Spread of Nonbenchmark Bonds

- Model prices calculated by the calibrated tree as a rule do not match market prices of nonbenchmark bonds.
- The incremental return over the benchmark bonds is called spread.
- If we add the spread uniformly over the short rates in the tree, the model price will equal the market price.
- We will apply the spread concept to option-free bonds next.

- We illustrate the idea with an example.
- Start with the tree on p. 1049.
- Consider a security with cash flow C_i at time i for i = 1, 2, 3.
- Its model price is p(s), which is equal to

$$\frac{1}{1.04+s} \times \left[C_1 + \frac{1}{2} \times \frac{1}{1.03526+s} \times \left(C_2 + \frac{1}{2} \left(\frac{C_3}{1.02895+s} + \frac{C_3}{1.04343+s} \right) \right) + \frac{1}{2} \times \frac{1}{1.05289+s} \times \left(C_2 + \frac{1}{2} \left(\frac{C_3}{1.04343+s} + \frac{C_3}{1.06514+s} \right) \right) \right].$$

• Given a market price of P, the spread is the s that solves P = p(s).

- The model price p(s) is a monotonically decreasing, convex function of s.
- We will employ the Newton-Raphson root-finding method to solve

$$p(s) - P = 0$$

for s.

- But a quick look at the equation for p(s) reveals that evaluating p'(s) directly is infeasible.
- Fortunately, the tree can be used to evaluate both p(s) and p'(s) during backward induction.

- Consider an arbitrary node A in the tree associated with the short rate r.
- In the process of computing the model price p(s), a price $p_{A}(s)$ is computed at A.
- Prices computed at A's two successor nodes B and C are discounted by r + s to obtain $p_{A}(s)$ as follows,

$$p_{\rm A}(s) = c + \frac{p_{\rm B}(s) + p_{\rm C}(s)}{2(1+r+s)},$$

where c denotes the cash flow at A.

• To compute $p'_{A}(s)$ as well, node A calculates

$$p_{\mathcal{A}}'(s) = \frac{p_{\mathcal{B}}'(s) + p_{\mathcal{C}}'(s)}{2(1+r+s)} - \frac{p_{\mathcal{B}}(s) + p_{\mathcal{C}}(s)}{2(1+r+s)^2}.$$
(138)

- This is easy if $p'_{B}(s)$ and $p'_{C}(s)$ are also computed at nodes B and C.
- When A is a terminal node, simply use the payoff function for $p_{A}(s)$.^a

^aContributed by Mr. Chou, Ming-Hsin (R02723073) on May 28, 2014.

- Apply the above procedure inductively to yield p(s) and p'(s) at the root (p. 1053).
- This is called the differential tree method.^a
 - Similar ideas can be found in automatic differentiation (AD)^b and backpropagation^c in artificial neural networks.
- The total running time is $O(n^2)$.
- The memory requirement is O(n).

^aLyuu (1999).

^bRall (1981).

^cWerbos (1974); Rumelhart, Hinton, & Williams (1986).

Number of	Running	Number of	Number of	Running	Number of
partitions n	time (s)	iterations	partitions	time (s)	iterations
500	7.850	5	10500	3503.410	5
1500	71.650	5	11500	4169.570	5
2500	198.770	5	12500	4912.680	5
3500	387.460	5	13500	5714.440	5
4500	641.400	5	14500	6589.360	5
5500	951.800	5	15500	7548.760	5
6500	1327.900	5	16500	8502.950	5
7500	1761.110	5	17500	9523.900	5
8500	2269.750	5	18500	10617.370	5
9500	2834.170	5			

75MHz Sun SPARCstation 20.

- Consider a three-year, 5% bond with a market price of 100.569.
- Assume the bond pays annual interest.
- The spread can be shown to be 50 basis points over the tree (p. 1057).
- Note that the idea of spread does not assume parallel shifts in the term structure.
- It also differs from the yield spread (p. 133) and static spread (p. 134) of the nonbenchmark bond over an otherwise identical benchmark bond.

More Applications of the Differential Tree: Calculating Implied Volatility (in seconds)^a

American call

American put

Number of	Running	Number of	Number of	Running	Number of
partitions	$_{ m time}$	iterations	partitions	$_{ m time}$	iterations
100	0.008210	2	100	0.013845	3
200	0.033310	2	200	0.036335	3
300	0.072940	2	300	0.120455	3
400	0.129180	2	400	0.214100	3
500	0.201850	2	500	0.333950	3
600	0.290480	2	600	0.323260	2
700	0.394090	2	700	0.435720	2
800	0.522040	2	800	0.569605	2

Intel 166MHz Pentium, running on Microsoft Windows 95.

