
Spread of Nonbenchmark Bonds

• Model prices calculated by the calibrated tree as a rule

do not match market prices of nonbenchmark bonds.

• The incremental return over the benchmark bonds is

called spread.

• If we add the spread uniformly over the short rates in

the tree, the model price will equal the market price.

• We will apply the spread concept to option-free bonds

next.
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Spread of Nonbenchmark Bonds (continued)

• We illustrate the idea with an example.

• Start with the tree on p. 1049.

• Consider a security with cash flow Ci at time i for

i = 1, 2, 3.

• Its model price is p(s), which is equal to

1

1.04 + s
×
[
C1 +

1

2
×

1

1.03526 + s
×
(
C2 +

1

2

(
C3

1.02895 + s
+

C3

1.04343 + s

))
+

1

2
×

1

1.05289 + s
×
(
C2 +

1

2

(
C3

1.04343 + s
+

C3

1.06514 + s

))]
.

• Given a market price of P , the spread is the s that

solves P = p(s).
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Spread of Nonbenchmark Bonds (continued)

• The model price p(s) is a monotonically decreasing,

convex function of s.

• We will employ the Newton-Raphson root-finding

method to solve

p(s)− P = 0

for s.

• But a quick look at the equation for p(s) reveals that

evaluating p′(s) directly is infeasible.

• Fortunately, the tree can be used to evaluate both p(s)

and p′(s) during backward induction.

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 1050



Spread of Nonbenchmark Bonds (continued)

• Consider an arbitrary node A in the tree associated with

the short rate r.

• In the process of computing the model price p(s), a

price pA(s) is computed at A.

• Prices computed at A’s two successor nodes B and C are

discounted by r + s to obtain pA(s) as follows,

pA(s) = c+
pB(s) + pC(s)

2(1 + r + s)
,

where c denotes the cash flow at A.
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Spread of Nonbenchmark Bonds (continued)

• To compute p′A(s) as well, node A calculates

p′A(s) =
p′B(s) + p′C(s)
2(1 + r + s)

− pB(s) + pC(s)

2(1 + r + s)2
.

(138)

• This is easy if p′B(s) and p′C(s) are also computed at

nodes B and C.

• When A is a terminal node, simply use the payoff

function for pA(s).
a

aContributed by Mr. Chou, Ming-Hsin (R02723073) on May 28, 2014.
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Spread of Nonbenchmark Bonds (continued)

• Apply the above procedure inductively to yield p(s) and

p′(s) at the root (p. 1053).

• This is called the differential tree method.a

– Similar ideas can be found in automatic

differentiation (AD)b and backpropagationc in

artificial neural networks.

• The total running time is O(n2).

• The memory requirement is O(n).

aLyuu (1999).
bRall (1981).
cWerbos (1974); Rumelhart, Hinton, & Williams (1986).

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 1054



Spread of Nonbenchmark Bonds (continued)

Number of Running Number of Number of Running Number of

partitions n time (s) iterations partitions time (s) iterations

500 7.850 5 10500 3503.410 5

1500 71.650 5 11500 4169.570 5

2500 198.770 5 12500 4912.680 5

3500 387.460 5 13500 5714.440 5

4500 641.400 5 14500 6589.360 5

5500 951.800 5 15500 7548.760 5

6500 1327.900 5 16500 8502.950 5

7500 1761.110 5 17500 9523.900 5

8500 2269.750 5 18500 10617.370 5

9500 2834.170 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

75MHz Sun SPARCstation 20.
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Spread of Nonbenchmark Bonds (concluded)

• Consider a three-year, 5% bond with a market price of

100.569.

• Assume the bond pays annual interest.

• The spread can be shown to be 50 basis points over the

tree (p. 1057).

• Note that the idea of spread does not assume parallel

shifts in the term structure.

