Biases in Pricing Continuously Monitored Options
with Monte Carlo

e We are asked to price a continuously monitored
up-and-out call with barrier H.

e The Monte Carlo method samples the stock price at n

discrete time points t1,t2,... ,%,.

e A sample path

is produced.

— Here, tg = 0 is the current time, and ¢, =T is the

expiration time of the option.
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Biases in Pricing Continuously Monitored Options
with Monte Carlo (continued)

e If all of the sampled prices are below the barrier, this

sample path pays max(S(t,) — X,0).

e Repeating these steps and averaging the payofts yield a
Monte Carlo estimate.
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. C = 0;
: fort=1,2,3,... ,N do
P := §; hit := 0;
for j =1,2,3,... ,ndo
P = P x (r=o"/2) (T/n)+o/(T/n) & 1By Eq. (120) on p.
853.}
if P > H then

hit := 1;

break:
end if
end for
if hit = 0 then
C :=C + max(P — X,0);
end if
: end for
. return Ce "' /N;
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Biases in Pricing Continuously Monitored Options
with Monte Carlo (continued)

e 'This estimate is biased.?

— Suppose none of the sampled prices on a sample path

equals or exceeds the barrier H.

— It remains possible for the continuous sample path
that passes through them to hit the barrier between

sampled time points (see plot on next page).

— Hence knock-out probabilities are underestimated.

aShevchenko (2003).
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Biases in Pricing Continuously Monitored Options
with Monte Carlo (concluded)

The bias can be lowered by increasing the number of
observations along the sample path.

— For trees, the knock-out probabilities may decrease

as the number of time steps is increased.
e However, even daily sampling may not suffice.

e The computational cost also rises as a result.
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Brownian Bridge Approach to Pricing Barrier Options

e We desire an unbiased estimate which can be calculated
efficiently.

e The above-mentioned payoff should be multiplied by the
probability p that a continuous sample path does not

hit the barrier conditional on the sampled prices.

e This methodology is called the Brownian bridge
approach.

e Formally, we have

p = Prob[S(t) < H,0 <t < T|S(to), S(t1),... . S(ta)].
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Brownian Bridge Approach to Pricing Barrier Options
(continued)

e As a barrier is hit over a time interval if and only if the

maximum stock price over that period is at least H,

=P e
p rob ogltaéXTS(t) < H|S(ty),S(t1),...,S(tn)
e Luckily, the conditional distribution of the maximum
over a time interval given the beginning and ending

stock prices is known.
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Brownian Bridge Approach to Pricing Barrier Options
(continued)

Lemma 21 Assume S follows dS/S = pdt + o dW and define®

() S exp [_ 21n(z/S(t)) 012(:;/5(7: + Ab)) ] |

(1) If H > max(S(t),S(t+ At)), then

t<u<t+At

Prob [ max  S(u) < H ‘ S(t), S(t + At)] — 1 — ¢(H).

(2) If h < min(S(t), S(t + At)), then

Prob { min  S(u) > h‘ S(t), S(t + At)] =1-¢(h).

t<u<t+At

@Here, At is an arbitrary positive real number.
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Brownian Bridge Approach to Pricing Barrier Options
(continued)

e Lemma 21 gives the probability that the barrier is not
hit in a time interval, given the starting and ending

stock prices.
e For our up-and-out® call, choose n = 1.

e As a result,

1 — exp | - 2USQPRE/SIL | it B > max(S(0), S(T)),

otherwise.

2So S(0) < H by definition.
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Brownian Bridge Approach to Pricing Barrier Options
(continued)

The following algorithm works for up-and-out and
down-and-out calls.

. C = 0;
: fort=1,2,3,... ,N do
P = § x (r—a-0%/D T+oVT €0),
if (S<H and P< H)or (S>H and P > H) then
C := C4+max(P—X,0)x {1 — exp [— QIH(H/S;)J;D(H/P) } };
end if
: end for
. return Ce "' /N;
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Brownian Bridge Approach to Pricing Barrier Options
(concluded)

The idea can be generalized.

For example, we can handle more complex barrier

options.

Consider an up-and-out call with barrier H; for the
time interval (¢;,t;411], 0 <i <mn.

This option contains n barriers.