^aLyuu (1999).

Fixed-Income Options

- Consider a 2-year 99 European call on the 3-year, 5% Treasury.
- Assume the Treasury pays annual interest.
- From p. 1060 the 3-year Treasury's price minus the \$5 interest at year 2 could be \$102.046, \$100.630, or \$98.579 two years from now.
 - The accrued interest is *not* included as it belongs to the original bondholder.
- Now compare the strike price against the bond prices.
- The call is in the money in the first two scenarios out of the money in the third.

Fixed-Income Options (continued)

- The option value is calculated to be \$1.458 on p. 1060(a).
- European interest rate puts can be valued similarly.
- Consider a two-year 99 European put on the same security.
- At expiration, the put is in the money only when the Treasury is worth \$98.579 without the accrued interest.
- The option value is computed to be \$0.096 on p. 1060(b).

Fixed-Income Options (concluded)

- The present value of the strike price is $PV(X) = 99 \times 0.92101 = 91.18$.
- The Treasury is worth B = 101.955.
- The present value of the interest payments during the life of the options is^a

$$PV(I) = 5 \times 0.96154 + 5 \times 0.92101 = 9.41275.$$

- The call and the put are worth C = 1.458 and P = 0.096, respectively.
- Hence the put-call parity is preserved:

$$C = P + B - PV(I) - PV(X).$$

^aThere is no coupon today.

Delta or Hedge Ratio

- How much does the option price change in response to changes in the *price* of the underlying bond?
- This relation is called delta (or hedge ratio) defined as

$$\frac{O_{\rm h} - O_{\ell}}{P_{\rm h} - P_{\ell}}.$$

- In the above P_h and P_ℓ denote the bond prices if the short rate moves up and down, respectively.
- Similarly, O_h and O_ℓ denote the option values if the short rate moves up and down, respectively.

Delta or Hedge Ratio (concluded)

- Delta measures the sensitivity of the option value to changes in the underlying bond price.
- So it shows how to hedge one with the other.
- Take the call and put on p. 1060 as examples.
- Their deltas are

$$\frac{0.774 - 2.258}{99.350 - 102.716} = 0.441,$$

$$\frac{0.200 - 0.000}{99.350 - 102.716} = -0.059,$$

respectively.

Volatility Term Structures

- The binomial interest rate tree can be used to calculate the yield volatility of zero-coupon bonds.
- Consider an *n*-period zero-coupon bond.
- First find its yield to maturity y_h (y_ℓ , respectively) at the end of the initial period if the short rate rises (declines, respectively).
- The yield volatility for our model is defined as

$$\frac{1}{2} \ln \left(\frac{y_{\rm h}}{y_{\ell}} \right). \tag{139}$$

Volatility Term Structures (continued)

- For example, take the tree on p. 1043 (repeated on next page).
- The two-year zero's yield at the end of the first period is 5.289% if the rate rises and 3.526% if the rate declines.
- Its yield volatility is therefore

$$\frac{1}{2}\ln\left(\frac{0.05289}{0.03526}\right) = 20.273\%.$$

Volatility Term Structures (continued)

- Consider the three-year zero-coupon bond.
- If the short rate rises, the price of the zero one year from now will be

$$\frac{1}{2} \times \frac{1}{1.05289} \times \left(\frac{1}{1.04343} + \frac{1}{1.06514}\right) = 0.90096.$$

- Thus its yield is $\sqrt{\frac{1}{0.90096}} 1 = 0.053531$.
- If the short rate declines, the price of the zero one year from now will be

$$\frac{1}{2} \times \frac{1}{1.03526} \times \left(\frac{1}{1.02895} + \frac{1}{1.04343}\right) = 0.93225.$$

Volatility Term Structures (continued)

- Thus its yield is $\sqrt{\frac{1}{0.93225}} 1 = 0.0357$.
- The yield volatility is hence

$$\frac{1}{2}\ln\left(\frac{0.053531}{0.0357}\right) = 20.256\%,$$

slightly less than the one-year yield volatility.

- This is consistent with the reality that longer-term bonds typically have lower yield volatilities than shorter-term bonds.^a
- The procedure can be repeated for longer-term zeros to obtain their yield volatilities.

^aThe relation is reversed for *price* volatilities (duration).

Short rate volatility given a flat %10 volatility structure.