• It also differs from the yield spread (p. 133) and static

spread (p. 134) of the nonbenchmark bond over an

otherwise identical benchmark bond.
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More Applications of the Differential Tree: Calculating
Implied Volatility (in seconds)a

American call American put

Number of Running Number of Number of Running Number of

partitions time iterations partitions time iterations

100 0.008210 2 100 0.013845 3

200 0.033310 2 200 0.036335 3

300 0.072940 2 300 0.120455 3

400 0.129180 2 400 0.214100 3

500 0.201850 2 500 0.333950 3

600 0.290480 2 600 0.323260 2

700 0.394090 2 700 0.435720 2

800 0.522040 2 800 0.569605 2

Intel 166MHz Pentium, running on Microsoft Windows 95.

aLyuu (1999).
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Fixed-Income Options

• Consider a 2-year 99 European call on the 3-year, 5%

Treasury.

• Assume the Treasury pays annual interest.

• From p. 1060 the 3-year Treasury’s price minus the $5

interest at year 2 could be $102.046, $100.630, or

$98.579 two years from now.

– The accrued interest is not included as it belongs to

the original bondholder.

• Now compare the strike price against the bond prices.

• The call is in the money in the first two scenarios out of

the money in the third.
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Fixed-Income Options (continued)

• The option value is calculated to be $1.458 on

p. 1060(a).

• European interest rate puts can be valued similarly.

• Consider a two-year 99 European put on the same

security.

• At expiration, the put is in the money only when the

Treasury is worth $98.579 without the accrued interest.

• The option value is computed to be $0.096 on p. 1060(b).
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Fixed-Income Options (concluded)

• The present value of the strike price is

PV(X) = 99× 0.92101 = 91.18.

• The Treasury is worth B = 101.955.

• The present value of the interest payments during the

life of the options isa

PV(I) = 5× 0.96154 + 5× 0.92101 = 9.41275.

• The call and the put are worth C = 1.458 and

P = 0.096, respectively.

• Hence the put-call parity is preserved:

C = P +B − PV(I)− PV(X).
aThere is no coupon today.
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Delta or Hedge Ratio

• How much does the option price change in response to

changes in the price of the underlying bond?

• This relation is called delta (or hedge ratio) defined as

Oh −O�

Ph − P�
.

• In the above Ph and P� denote the bond prices if the

short rate moves up and down, respectively.

• Similarly, Oh and O� denote the option values if the

short rate moves up and down, respectively.
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Delta or Hedge Ratio (concluded)

• Delta measures the sensitivity of the option value to

changes in the underlying bond price.

• So it shows how to hedge one with the other.

• Take the call and put on p. 1060 as examples.

• Their deltas are

0.774− 2.258

99.350− 102.716
= 0.441,

0.200− 0.000

99.350− 102.716
= −0.059,

respectively.
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Volatility Term Structures

• The binomial interest rate tree can be used to calculate

the yield volatility of zero-coupon bonds.

• Consider an n-period zero-coupon bond.

• First find its yield to maturity yh (y�, respectively) at

the end of the initial period if the short rate rises

(declines, respectively).

• The yield volatility for our model is defined as

1

2
ln

(
yh
y�

)
. (139)
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Volatility Term Structures (continued)

• For example, take the tree on p. 1043 (repeated on next

page).

• The two-year zero’s yield at the end of the first period is

5.289% if the rate rises and 3.526% if the rate declines.

• Its yield volatility is therefore

1

2
ln

(
0.05289

0.03526

)
= 20.273%.
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Volatility Term Structures (continued)
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Volatility Term Structures (continued)

• Consider the three-year zero-coupon bond.

• If the short rate rises, the price of the zero one year from

now will be

1

2
× 1

1.05289
×
(

1

1.04343
+

1

1.06514

)
= 0.90096.

• Thus its yield is
√

1
0.90096 − 1 = 0.053531.

• If the short rate declines, the price of the zero one year

from now will be

1

2
× 1

1.03526
×
(

1

1.02895
+

1

1.04343

)
= 0.93225.
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Volatility Term Structures (continued)

• Thus its yield is
√

1
0.93225 − 1 = 0.0357.

• The yield volatility is hence

1

2
ln

(
0.053531

0.0357

)
= 20.256%,

slightly less than the one-year yield volatility.