Multiply the probabilities for the n time intervals to
obtain the desired probability adjustment term.
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Pricing Barrier Options without Brownian Bridge

e Let 7} denote the amount of time for a process X; to hit
h for the first time.

e It is called the first passage time or the first hitting time.

e Suppose X; is a (u,c) Brownian motion:

dXt:,udt—i—O'th, tZO
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Pricing Barrier Options without Brownian Bridge
(continued)

e The first passage time T}, follows the inverse Gaussian
(IG) distribution with probability density function:®

| h — X(0)] o~ (h=X (0)—pw)?/(20°)
ot3/2/27

e For pricing a barrier option with barrier H by

simulation, the density function becomes

| In(H/5(0)) | e—[ln(H/S(O))—(r—a2/2)x]z/(202x).
ot3/2/27

2A. N. Borodin & Salminen (1996), with Laplace transform
Ele 2Th | = e~ h=X(0) h/ﬁ’ A > 0.
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Pricing Barrier Options without Brownian Bridge
(concluded)

Draw an x from this distribution.?

If x > T, a knock-in option fails to knock in, whereas a

knock-out option does not knock out.
If x < T, the opposite is true.

If the barrier option survives at maturity 1, then draw

an S(T) to calculate its payoff.

Repeat the above process many times to average the

discounted payoft.

2The IG distribution can be very efficiently sampled (Michael, Schu-
cany, & Haas, 1976).
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Brownian Bridge Approach to Pricing Lookback
Options®

e By Lemma 21(1) (p. 876),

a

Frax(y) Prob [ max_S(t) < y|S5(0), S(T)]

0<t<T

2In(y/5(0)) In(y/S(T)) ]
02T .

1—exp[—

e So F,, .« 1s the conditional distribution function of the

maximum stock price.

2El Babsiri & Noel (1998).
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Brownian Bridge Approach to Pricing Lookback
Options (continued)

e A random variable with that distribution can be

generated by F._1 (z), where z is uniformly distributed
over (0,1).2

e In other words,

21n(y/5(0)) In(y/S(T))
02T

r=1—exp| —

2This is called the inverse-transform technique (see p. 259 of the text-
book).
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Brownian Bridge Approach to Pricing Lookback
Options (continued)

e Lquivalently,

In(1 — x)

- 2In(y/S(0)) In(y/S(T))
02T

[In(y) —In S(0)][In(y) — I S(T)] }.

2
02T

©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 885



Brownian Bridge Approach to Pricing Lookback
Options (continued)

e There are two solutions for Iny.

e But only one is consistent with y > max(5(0), S(T)):

Iny

— 20T In(1 — x)
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Brownian Bridge Approach to Pricing Lookback
Options (concluded)

The following algorithm works for the lookback put on the

maximuim.

. C:=0;
: fort=1,2,3,... ,N do
P =8 x er=170%/2T+eVT £0). By Eq. (120) on p. 853.}

In(SP)+4/(In £)? 22T In[1-U(0,1)] |
2 ?

Y :=exp

C:=C+ (Y — P);
: end for
. return Ce™ "' /N;
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Pricing Lookback Options without Brownian Bridge
e Suppose we do not draw S(7') in simulation.

e Now, the distribution function of the maximum
logarithmic stock price is®
S(t) ]

Prob In —=
ro [ogltagXT " S(0) <Y

y+(rq§)T)

oV'T

e The inverse of that is much harder to calculate.
2A. N. Borodin & Salminen (1996).
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Variance Reduction

The statistical efficiency of Monte Carlo simulation can

be measured by the variance of its output.

If this variance can be lowered without changing the

expected value, fewer replications are needed.

Methods that improve efficiency in this manner are

called variance-reduction techniques.

Such techniques become practical when the added costs

are outweighed by the reduction in sampling.
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Variance Reduction: Antithetic Variates
We are interested in estimating E[g(X1, Xo,..., X,)].

Let Y7 and Y5 be random variables with the same
distribution as g(X1, Xo,...,X,).

Then

2 2 2

Var [

Y1 —|—Y2] . Var[Yl] 1 COV[Yl,YQ]

— Var| Y7 ]/2 is the variance of the Monte Carlo

method with two independent replications.