Volatility Term Structures (concluded)

- We started with v_i and then derived the volatility term structure.
- In practice, the steps are reversed.
- The volatility term structure is supplied by the user along with the term structure.
- The v_i —hence the short rate volatilities via Eq. (134) on p. 1020—and the r_i are then simultaneously determined.
- The result is the Black-Derman-Toy model of Goldman Sachs.^a

^aBlack, Derman, & Toy (1990).

[Meriwether] scoring especially high marks in mathematics — an indispensable subject for a bond trader. — Roger Lowenstein, When Genius Failed (2000)

[The] fixed-income traders I knew seemed smarter than the equity trader $[\cdots]$ there's no competitive edge to being smart in the equities business[.]

— Emanuel Derman,

My Life as a Quant (2004)

Bond market terminology was designed less to convey meaning than to bewilder outsiders.

— Michael Lewis, The Big Short (2011)

Terminology

- A period denotes a unit of elapsed time.
 - Viewed at time t, the next time instant refers to time t+dt in the continuous-time model and time t+1 in the discrete-time case.
- Bonds will be assumed to have a par value of one—unless stated otherwise.
- The time unit for continuous-time models will usually be measured by the year.

Standard Notations

The following notation will be used throughout.

t: a point in time.

r(t): the one-period riskless rate prevailing at time t for repayment one period later.^a

P(t,T): the present value at time t of one dollar at time T.

^aAlternatively, the instantaneous spot rate, or short rate, at time t.

Standard Notations (continued)

r(t,T): the (T-t)-period interest rate prevailing at time t stated on a per-period basis and compounded once per period.^a

F(t,T,M): the forward price at time t of a forward contract that delivers at time T a zero-coupon bond maturing at time $M \geq T$.

^aIn other words, the (T-t)-period spot rate at time t.

Standard Notations (concluded)

- f(t,T,L): the L-period forward rate at time T implied at time t stated on a per-period basis and compounded once per period.
- f(t,T): the one-period or instantaneous forward rate at time T as seen at time t stated on a per period basis and compounded once per period.
 - It is f(t, T, 1) in the discrete-time model and f(t, T, dt) in the continuous-time model.
 - Note that f(t,t) equals the short rate r(t).

Fundamental Relations

• The price of a zero-coupon bond equals

$$P(t,T) = \begin{cases} (1+r(t,T))^{-(T-t)}, & \text{in discrete time,} \\ e^{-r(t,T)(T-t)}, & \text{in continuous time.} \end{cases}$$
(140)

- r(t,T) as a function of T defines the spot rate curve at time t.
- By definition,

$$f(t,t) = \begin{cases} r(t,t+1), & \text{in discrete time,} \\ r(t,t), & \text{in continuous time.} \end{cases}$$

Fundamental Relations (continued)

• Forward prices and zero-coupon bond prices are related:

$$F(t, T, M) = \frac{P(t, M)}{P(t, T)}, \quad T \le M.$$
 (141)

- The forward price equals the future value at time T of the underlying asset.^a
- Equation (141) holds whether the model is discrete-time or continuous-time.

^aSee Exercise 24.2.1 of the textbook for proof.

Fundamental Relations (continued)

• Forward rates and forward prices are related definitionally by

$$f(t,T,L) = \left(\frac{1}{F(t,T,T+L)}\right)^{1/L} - 1 = \left(\frac{P(t,T)}{P(t,T+L)}\right)^{1/L} - 1$$
(142)

in discrete time.

• The analog to Eq. (142) under simple compounding is

$$f(t,T,L) = \frac{1}{L} \left(\frac{P(t,T)}{P(t,T+L)} - 1 \right).$$

Fundamental Relations (continued)

• In continuous time,

$$f(t,T,L) = -\frac{\ln F(t,T,T+L)}{L} = \frac{\ln(P(t,T)/P(t,T+L))}{L}$$
(143)

by Eq. (141) on p. 1080.

• Furthermore,

$$f(t,T,\Delta t) = \frac{\ln(P(t,T)/P(t,T+\Delta t))}{\Delta t} \to -\frac{\partial \ln P(t,T)}{\partial T}$$
$$= -\frac{\partial P(t,T)/\partial T}{P(t,T)}.$$

Fundamental Relations (continued)

• So

$$f(t,T) \stackrel{\Delta}{=} -\frac{\partial \ln P(t,T)}{\partial T} = -\frac{\partial P(t,T)/\partial T}{P(t,T)}, \quad t \le T.$$
 (144)

• Because Eq. (144) is equivalent to

$$P(t,T) = e^{-\int_t^T f(t,s) \, ds}, \tag{145}$$

the spot rate curve is

$$r(t,T) = \frac{\int_t^T f(t,s) \, ds}{T - t}.$$

Fundamental Relations (concluded)

• The discrete analog to Eq. (145) is

$$P(t,T) = \frac{1}{(1+r(t))(1+f(t,t+1))\cdots(1+f(t,T-1))}.$$

• The short rate and the market discount function are related by

$$r(t) = -\left. \frac{\partial P(t,T)}{\partial T} \right|_{T=t}$$
.