• This is consistent with the reality that longer-term

bonds typically have lower yield volatilities than

shorter-term bonds.a

• The procedure can be repeated for longer-term zeros to

obtain their yield volatilities.

aThe relation is reversed for price volatilities (duration).
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Volatility Term Structures (concluded)

• We started with vi and then derived the volatility term

structure.

• In practice, the steps are reversed.

• The volatility term structure is supplied by the user

along with the term structure.

• The vi—hence the short rate volatilities via Eq. (134)

on p. 1020—and the ri are then simultaneously

determined.

• The result is the Black-Derman-Toy model of Goldman

Sachs.a

aBlack, Derman, & Toy (1990).
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Foundations of Term Structure Modeling
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[Meriwether] scoring especially high marks

in mathematics — an indispensable subject

for a bond trader.

— Roger Lowenstein,

When Genius Failed (2000)
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[The] fixed-income traders I knew

seemed smarter than the equity trader [· · · ]
there’s no competitive edge to

being smart in the equities business[.]

— Emanuel Derman,

My Life as a Quant (2004)

Bond market terminology was designed less

to convey meaning than to bewilder outsiders.

— Michael Lewis, The Big Short (2011)
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Terminology

• A period denotes a unit of elapsed time.

– Viewed at time t, the next time instant refers to time

t+ dt in the continuous-time model and time t+ 1

in the discrete-time case.

• Bonds will be assumed to have a par value of one —

unless stated otherwise.

• The time unit for continuous-time models will usually be

measured by the year.
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Standard Notations

The following notation will be used throughout.

t: a point in time.

r(t): the one-period riskless rate prevailing at time t for

repayment one period later.a

P (t, T ): the present value at time t of one dollar at time T .

aAlternatively, the instantaneous spot rate, or short rate, at time t.
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Standard Notations (continued)

r(t, T ): the (T − t)-period interest rate prevailing at time t

stated on a per-period basis and compounded once per

period.a

F (t, T,M): the forward price at time t of a forward

contract that delivers at time T a zero-coupon bond

maturing at time M ≥ T .

aIn other words, the (T − t)-period spot rate at time t.
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Standard Notations (concluded)

f(t, T, L): the L-period forward rate at time T implied at

time t stated on a per-period basis and compounded

once per period.

f(t, T ): the one-period or instantaneous forward rate at

time T as seen at time t stated on a per period basis

and compounded once per period.

• It is f(t, T, 1) in the discrete-time model and

f(t, T, dt) in the continuous-time model.

• Note that f(t, t) equals the short rate r(t).
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Fundamental Relations

• The price of a zero-coupon bond equals

P (t, T ) =

⎧⎨
⎩

(1 + r(t, T ))−(T−t), in discrete time,

e−r(t,T )(T−t), in continuous time. (140)

• r(t, T ) as a function of T defines the spot rate curve at

time t.

• By definition,

f(t, t) =

⎧⎨
⎩

r(t, t+ 1), in discrete time,

r(t, t), in continuous time.
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Fundamental Relations (continued)

• Forward prices and zero-coupon bond prices are related:

F (t, T,M) =
P (t,M)

P (t, T )
, T ≤ M. (141)

– The forward price equals the future value at time T

of the underlying asset.a

• Equation (141) holds whether the model is discrete-time

or continuous-time.

aSee Exercise 24.2.1 of the textbook for proof.
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Fundamental Relations (continued)

• Forward rates and forward prices are related
definitionally by

f(t, T, L) =

(
1

F (t, T, T + L)

)1/L

− 1 =

(
P (t, T )

P (t, T + L)

)1/L

− 1

(142)

in discrete time.

• The analog to Eq. (142) under simple compounding is

f(t, T, L) =
1

L

(
P (t, T )

P (t, T + L)
− 1

)
.
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Fundamental Relations (continued)

• In continuous time,

f(t, T, L) = − lnF (t, T, T + L)

L
=

ln(P (t, T )/P (t, T + L))

L
(143)

by Eq. (141) on p. 1080.