The variance Var| (Y1 4+ Y3)/2] is smaller than
Var[ Y7 ]/2 when Y7 and Y5 are negatively correlated.
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Variance Reduction: Antithetic Variates (continued)

e For each simulated sample path X, a second one is
obtained by reusing the random numbers on which the
first path is based.

e This yields a second sample path Y.

e T'wo estimates are then obtained: One based on X and
the other on Y.

e If N independent sample paths are generated, the
antithetic-variates estimator averages over 2N

estimates.
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Variance Reduction: Antithetic Variates (continued)
e Consider process dX = a; dt + b/ dt €.

e Let g be a function of n samples X7, X5,...,X,, on
the sample path.

We are interested in F[g(X1, Xo,..., X,)].

Suppose one simulation run has realizations
£1,&2,...,&, for the normally distributed fluctuation

term €.

This generates samples x1,22,...,Ty,.

The estimate is then g(x), where « = (x1,T2...,Tp).
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Variance Reduction: Antithetic Variates (concluded)

e The antithetic-variates method does not sample n more

numbers from & for the second estimate g(x').

Instead, generate the sample path x’ 2 (), 2h...  x
from —&;,—&o,...,—&,.

Compute g(x’).

Output (g(x) + g(x’))/2.

Repeat the above steps for as many times as required by

accuracy.
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Variance Reduction: Conditioning

We are interested in estimating FE| X |.

Suppose here is a random variable Z such that

E| X | Z = z]| can be efficiently and precisely computed.
E|X|=F[E|X|Z]] by the law of iterated conditional

expectations.

Hence the random variable E| X | Z] is also an unbiased
estimator of F[X |.
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Variance Reduction: Conditioning (concluded)

As
Var| E| X | Z]] < Var[ X |,

E[X|Z] has a smaller variance than observing X

directly.
First, obtain a random observation z on Z.

Then calculate E[X |Z = z] as our estimate.
— There is no need to resort to simulation in computing

E[X|Z=2].

The procedure can be repeated a few times to reduce

the variance.
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Control Variates

e Use the analytic solution of a “similar” yet “simpler”

problem to improve the solution.

e Suppose we want to estimate E[X | and there exists a

random variable Y with a known mean pu 2 F Y.

e Then W 2 X + B(Y — p) can serve as a “controlled”
estimator of F|X | for any constant S.

— However [ is chosen, W remains an unbiased
estimator of F|X | as

E[W]=E[X]+BE[Y — u] = E[X].
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Control Variates (continued)

e Note that

Var[ W] = Var[ X | + 8% Var[ Y] + 28 Cov[ X, Y],
(121)

e Hence W is less variable than X if and only if

B?Var[Y ]| +28Cov[X,Y ] <O0. (122)
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Control Variates (concluded)

e The success of the scheme clearly depends on both [
and the choice of Y.

— American options can be priced by choosing Y to be

the otherwise identical European option and p the

Black-Scholes formula.?

— Arithmetic Asian options can be priced by choosing
Y to be the otherwise identical geometric Asian
option’s price and 0 = —1.

e This approach is much more effective than the
antithetic-variates method.”

2Hull & White (1988).
bBoyle, Broadie, & Glasserman (1997).
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Choice of Y

e In general, the choice of Y is ad hoc,® and experiments
must be performed to confirm the wisdom of the choice.

e Try to match calls with calls and puts with puts.”

e On many occasions, Y is a discretized version of the
derivative that gives u.

— Discretely monitored geometric Asian option vs. the
continuously monitored version.©

e The discrepancy can be large (e.g., lookback options).d

2But see Dai (B82506025, R86526008, D8852600), C. Chiu (B90201037,
R94922072), & Lyuu (2015, 2018).

PContributed by Ms. Teng, Huei-Wen (R91723054) on May 25, 2004.
°Priced by formulas (55) on p. 442.

dContributed by Mr. Tsai, Hwai (R92723049) on May 12, 2004.
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Optimal Choice of

e Equation (121) on p. 897 is minimized when
B =—Cov|X,Y ]/Var|Y].
— It is called beta in the book.

e For this specific 3,

Cov[ X, Y]

Var| W] = Var| X | — = (1 - pk.y) Var[ X ],

Var[Y ]

where px y 1s the correlation between X and Y.
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Optimal Choice of 5 (continued)

e Note that the variance can never be increased with the

optimal choice.

e Furthermore, the stronger X and Y are correlated, the

greater the reduction in variance.

e For example, if this correlation is nearly perfect (41),

we could control X almost exactly.
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Optimal Choice of S (continued)

Typically, neither Var[Y | nor Cov| X,Y | is known.

Therefore, we cannot obtain the maximum reduction in

variance.