Risk-Neutral Pricing

- Assume the local expectations theory.
- The expected rate of return of any riskless bond over a single period equals the prevailing one-period spot rate.
 - For all t+1 < T,

$$\frac{E_t[P(t+1,T)]}{P(t,T)} = 1 + r(t). \tag{146}$$

- Relation (146) in fact follows from the risk-neutral valuation principle.^a

 $^{^{\}mathrm{a}}$ Theorem 16 on p. 562.

Risk-Neutral Pricing (continued)

- The local expectations theory is thus a consequence of the existence of a risk-neutral probability π .
- Equation (146) on p. 1085 can also be expressed as

$$E_t[P(t+1,T)] = F(t,t+1,T).$$

- Verify that with, e.g., Eq. (141) on p. 1080.
- Hence the forward price for the next period is an unbiased estimator of the expected bond price.^a

^aUnder the local expectations theory. But the forward rate is not an unbiased estimator of the expected future short rate (p. 1034).

Risk-Neutral Pricing (continued)

• Rewrite Eq. (146) on p. 1085 as

$$\frac{E_t^{\pi}[P(t+1,T)]}{1+r(t)} = P(t,T). \tag{147}$$

 It says the current market discount function equals the expected market discount function one period from now discounted by the short rate.

Risk-Neutral Pricing (concluded)

• Apply the above equality iteratively to obtain

$$P(t,T) = E_t^{\pi} \left[\frac{P(t+1,T)}{1+r(t)} \right]$$

$$= E_t^{\pi} \left[\frac{E_{t+1}^{\pi} [P(t+2,T)]}{(1+r(t))(1+r(t+1))} \right] = \cdots$$

$$= E_t^{\pi} \left[\frac{1}{(1+r(t))(1+r(t+1))\cdots(1+r(T-1))} \right].$$

Continuous-Time Risk-Neutral Pricing

• In continuous time, the local expectations theory implies

$$P(t,T) = E_t \left[e^{-\int_t^T r(s) ds} \right], \quad t < T.$$
 (148)

• Note that $e^{\int_t^T r(s) ds}$ is the bank account process, which denotes the rolled-over money market account.

Interest Rate Swaps

- Consider an interest rate swap made at time t (now) with payments to be exchanged at times t_1, t_2, \ldots, t_n .
- For simplicity, assume $t_{i+1} t_i$ is a fixed constant Δt for all i, and the notional principal is one dollar.
- The fixed rate is c per annum.
- The floating-rate payments are based on the future annual rates $f_0, f_1, \ldots, f_{n-1}$ at times $t_0, t_1, \ldots, t_{n-1}$.
- The payoff at time t_{i+1} for the fixed-rate payer is $(f_i c) \Delta t$.

Interest Rate Swaps (continued)

- Simple rates are adopted here.
- Hence f_i satisfies

$$P(t_i, t_{i+1}) = \frac{1}{1 + f_i \Delta t}.$$

- If $t < t_0$, we have a forward interest rate swap.
- The ordinary swap corresponds to $t = t_0$.

Interest Rate Swaps (continued)

 \bullet The value of the swap at time t is thus

$$\sum_{i=1}^{n} E_{t}^{\pi} \left[e^{-\int_{t}^{t_{i}} r(s) ds} (f_{i-1} - c) \Delta t \right]$$

$$= \sum_{i=1}^{n} E_{t}^{\pi} \left[e^{-\int_{t}^{t_{i}} r(s) ds} \left(\frac{1}{P(t_{i-1}, t_{i})} - (1 + c\Delta t) \right) \right]$$

$$= \sum_{i=1}^{n} E_{t}^{\pi} \left[e^{-\int_{t}^{t_{i}} r(s) ds} \left(e^{\int_{t_{i-1}}^{t_{i}} r(s) ds} - (1 + c\Delta t) \right) \right]$$

$$= \sum_{i=1}^{n} \left[P(t, t_{i-1}) - (1 + c\Delta t) \times P(t, t_{i}) \right]$$

$$= P(t, t_{0}) - P(t, t_{n}) - c\Delta t \sum_{i=1}^{n} P(t, t_{i}).$$

Interest Rate Swaps (concluded)

- So a swap can be replicated as a portfolio of bonds.
- In fact, it can be priced by simple present-value calculations.