• Furthermore,

f(t, T,Δt) =
ln(P (t, T )/P (t, T +Δt))

Δt
→ −∂ lnP (t, T )

∂T

= −∂P (t, T )/∂T

P (t, T )
.
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Fundamental Relations (continued)

• So

f(t, T )
Δ
= −∂ lnP (t, T )

∂T
= −∂P (t, T )/∂T

P (t, T )
, t ≤ T.

(144)

• Because Eq. (144) is equivalent to

P (t, T ) = e−
∫ T
t

f(t,s) ds, (145)

the spot rate curve is

r(t, T ) =

∫ T

t
f(t, s) ds

T − t
.
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Fundamental Relations (concluded)

• The discrete analog to Eq. (145) is

P (t, T ) =
1

(1 + r(t))(1 + f(t, t+ 1)) · · · (1 + f(t, T − 1))
.

• The short rate and the market discount function are

related by

r(t) = − ∂P (t, T )

∂T

∣∣∣∣
T=t

.
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Risk-Neutral Pricing

• Assume the local expectations theory.

• The expected rate of return of any riskless bond over a

single period equals the prevailing one-period spot rate.

– For all t+ 1 < T ,

Et[P (t+ 1, T ) ]

P (t, T )
= 1 + r(t). (146)

– Relation (146) in fact follows from the risk-neutral

valuation principle.a

aTheorem 16 on p. 562.
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Risk-Neutral Pricing (continued)

• The local expectations theory is thus a consequence of

the existence of a risk-neutral probability π.

• Equation (146) on p. 1085 can also be expressed as

Et[P (t+ 1, T ) ] = F (t, t+ 1, T ).

– Verify that with, e.g., Eq. (141) on p. 1080.

• Hence the forward price for the next period is an

unbiased estimator of the expected bond price.a

aUnder the local expectations theory. But the forward rate is not an

unbiased estimator of the expected future short rate (p. 1034).

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 1086



Risk-Neutral Pricing (continued)

• Rewrite Eq. (146) on p. 1085 as

Eπ
t [P (t+ 1, T ) ]

1 + r(t)
= P (t, T ). (147)

– It says the current market discount function equals

the expected market discount function one period

from now discounted by the short rate.
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Risk-Neutral Pricing (concluded)

• Apply the above equality iteratively to obtain

P (t, T )

= Eπ
t

[
P (t+ 1, T )

1 + r(t)

]

= Eπ
t

[
Eπ

t+1[P (t+ 2, T ) ]

(1 + r(t))(1 + r(t+ 1))

]
= · · ·

= Eπ
t

[
1

(1 + r(t))(1 + r(t+ 1)) · · · (1 + r(T − 1))

]
.
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Continuous-Time Risk-Neutral Pricing

• In continuous time, the local expectations theory implies

P (t, T ) = Et

[
e−
∫ T
t

r(s) ds
]
, t < T. (148)

• Note that e
∫ T
t

r(s) ds is the bank account process, which

denotes the rolled-over money market account.
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Interest Rate Swaps

• Consider an interest rate swap made at time t (now)

with payments to be exchanged at times t1, t2, . . . , tn.

• For simplicity, assume ti+1 − ti is a fixed constant Δt

for all i, and the notional principal is one dollar.

• The fixed rate is c per annum.

• The floating-rate payments are based on the future

annual rates f0, f1, . . . , fn−1 at times t0, t1, . . . , tn−1.

• The payoff at time ti+1 for the fixed-rate payer is

(fi − c)Δt.
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Interest Rate Swaps (continued)

�

�

�

�

t0 t1 t2 tn

(f0 − c)Δt

(f1 − c)Δt

· · ·
(fn−1 − c)Δt
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Interest Rate Swaps (continued)

• Simple rates are adopted here.

• Hence fi satisfies

P (ti, ti+1) =
1

1 + fiΔt
.

• If t < t0, we have a forward interest rate swap.

