2
∂C
∂T + (rT − qT )X

∂C
∂X + qTC

X2 ∂2C
∂X2

.

(90)

– C is the call price at time t = 0 (today) with strike

price X and time to maturity T .

– σ(X,T ) is the local volatility that will prevail at

future time T and stock price ST = X .

aDupire (1994); Andersen & Brotherton-Ratcliffe (1998).
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Local-Volatility Models (continued)

• For more general models, this equation gives the

expectation as seen from today, under the risk-neural

probability, of the instantaneous variance at time T

given that ST = X .a

• In practice, the σ(S, t)2 derived by Dupire’s formula (90)

may have spikes, vary wildly, or even be negative.

• The term ∂2C/∂X2 in the denominator often results in

numerical instability.

aDerman & Kani (1997); R. W. Lee (2001); Derman & M. B. Miller

(2016).

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 642



Local-Volatility Models (continued)

• Denote the implied volatility surface by Σ(X,T ) and the

local volatility surface by σ(S, t).

• The relation between Σ(X,T ) and σ(X,T ) isa

σ(X,T )2 =
Σ2 + 2Στ

[
∂Σ
∂T

+ (rT − qT )X
∂Σ
∂X

]
(
1− Xy

Σ
∂Σ
∂X

)2
+XΣτ

[
∂Σ
∂X

− XΣτ
4

(
∂Σ
∂X

)2
+X ∂2Σ

∂X2

] ,

τ
Δ
= T − t,

y
Δ
= ln(X/St) +

∫ T

t

(qs − rs) ds.

aAndreasen (1996); Andersen & Brotherton-Ratcliffe (1998);

Gatheral (2003); Wilmott (2006); Kamp (2009).
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Local-Volatility Models (continued)

• Although this version may be more stable than Eq. (90)

on p. 641, it is expected to suffer from the same

problems.

• Small changes to the implied volatility surface may

produce big changes to the local volatility surface.
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Implied and Local Volatility Surfacesa
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aContributed by Mr. Lok, U Hou (D99922028) on April 5, 2014.
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Local-Volatility Models (continued)

• In reality, option prices only exist for a finite set of

maturities and strike prices.

• Hence interpolation and extrapolation may be needed to

construct the volatility surface.a

• But then some implied volatility surfaces generate

option prices that allow arbitrage opportunities.b

aDoing it to the option prices produces worse results (Li, 2000/2001).
bSee Rebonato (2004) for an example.
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Local-Volatility Models (concluded)

• There exist conditions for a set of option prices to be

arbitrage-free.a

• Some adopt parameterized implied volatility surfaces

that guarantee freedom from certain arbitrages.b

• For some vanilla equity options, the Black-Scholes model

seems better than the local-volatility model in predictive

power.c

• The exact opposite is concluded for hedging in equity

index markets!d

aKahalé (2004); Davis & Hobson (2007).
bGatheral & Jacquier (2014).
cDumas, Fleming, & Whaley (1998).
dCrépey (2004); Derman & M. B. Miller (2016).
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Local-Volatility Models: Popularity

• Hirsa and Neftci (2014), “most traders and firms

actively utilize this [local-volatility] model.”

• Bennett (2014), “Of all the four volatility regimes,

[sticky local volatility] is arguably the most realistic and

fairly prices skew.”

• Derman & M. B. Miller (2016), “Right or wrong, local

volatility models have become popular and ubiquitousin

modeling the smile.”
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Implied Trees

• The trees for the local-volatility model are called implied

trees.a

• Their construction requires option prices at all strike

prices and maturities.

– That is, an implied volatility surface.

• The local volatility model does not imply that the

implied tree must combine.

• Exponential-sized implied trees exist.b

aDerman & Kani (1994); Dupire (1994); Rubinstein (1994).
bCharalambousa, Christofidesb, & Martzoukosa (2007); Gong & Xu

(2019).
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Implied Trees (continued)

• How to construct a valid implied tree with efficiency has

been open for a long time.a

– Reasons may include: noise and nonsynchrony in

data, arbitrage opportunities in the smoothed and

interpolated/extrapolated implied volatility surface,

wrong model, wrong algorithms, nonlinearity,

instability, etc.

• Inversion is an ill-posed numerical problem.b

aRubinstein (1994); Derman & Kani (1994); Derman, Kani, & Chriss

(1996); Jackwerth & Rubinstein (1996); Jackwerth (1997); Coleman,

Kim, Li, & Verma (2000); Li (2000/2001); Rebonato (2004); Moriggia,

Muzzioli, & Torricelli (2009).
bAyache, Henrotte, Nassar, & X. Wang (2004).

c©2022 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 650



Implied Trees (continued)

• It is finally solved for separable local volatilities.a

– The local-volatility function σ(S, t) is separableb if

σ(S, t) = σ1(S)σ2(t).

• A solution is also available for any upper- and

lower-bounded σ.c

aLok (D99922028) & Lyuu (2015, 2016, 2017).
bBrace, Ga̧tarek, & Musiela (1997); Rebonato (2004).
cLok (D99922028) & Lyuu (2016, 2017, 2020).
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Implied Treesa (concluded)
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aPlot supplied by Prof. Lok, U Hou (D99922028) on May 4, 2019.
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Delta Hedge under the Local-Volatility Model

• Delta by the implied tree differs from delta by the

Black-Scholes model’s implied volatility.

– The latter is by formula (46) or (47) (p. 343) after

calculating the implied volatility from the same

option price by the implied tree.

• Hence the profits and losses of their delta hedges will

differ.

• The next plot shows the best 100 out of 100,000 random

paths where the implied tree delta outperforms the

Black-Scholes delta.a

aIn terms of profits and losses. Plot supplied by Mr. Chiu, Tzu-Hsuan

(R08723061) on November 20, 2021. We are hedging a long call.
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Delta Hedge under the Local-Volatility Model
(concluded)

• The next plot shows the best 100 out of 100,000 random

paths where the Black-Scholes delta outperforms the

implied tree delta.a

aPlot supplied by Mr. Chiu, Tzu-Hsuan (R08723061) on November

20, 2021. We are again hedging a long call.
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