Swap Rate

• The swap rate, which gives the swap zero value, equals

$$S_n(t) \stackrel{\Delta}{=} \frac{P(t, t_0) - P(t, t_n)}{\sum_{i=1}^n P(t, t_i) \Delta t}.$$
 (149)

- The swap rate is the fixed rate that equates the present values of the fixed payments and the floating payments.
- For an ordinary swap, $P(t, t_0) = 1$.
- The swap rate is called a forward swap rate if $t_0 > t$.

The Term Structure Equation^a

- Let us start with the zero-coupon bonds and the money market account.
- Let the zero-coupon bond price P(r, t, T) follow

$$\frac{dP}{P} = \mu_p \, dt + \sigma_p \, dW.$$

• At time t, short one unit of a bond maturing at time s_1 and buy α units of a bond maturing at time s_2 .

^aVasicek (1977).

• The net wealth change follows

$$-dP(r,t,s_1) + \alpha dP(r,t,s_2)$$

$$= (-P(r,t,s_1) \mu_p(r,t,s_1) + \alpha P(r,t,s_2) \mu_p(r,t,s_2)) dt$$

$$+ (-P(r,t,s_1) \sigma_p(r,t,s_1) + \alpha P(r,t,s_2) \sigma_p(r,t,s_2)) dW.$$

• Pick

$$\alpha \stackrel{\Delta}{=} \frac{P(r, t, s_1) \, \sigma_p(r, t, s_1)}{P(r, t, s_2) \, \sigma_p(r, t, s_2)}.$$

• Then the net wealth has no volatility and must earn the riskless return:

$$\frac{-P(r,t,s_1)\,\mu_p(r,t,s_1) + \alpha P(r,t,s_2)\,\mu_p(r,t,s_2)}{-P(r,t,s_1) + \alpha P(r,t,s_2)} = r.$$

• Simplify the above to obtain

$$\frac{\sigma_p(r, t, s_1) \,\mu_p(r, t, s_2) - \sigma_p(r, t, s_2) \,\mu_p(r, t, s_1)}{\sigma_p(r, t, s_1) - \sigma_p(r, t, s_2)} = r.$$

• This becomes

$$\frac{\mu_p(r, t, s_2) - r}{\sigma_p(r, t, s_2)} = \frac{\mu_p(r, t, s_1) - r}{\sigma_p(r, t, s_1)}$$

after rearrangement.

• Since the above equality holds for any s_1 and s_2 ,

$$\frac{\mu_p(r,t,s) - r}{\sigma_p(r,t,s)} \stackrel{\Delta}{=} \lambda(r,t)$$
 (150)

for some λ independent of the bond maturity s.

- As $\mu_p = r + \lambda \sigma_p$, all assets are expected to appreciate at a rate equal to the sum of the short rate and a constant times the asset's volatility.
- The term $\lambda(r,t)$ is called the market price of risk.
- The market price of risk must be the same for all bonds to preclude arbitrage opportunities.

• Assume a Markovian short rate model,

$$dr = \mu(r, t) dt + \sigma(r, t) dW.$$

- Then the bond price process is also Markovian.
- By Eq. (14.15) on p. 202 of the textbook,

$$\mu_p = \left(-\frac{\partial P}{\partial T} + \mu(r, t)\frac{\partial P}{\partial r} + \frac{\sigma(r, t)^2}{2}\frac{\partial^2 P}{\partial r^2}\right)/P,\tag{151}$$

$$\sigma_p = \left(\sigma(r, t) \frac{\partial P}{\partial r}\right) / P, \tag{151'}$$

subject to $P(\cdot, T, T) = 1$.

• Substitute μ_p and σ_p into Eq. (150) on p. 1099 to obtain

$$-\frac{\partial P}{\partial T} + \left[\mu(r,t) - \lambda(r,t)\,\sigma(r,t)\right] \frac{\partial P}{\partial r} + \frac{1}{2}\,\sigma(r,t)^2 \frac{\partial^2 P}{\partial r^2} = rP.$$
(152)

- This is called the term structure equation.
- It applies to all interest rate derivatives: The differences are the terminal and boundary conditions.
- Once P is available, the spot rate curve emerges via

$$r(t,T) = -\frac{\ln P(t,T)}{T-t}.$$

Numerical Examples

• Assume this spot rate curve:

• Assume the one-year rate (short rate) can move up to 8% or down to 2% after a year:

Numerical Examples (continued)

- No real-world probabilities are specified.
- The prices of one- and two-year zero-coupon bonds are, respectively,

$$100/1.04 = 96.154,$$

 $100/(1.05)^2 = 90.703.$

• They follow the binomial processes on p. 1104.