• The ordinary swap corresponds to t = t0.
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Interest Rate Swaps (continued)

• The value of the swap at time t is thus

n∑
i=1

Eπ
t

[
e−
∫ ti
t r(s) ds(fi−1 − c)Δt

]

=
n∑

i=1

Eπ
t

[
e−
∫ ti
t r(s) ds

(
1

P (ti−1, ti)
− (1 + cΔt)

)]

=
n∑

i=1

Eπ
t

[
e−
∫ ti
t r(s) ds

(
e
∫ ti
ti−1

r(s) ds − (1 + cΔt)

)]

=
n∑

i=1

[P (t, ti−1)− (1 + cΔt)× P (t, ti) ]

= P (t, t0)− P (t, tn)− cΔt

n∑
i=1

P (t, ti).
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Interest Rate Swaps (concluded)

• So a swap can be replicated as a portfolio of bonds.

• In fact, it can be priced by simple present-value

calculations.
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Swap Rate

• The swap rate, which gives the swap zero value, equals

Sn(t)
Δ
=

P (t, t0)− P (t, tn)∑n
i=1 P (t, ti)Δt

. (149)

• The swap rate is the fixed rate that equates the present

values of the fixed payments and the floating payments.

• For an ordinary swap, P (t, t0) = 1.

• The swap rate is called a forward swap rate if t0 > t.
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The Term Structure Equationa

• Let us start with the zero-coupon bonds and the money

market account.

• Let the zero-coupon bond price P (r, t, T ) follow

dP

P
= μp dt+ σp dW.

• At time t, short one unit of a bond maturing at time s1

and buy α units of a bond maturing at time s2.

aVasicek (1977).
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The Term Structure Equation (continued)

• The net wealth change follows

−dP (r, t, s1) + αdP (r, t, s2)

= (−P (r, t, s1)μp(r, t, s1) + αP (r, t, s2)μp(r, t, s2)) dt

+(−P (r, t, s1)σp(r, t, s1) + αP (r, t, s2)σp(r, t, s2)) dW.

• Pick

α
Δ
=

P (r, t, s1)σp(r, t, s1)

P (r, t, s2)σp(r, t, s2)
.
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The Term Structure Equation (continued)

• Then the net wealth has no volatility and must earn the

riskless return:

−P (r, t, s1)μp(r, t, s1) + αP (r, t, s2)μp(r, t, s2)

−P (r, t, s1) + αP (r, t, s2)
= r.

• Simplify the above to obtain

σp(r, t, s1)μp(r, t, s2)− σp(r, t, s2)μp(r, t, s1)

σp(r, t, s1)− σp(r, t, s2)
= r.

• This becomes

μp(r, t, s2)− r

σp(r, t, s2)
=

μp(r, t, s1)− r

σp(r, t, s1)

after rearrangement.
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The Term Structure Equation (continued)

• Since the above equality holds for any s1 and s2,

μp(r, t, s)− r

σp(r, t, s)

Δ
= λ(r, t) (150)

for some λ independent of the bond maturity s.

• As μp = r+ λσp, all assets are expected to appreciate at

a rate equal to the sum of the short rate and a constant

times the asset’s volatility.

• The term λ(r, t) is called the market price of risk.

• The market price of risk must be the same for all bonds

to preclude arbitrage opportunities.
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The Term Structure Equation (continued)

• Assume a Markovian short rate model,

dr = μ(r, t) dt+ σ(r, t) dW.

• Then the bond price process is also Markovian.

• By Eq. (14.15) on p. 202 of the textbook,

μp =

(
−∂P

∂T
+ μ(r, t)

∂P

∂r
+

σ(r, t)2

2

∂2P

∂r2

)
/P,

(151)

σp =

(
σ(r, t)

∂P

∂r

)
/P, (151′)

subject to P ( · , T, T ) = 1.
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The Term Structure Equation (concluded)

• Substitute μp and σp into Eq. (150) on p. 1099 to

obtain

− ∂P

∂T
+ [μ(r, t)− λ(r, t)σ(r, t) ]

∂P

∂r
+

1

2
σ(r, t)2

∂2P

∂r2
= rP.

(152)

• This is called the term structure equation.

• It applies to all interest rate derivatives: The differences

are the terminal and boundary conditions.