We can guess these values and hope that the resulting
W does indeed have a smaller variance than X.

A second possibility is to use the simulated data to

estimate these quantities.

— How to do it efficiently in terms of time and space?
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Optimal Choice of 5 (concluded)

Observe that —( has the same sign as the correlation
between X and Y.

Hence, if X and Y are positively correlated, 5 < 0,
then X is adjusted downward whenever Y > u and

upward otherwise.

The opposite is true when X and Y are negatively
correlated, in which case 5 > 0.

Suppose a suboptimal 5 + € is used instead.

e The variance increases by only ¢?Var[Y].?

2Han & Y. Lai (2010).
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A Pitfall

A potential pitfall is to sample X and Y ndependently.
In this case, Cov| X,Y | = 0.

Equation (121) on p. 897 becomes

Var[W] = Var[ X | + 3% Var[Y].

So whatever Y is, the variance is tncreased!

Lesson: X and Y must be correlated.
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Problems with the Monte Carlo Method

The error bound is only probabilistic.

The probabilistic error bound of O(1/v/N) does not
benefit from regularity of the integrand function.

The requirement that the points be independent random

samples are wasteful because of clustering.

In reality, pseudorandom numbers generated by

completely deterministic means are used.

Monte Carlo simulation exhibits a great sensitivity on
the seed of the pseudorandom-number generator.
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Matriz Computation
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To set up a philosophy against physics is rash;

philosophers who have done so

have always ended in disaster.
— Bertrand Russell
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Definitions and Basic Results

A :
Let A= [a;j|1<i<m,1<j<n, Or simply A € R™",

denote an m X n matrix.

It can also be represented as [ai,as,... ,a,| where

a; € R™ are vectors.

— Vectors are column vectors unless stated otherwise.
A is a square matrix when m = n.

The rank of a matrix is the largest number of linearly

independent columns.
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Definitions and Basic Results (continued)
e A square matrix A is said to be symmetric if A" = A.

o A real n X n matrix

A
A= lag i

is diagonally dominant if |a;; | > ), [a;;| for
1 <7< n.

— Such matrices are nonsingular.

e The identity matrix is the square matrix

Iédiag[l,l,... 1.
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Definitions and Basic Results (concluded)

e A matrix has full column rank if its columns are linearly

independent.

e A real symmetric matrix A is positive definite if

T Ax = Z a;;z;x; >0

]
for any nonzero vector x.

e A matrix A is positive definite if and only if there exists
a matrix W such that A = W*™W and W has full

column rank.
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Cholesky Decomposition

e Positive definite matrices can be factored as
A=LL",

called the Cholesky decomposition.

— Above, L is a lower triangular matrix.

©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 911



Generation of Multivariate Distribution

A :
o Let *x =[x1,22,...,2,]|" be a vector random variable

with a positive definite covariance matrix C.
e As usual, assume F|x]| = 0.

e This covariance structure can be matched by Py.

T is a vector random variable

A
— Y= [y17y27"' 7yn]
with a covariance matrix equal to the identity matrix.

— (' = PP" is the Cholesky decomposition of C'.?

@What if C' is not positive definite? See Y. Y. Lai (R93942114) &
Lyuu (2007).
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Generation of Multivariate Distribution (concluded)

e For example, suppose

O —

as PP* =(C.?
2Recall Eq. (28) on p. 179.
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Generation of Multivariate Normal Distribution

e Suppose we want to generate the multivariate normal

distribution with a covariance matrix ¢ = PP".

— First, generate independent standard normal
distributions y1,vys2, ..., Yp.

— Then

]T

P[y17y27' - Yn
has the desired distribution.

— These steps can then be repeated.
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Multivariate Derivatives Pricing

Generating the multivariate normal distribution is
essential for the Monte Carlo pricing of multivariate
derivatives (pp. 809ff).

For example, the rainbow option on k assets has payoft
max(max(Sy, S2,...,5) — X,0)

at maturity.

e The closed-form formula is a multi-dimensional integral.?

aJohnson (1987); C. Y. Chen (D95723006) & Lyuu (2009).
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Multivariate Derivatives Pricing (concluded)

Suppose dS;/S; =rdt+o;dW;, 1 <j <k, where C is
the correlation matrix for dWy,dWs,, ... ,dW;.

Let C = PP".

Let & consist of £ independent random variables from
N(0,1).

Let ¢ = P¢.