Numerical Examples (continued)

The price process of the two-year zero-coupon bond is on the left; that of the one-year zero-coupon bond is on the right.

Numerical Examples (continued)

- The pricing of derivatives can be simplified by assuming investors are risk-neutral.
- Suppose all securities have the same expected one-period rate of return, the riskless rate.
- Then

$$(1-p) \times \frac{92.593}{90.703} + p \times \frac{98.039}{90.703} - 1 = 4\%,$$

where p denotes the risk-neutral probability of a down move in rates.

Numerical Examples (concluded)

- Solving the equation leads to p = 0.319.
- Interest rate contingent claims can be priced under this probability.

Numerical Examples: Fixed-Income Options

• A one-year European call on the two-year zero with a \$95 strike price has the payoffs,

• To solve for the option value C, we replicate the call by a portfolio of x one-year and y two-year zeros.

Numerical Examples: Fixed-Income Options (continued)

• This leads to the simultaneous equations,

$$x \times 100 + y \times 92.593 = 0.000,$$

 $x \times 100 + y \times 98.039 = 3.039.$

- They give x = -0.5167 and y = 0.5580.
- Consequently,

$$C = x \times 96.154 + y \times 90.703 \approx 0.93$$

to prevent arbitrage.

Numerical Examples: Fixed-Income Options (continued)

- This price is derived without assuming any version of an expectations theory.
- Instead, the arbitrage-free price is derived by replication.
- The price of an interest rate contingent claim does not depend directly on the real-world probabilities.
- The dependence holds only indirectly via the current bond prices.

Numerical Examples: Fixed-Income Options (concluded)

- An equivalent method is to utilize risk-neutral pricing.
- The above call option is worth

$$C = \frac{(1-p) \times 0 + p \times 3.039}{1.04} \approx 0.93,$$

the same as before.

• This is not surprising, as arbitrage freedom and the existence of a risk-neutral economy are equivalent.

Numerical Examples: Futures and Forward Prices

• A one-year futures contract on the one-year rate has a payoff of 100 - r, where r is the one-year rate at maturity:

• As the futures price F is the expected future payoff, a

$$F = (1 - p) \times 92 + p \times 98 = 93.914.$$

^aSee Exercise 13.2.11 of the textbook or p. 563.

Numerical Examples: Futures and Forward Prices (concluded)

• The forward price for a one-year forward contract on a one-year zero-coupon bond is^a

$$90.703/96.154 = 94.331\%$$
.

• The forward price exceeds the futures price.^b

^aBy Eq. (141) on p. 1080.

^bUnlike the nonstochastic case on p. 505.

The nature of modern trade is to give to those who have much and take from those who have little.

— Walter Bagehot (1867),

The English Constitution

- 8. What's your problem? Any moron can understand bond pricing models.
- Top Ten Lies Finance Professors

 Tell Their Students

Introduction

- We now survey equilibrium models.
- Recall that the spot rates satisfy

$$r(t,T) = -\frac{\ln P(t,T)}{T-t}$$

by Eq. (140) on p. 1079.

- Hence the discount function P(t,T) suffices to establish the spot rate curve.
- All models to follow are short rate models.
- Unless stated otherwise, the processes are risk-neutral.

The Vasicek Model^a

• The short rate follows

$$dr = \beta(\mu - r) dt + \sigma dW.$$

- The short rate is pulled to the long-term mean level μ at rate β .
- Superimposed on this "pull" is a normally distributed stochastic term σdW .
- Since the process is an Ornstein-Uhlenbeck process,

$$E[r(T) | r(t) = r] = \mu + (r - \mu) e^{-\beta(T - t)}$$

from Eq. (86) on p. 630.

^aVasicek (1977). Vasicek co-founded KMV, which was sold to Moody's for USD\$210 million in 2002.