• Once P is available, the spot rate curve emerges via

r(t, T ) = − lnP (t, T )

T − t
.
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Numerical Examples

• Assume this spot rate curve:

Year 1 2

Spot rate 4% 5%

• Assume the one-year rate (short rate) can move up to

8% or down to 2% after a year:

4%
� 8%

� 2%
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Numerical Examples (continued)

• No real-world probabilities are specified.

• The prices of one- and two-year zero-coupon bonds are,

respectively,

100/1.04 = 96.154,

100/(1.05)2 = 90.703.

• They follow the binomial processes on p. 1104.
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Numerical Examples (continued)

90.703
� 92.593 (= 100/1.08)

� 98.039 (= 100/1.02)
96.154

� 100

� 100

The price process of the two-year zero-coupon bond is on the

left; that of the one-year zero-coupon bond is on the right.
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Numerical Examples (continued)

• The pricing of derivatives can be simplified by assuming

investors are risk-neutral.

• Suppose all securities have the same expected one-period

rate of return, the riskless rate.

• Then

(1− p)× 92.593

90.703
+ p× 98.039

90.703
− 1 = 4%,

where p denotes the risk-neutral probability of a down

move in rates.
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Numerical Examples (concluded)

• Solving the equation leads to p = 0.319.

• Interest rate contingent claims can be priced under this

probability.
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Numerical Examples: Fixed-Income Options

• A one-year European call on the two-year zero with a

$95 strike price has the payoffs,

C
� 0.000

� 3.039 (= 98.039− 95)

• To solve for the option value C, we replicate the call by

a portfolio of x one-year and y two-year zeros.
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Numerical Examples: Fixed-Income Options
(continued)

• This leads to the simultaneous equations,

x× 100 + y × 92.593 = 0.000,

x× 100 + y × 98.039 = 3.039.

• They give x = −0.5167 and y = 0.5580.

• Consequently,

C = x× 96.154 + y × 90.703 ≈ 0.93

to prevent arbitrage.
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Numerical Examples: Fixed-Income Options
(continued)

• This price is derived without assuming any version of an

expectations theory.

• Instead, the arbitrage-free price is derived by replication.

• The price of an interest rate contingent claim does not

depend directly on the real-world probabilities.

• The dependence holds only indirectly via the current

bond prices.
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Numerical Examples: Fixed-Income Options
(concluded)

• An equivalent method is to utilize risk-neutral pricing.

• The above call option is worth

C =
(1− p)× 0 + p× 3.039

1.04
≈ 0.93,

the same as before.

• This is not surprising, as arbitrage freedom and the

existence of a risk-neutral economy are equivalent.
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Numerical Examples: Futures and Forward Prices

• A one-year futures contract on the one-year rate has a

payoff of 100− r, where r is the one-year rate at

maturity:

F
� 92 (= 100− 8)

� 98 (= 100− 2)

• As the futures price F is the expected future payoff,a

F = (1− p)× 92 + p× 98 = 93.914.

aSee Exercise 13.2.11 of the textbook or p. 563.
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Numerical Examples: Futures and Forward Prices
(concluded)

• The forward price for a one-year forward contract on a

one-year zero-coupon bond isa

90.703/96.154 = 94.331%.

• The forward price exceeds the futures price.b

aBy Eq. (141) on p. 1080.
bUnlike the nonstochastic case on p. 505.
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Equilibrium Term Structure Models
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The nature of modern trade

is to give to those who have much

and take from those who have little.

— Walter Bagehot (1867),

The English Constitution

8. What’s your problem? Any moron

can understand bond pricing models.

— Top Ten Lies Finance Professors

Tell Their Students
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Introduction

• We now survey equilibrium models.

• Recall that the spot rates satisfy

r(t, T ) = − lnP (t, T )

T − t

by Eq. (140) on p. 1079.

• Hence the discount function P (t, T ) suffices to establish

the spot rate curve.

• All models to follow are short rate models.

• Unless stated otherwise, the processes are risk-neutral.
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The Vasicek Modela

• The short rate follows

dr = β(μ− r) dt+ σ dW.

• The short rate is pulled to the long-term mean level μ

at rate β.

• Superimposed on this “pull” is a normally distributed

stochastic term σ dW .

• Since the process is an Ornstein-Uhlenbeck process,

E[ r(T ) | r(t) = r ] = μ+ (r − μ) e−β(T−t)

from Eq. (86) on p. 630.
aVasicek (1977). Vasicek co-founded KMV, which was sold to

Moody’s for USD$210 million in 2002.
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The Vasicek Model (continued)

• The price of a zero-coupon bond paying one dollar at

maturity can be shown to be

P (t, T ) = A(t, T ) e−B(t,T ) r(t), (153)

where

A(t, T ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

exp

[
(B(t,T )−T+t)(β2μ−σ2/2)

β2 − σ2B(t,T )2

4β

]
, if β �= 0,

exp

[
σ2(T−t)3

6

]
, if β = 0,

and

B(t, T ) =

⎧⎨
⎩

1−e−β(T−t)

β , if β �= 0,

T − t, if β = 0.
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The Vasicek Model (continued)

• If β = 0, then P goes to infinity as T → ∞.

• Sensibly, P goes to zero as T → ∞ if β �= 0.

• But even if β �= 0, P may exceed one for a finite T .

• The long rate r(t,∞) is the constant

μ− σ2

2β2
,

independent of the current short rate.
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The Vasicek Model (concluded)

• The spot rate volatility structure is the curve

σ
∂r(t, T )

∂r
=

σB(t, T )

T − t
.

• As it depends only on T − t not on t by itself, the same

curve is maintained for any future time t.

• When β > 0, the curve tends to decline with maturity.

– The long rate’s volatility is zero unless β = 0.

• The speed of mean reversion, β, controls the shape of

the curve.

• Higher β leads to greater attenuation of volatility with

maturity.
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2 4 6 8 10
Term

0.05

0.1

0.15

0.2

Yield

humped

inverted

normal
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The Vasicek Model: Options on Zerosa

• Consider a European call with strike price X expiring

at time T on a zero-coupon bond with par value $1 and

maturing at time s > T .

• Its price is given by

P (t, s)N(x)−XP (t, T )N(x− σv).

aJamshidian (1989).
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The Vasicek Model: Options on Zeros (concluded)

• Above

x
Δ
=

1

σv
ln

(
P (t, s)

P (t, T )X

)
+

σv

2
,

σv ≡ v(t, T )B(T, s),

v(t, T )2
Δ
=

⎧⎨
⎩

σ2[1−e−2β(T−t)]
2β , if β �= 0

σ2(T − t), if β = 0
.

• By the put-call parity, the price of a European put is

XP (t, T )N(−x+ σv)− P (t, s)N(−x).
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Binomial Vasiceka

• Consider a binomial model for the short rate in the time

interval [ 0, T ] divided into n identical pieces.

• Let Δt
Δ
= T/n andb

p(r)
Δ
=

1

2
+

β(μ− r)
√
Δt

2σ
.

• The following binomial model converges to the Vasicek

model,c

r(k + 1) = r(k) + σ
√
Δt ξ(k), 0 ≤ k < n.

aNelson & Ramaswamy (1990).
bThe same form as Eq. (42) on p. 292 for the BOPM.
cSame as the CRR tree except that the probabilities vary here.
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Binomial Vasicek (continued)

• Above, ξ(k) = ±1 with

Prob[ ξ(k) = 1 ] =

⎧⎪⎪⎨
⎪⎪⎩

p(r(k)), if 0 ≤ p(r(k)) ≤ 1

0, if p(r(k)) < 0,

1, if 1 < p(r(k)).

• Observe that the probability of an up move, p, is a

decreasing function of the interest rate r.

• This is consistent with mean reversion.
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Binomial Vasicek (concluded)

• The rate is the same whether it is the result of an up

move followed by a down move or a down move followed

by an up move.

• The binomial tree combines.

• The key feature of the model that makes it happen is its

constant volatility, σ.
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The Cox-Ingersoll-Ross Modela

• It is the following square-root short rate model:

dr = β(μ− r) dt+ σ
√
r dW. (154)

• The diffusion differs from the Vasicek model by a

multiplicative factor
√
r .