The Vasicek Model (continued)

The price of a zero-coupon bond paying one dollar at maturity can be shown to be

$$P(t,T) = A(t,T) e^{-B(t,T) r(t)}, (153)$$

where

where
$$A(t,T) = \begin{cases} \exp\left[\frac{(B(t,T)-T+t)(\beta^2\mu-\sigma^2/2)}{\beta^2} - \frac{\sigma^2B(t,T)^2}{4\beta}\right], & \text{if } \beta \neq 0, \\ \exp\left[\frac{\sigma^2(T-t)^3}{6}\right], & \text{if } \beta = 0, \end{cases}$$

and

$$B(t,T) = \begin{cases} \frac{1 - e^{-\beta(T-t)}}{\beta}, & \text{if } \beta \neq 0, \\ T - t, & \text{if } \beta = 0. \end{cases}$$

The Vasicek Model (continued)

- If $\beta = 0$, then P goes to infinity as $T \to \infty$.
- Sensibly, P goes to zero as $T \to \infty$ if $\beta \neq 0$.
- But even if $\beta \neq 0$, P may exceed one for a finite T.
- The long rate $r(t, \infty)$ is the constant

$$\mu - \frac{\sigma^2}{2\beta^2},$$

independent of the current short rate.

The Vasicek Model (concluded)

• The spot rate volatility structure is the curve

$$\sigma \frac{\partial r(t,T)}{\partial r} = \frac{\sigma B(t,T)}{T-t}.$$

- As it depends only on T-t not on t by itself, the same curve is maintained for any future time t.
- When $\beta > 0$, the curve tends to decline with maturity.
 - The long rate's volatility is zero unless $\beta = 0$.
- The speed of mean reversion, β , controls the shape of the curve.
- Higher β leads to greater attenuation of volatility with maturity.

The Vasicek Model: Options on Zeros^a

- Consider a European call with strike price X expiring at time T on a zero-coupon bond with par value \$1 and maturing at time s > T.
- Its price is given by

$$P(t,s) N(x) - XP(t,T) N(x - \sigma_v).$$

^aJamshidian (1989).

The Vasicek Model: Options on Zeros (concluded)

Above

$$x \stackrel{\Delta}{=} \frac{1}{\sigma_v} \ln \left(\frac{P(t,s)}{P(t,T)X} \right) + \frac{\sigma_v}{2},$$

$$\sigma_v \equiv v(t,T) B(T,s),$$

$$v(t,T)^2 \stackrel{\Delta}{=} \begin{cases} \frac{\sigma^2 \left[1 - e^{-2\beta(T-t)} \right]}{2\beta}, & \text{if } \beta \neq 0 \\ \sigma^2(T-t), & \text{if } \beta = 0 \end{cases}$$

• By the put-call parity, the price of a European put is

$$XP(t,T) N(-x + \sigma_v) - P(t,s) N(-x).$$

Binomial Vasicek^a

- Consider a binomial model for the short rate in the time interval [0,T] divided into n identical pieces.
- Let $\Delta t \stackrel{\Delta}{=} T/n$ and b

$$p(r) \stackrel{\Delta}{=} \frac{1}{2} + \frac{\beta(\mu - r)\sqrt{\Delta t}}{2\sigma}.$$

• The following binomial model converges to the Vasicek model,^c

$$r(k+1) = r(k) + \sigma \sqrt{\Delta t} \ \xi(k), \quad 0 \le k < n.$$

^aNelson & Ramaswamy (1990).

^bThe same form as Eq. (42) on p. 292 for the BOPM.

^cSame as the CRR tree except that the probabilities vary here.

Binomial Vasicek (continued)

• Above, $\xi(k) = \pm 1$ with

$$\operatorname{Prob}[\xi(k) = 1] = \begin{cases} p(r(k)), & \text{if } 0 \le p(r(k)) \le 1 \\ 0, & \text{if } p(r(k)) < 0, \\ 1, & \text{if } 1 < p(r(k)). \end{cases}$$

- Observe that the probability of an up move, p, is a decreasing function of the interest rate r.
- This is consistent with mean reversion.

Binomial Vasicek (concluded)

- The rate is the same whether it is the result of an up move followed by a down move or a down move followed by an up move.
- The binomial tree combines.
- The key feature of the model that makes it happen is its constant volatility, σ .

The Cox-Ingersoll-Ross Model^a

• It is the following square-root short rate model:

$$dr = \beta(\mu - r) dt + \sigma \sqrt{r} dW. \tag{154}$$

- The diffusion differs from the Vasicek model by a multiplicative factor \sqrt{r} .
- The parameter β determines the speed of adjustment.
- If r(0) > 0, then the short rate can reach zero only if

$$2\beta\mu < \sigma^2.$$

- This is called the Feller (1951) condition.
- See text for the bond pricing formula.

^aCox, Ingersoll, & Ross (1985).

Binomial CIR

- We want to approximate the short rate process in the time interval [0,T].
- Divide it into n periods of duration $\Delta t \stackrel{\triangle}{=} T/n$.
- Assume $\mu, \beta \geq 0$.
- A direct discretization of the process is problematic because the resulting binomial tree will *not* combine.