• The parameter β determines the speed of adjustment.

• If r(0) > 0, then the short rate can reach zero only if

2βμ < σ2.

– This is called the Feller (1951) condition.

• See text for the bond pricing formula.
aCox, Ingersoll, & Ross (1985).
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Binomial CIR

• We want to approximate the short rate process in the

time interval [ 0, T ].

• Divide it into n periods of duration Δt
Δ
= T/n.

• Assume μ, β ≥ 0.

• A direct discretization of the process is problematic

because the resulting binomial tree will not combine.
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Binomial CIR (continued)

• Instead, consider the transformed processa

x(r)
Δ
= 2

√
r/σ.

• By Ito’s lemma (p. 605),

dx = m(x) dt+ dW,

where

m(x)
Δ
= 2βμ/(σ2x)− (βx/2)− 1/(2x).

• This new process has a constant volatility.

• Thus its binomial tree combines.
aSee pp. 1138ff for justification.
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Binomial CIR (continued)

• Construct the combining tree for r as follows.

• First, construct a tree for x.

• Then transform each node of the tree into one for r via

the inverse transformation (see next page)

r = f(x)
Δ
=

x2σ2

4
.

• But when x ≈ 0 (so r ≈ 0), the moments may not be

matched well.a

aNawalkha & Beliaeva (2007).
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x + 2
√

Δt f(x + 2
√

Δt)

↗ ↗
x +

√
Δt f(x +

√
Δt)

↗ ↘ ↗ ↘
x x f(x) f(x)

↘ ↗ ↘ ↗
x − √

Δt f(x − √
Δt)

↘ ↘
x − 2

√
Δt f(x − 2

√
Δt)
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Binomial CIR (continued)

• The probability of an up move at each node r is

p(r)
Δ
=

β(μ− r)Δt+ r − r−

r+ − r−
.

– r+
Δ
= f(x+

√
Δt) denotes the result of an up move

from r.

– r− Δ
= f(x−√

Δt) the result of a down move.

• Finally, set the probability p(r) to one as r goes to zero

to make the probability stay between zero and one.
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Binomial CIR (concluded)

• It can be shown that

p(r) =

(
βμ− σ2

4

)√
Δt

r
− B

√
rΔt+ C,

for some B ≥ 0 and C > 0.a

• If βμ− (σ2/4) ≥ 0, the up-move probability p(r)

decreases if and only if short rate r increases.

• Even if βμ− (σ2/4) < 0, p(r) tends to decrease as r

increases and decrease as r declines.

• This phenomenon agrees with mean reversion.

aThanks to a lively class discussion on May 28, 2014.
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Numerical Examples

• Consider the process,

0.2 (0.04− r) dt+ 0.1
√
r dW,

for the time interval [ 0, 1 ] given the initial rate

r(0) = 0.04.

• We shall use Δt = 0.2 (year) for the binomial

approximation.

• See p. 1134(a) for the resulting binomial short rate tree

with the up-move probabilities in parentheses.
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Numerical Examples (concluded)

• Consider the node which is the result of an up move

from the root.

• Since the root has x = 2
√
r(0)/σ = 4, this particular

node’s x value equals 4 +
√
Δt = 4.4472135955.

• Use the inverse transformation to obtain the short rate

x2 × (0.1)2

4
≈ 0.0494442719102.

• Once the short rates are in place, computing the

probabilities is easy.

• Convergence is quite good.a

aSee p. 369 of the textbook.
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Trinomial CIR

• The binomial CIR tree does not have the degree of

freedom to match the mean and variance exactly.

• It actually fails to match them at very low x.

• A trinomial tree for the CIR model with O(n1.5) nodes

that matches the mean and variance exactly is recently

obtained using the ideas on pp. 792ff and others.a

aZ. Lu (D00922011) & Lyuu (2018); H. Huang (R03922103) (2019).
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A Comparisona

r(0) = 0.01, μ = 0.05, σ = 0.2, β = 1.2, T = 5, principal is

10,000.
aPlot from H. Huang (R03922103) (2019).
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