Binomial CIR (continued)

• Instead, consider the transformed process^a

$$x(r) \stackrel{\Delta}{=} 2\sqrt{r}/\sigma.$$

• By Ito's lemma (p. 605),

$$dx = m(x) dt + dW,$$

where

$$m(x) \stackrel{\Delta}{=} 2\beta \mu / (\sigma^2 x) - (\beta x/2) - 1/(2x).$$

- This new process has a *constant* volatility.
- Thus its binomial tree combines.

^aSee pp. 1138ff for justification.

Binomial CIR (continued)

- Construct the combining tree for r as follows.
- First, construct a tree for x.
- Then transform each node of the tree into one for r via the inverse transformation (see next page)

$$r = f(x) \stackrel{\Delta}{=} \frac{x^2 \sigma^2}{4}.$$

• But when $x \approx 0$ (so $r \approx 0$), the moments may not be matched well.^a

^aNawalkha & Beliaeva (2007).

$$x + 2\sqrt{\Delta t} \qquad f(x + 2\sqrt{\Delta t})$$

$$x + \sqrt{\Delta t} \qquad f(x + \sqrt{\Delta t})$$

$$x + \sqrt{\Delta t} \qquad f(x + \sqrt{\Delta t})$$

$$x + \sqrt{\Delta t} \qquad x \qquad f(x)$$

$$x + \sqrt{\Delta t} \qquad x \qquad f(x)$$

$$x - \sqrt{\Delta t} \qquad f(x - \sqrt{\Delta t})$$

$$x - 2\sqrt{\Delta t} \qquad f(x - 2\sqrt{\Delta t})$$

Binomial CIR (continued)

• The probability of an up move at each node r is

$$p(r) \stackrel{\Delta}{=} \frac{\beta(\mu - r) \Delta t + r - r^{-}}{r^{+} - r^{-}}.$$

- $-r^{+} \stackrel{\Delta}{=} f(x + \sqrt{\Delta t})$ denotes the result of an up move from r.
- $-r^{-} \stackrel{\Delta}{=} f(x \sqrt{\Delta t})$ the result of a down move.
- Finally, set the probability p(r) to one as r goes to zero to make the probability stay between zero and one.

Binomial CIR (concluded)

• It can be shown that

$$p(r) = \left(\beta\mu - \frac{\sigma^2}{4}\right)\sqrt{\frac{\Delta t}{r}} - B\sqrt{r\Delta t} + C,$$

for some $B \ge 0$ and C > 0.^a

- If $\beta\mu (\sigma^2/4) \ge 0$, the up-move probability p(r) decreases if and only if short rate r increases.
- Even if $\beta \mu (\sigma^2/4) < 0$, p(r) tends to decrease as r increases and decrease as r declines.
- This phenomenon agrees with mean reversion.

^aThanks to a lively class discussion on May 28, 2014.

Numerical Examples

• Consider the process,

$$0.2(0.04 - r) dt + 0.1\sqrt{r} dW,$$

for the time interval [0,1] given the initial rate r(0) = 0.04.

- We shall use $\Delta t = 0.2$ (year) for the binomial approximation.
- See p. 1134(a) for the resulting binomial short rate tree with the up-move probabilities in parentheses.

Numerical Examples (concluded)

- Consider the node which is the result of an up move from the root.
- Since the root has $x = 2\sqrt{r(0)}/\sigma = 4$, this particular node's x value equals $4 + \sqrt{\Delta t} = 4.4472135955$.
- Use the inverse transformation to obtain the short rate

$$\frac{x^2 \times (0.1)^2}{4} \approx 0.0494442719102.$$

- Once the short rates are in place, computing the probabilities is easy.
- Convergence is quite good.^a

^aSee p. 369 of the textbook.

Trinomial CIR

- The binomial CIR tree does not have the degree of freedom to match the mean and variance exactly.
- It actually fails to match them at very low x.
- A trinomial tree for the CIR model with $O(n^{1.5})$ nodes that matches the mean and variance exactly is recently obtained using the ideas on pp. 792ff and others.^a

^aZ. Lu (D00922011) & Lyuu (2018); H. Huang (R03922103) (2019).

A Comparison^a

 $r(0) = 0.01, \, \mu = 0.05, \, \sigma = 0.2, \, \beta = 1.2, \, T = 5, \, \text{principal is}$ 10,000.

^aPlot from H. Huang (R03922103) (2019).