Similar to Eq. (120) on p. 853, for each asset 1 < j <k,

_ SZ'€<T_J?/2) At+o VAt 5;

Si+1

by Eq. (120) on p. 853.
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Least-Squares Problems

e The least-squares (LS) problem is concerned with

min || Az -0 ||,
xER™

where A € R™*", b R™, and m > n.

e The LS problem is called regression analysis in statistics

and is equivalent to minimizing the mean-square error.

e Often written as
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Polynomial Regression

e In polynomial regression, xg + z1x + -+ + 2" is used

to fit the data { (al, bl), (CLQ, bg), cee (am, bm) }

e This leads to the LS problem,

2 n
1 a a7 --- aj

2 n
1 ax a5 --- a;

2 n
1 ap a;, --- ap,

e Consult p. 273 of the textbook for solutions.
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American Option Pricing by Simulation

The continuation value of an American option is the
conditional expectation of the payoff from keeping the

option alive now.

The option holder must compare the immediate exercise

value and the continuation value.

In standard Monte Carlo simulation, each path is

treated independently of other paths.

But the decision to exercise the option cannot be

reached by looking at one path alone.
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The Least-Squares Monte Carlo Approach

The continuation value can be estimated from the
cross-sectional information in the simulation by using

least squares.®

The result is a function (of the state) for estimating the

continuation values.

Use the function to estimate the continuation value for

each path to determine its cash flow.

This is called the least-squares Monte Carlo (LSM)
approach.

2Longstaff & Schwartz (2001).
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The Least-Squares Monte Carlo Approach (concluded)

e The LSM is provably convergent.?

e The LSM can be easily parallelized.®

— Partition the paths into subproblems and perform

LSM on each of them independently.

— The speedup is close to linear (i.e., proportional to

the number of cores).

e Surprisingly, accuracy is not affected.

2Clément, Lamberton, & Protter (2002); Stentoft (2004).
bK. Huang (B96902079, R00922018) (2013); C. W. Chen (B979020486,

R01922005) (2014); C. W. Chen (B97902046, R01922005), K. Huang
(B96902079, R00922018) & Lyuu (2015).
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A Numerical Example

Consider a 3-year American put on a

non-dividend-paying stock.
The put is exercisable at years 0, 1, 2, and 3.

The strike price X = 105.

The annualized riskless rate is r = 5%.

— The annual discount factor hence equals 0.951229.
The current stock price is 101.

We use 8 price paths to illustrate the algorithm.
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A Numerical Example (continued)

Path

Year O

Stock price paths

Year 1

Year 2

Year 3

1 101
101
101
101
101
101
101
101

97.6424
101.2103
105.7802
96.4411
124.2345
95.8375
108.9554
104.1475

92.5815
105.1763
103.6010
98.7120
101.0564
93.7270
102.4177
113.2516

107.5178
102.4524
124.5115
108.3600
104.5315
99.3788
100.9225
115.0994
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A Numerical Example (continued)

We use the basis functions 1, z, z2.

— Other basis functions are possible.?

The plot next page shows the final estimated optimal
exercise strategy given by LSM.

We now proceed to tackle our problem.

The idea is to calculate the cash flow along each path,

using information from all paths.

@Laguerre polynomials, Hermite polynomials, Legendre polynomials,
Chebyshev polynomials, Gedenbauer polynomials, or Jacobi polynomi-

als.
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A Numerical Example (continued)

Cash flows at year 3
Path Year 0 Year1l Year2 Year3
1 — — — 0
— — — 2.5476
— — — 0
0
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A Numerical Example (continued)

The cash flows at year 3 are the exercise value if the put

is in the money.
Only 4 paths are in the money: 2, 5, 6, 7.

Some of the cash flows may not occur if the put is

exercised earlier, which we will find out later.

Incidentally, the Furopean counterpart has a value of

2.5476 + 0.4685 + 5.6212 4 4.0775

0.9512293 x -

= 1.3680.
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A Numerical Example (continued)

We move on to year 2.

For each state that is in the money at year 2, we must
decide whether to exercise it.

There are 6 paths for which the put is in the money: 1,
3,4,5,6,7 (p. 923).

Only in-the-money paths will be used in the regression

because they are where early exercise is relevant.

— If there were none, move on to year 1.
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A Numerical Example (continued)

e Let x denote the stock prices at year 2 for those 6 paths.

e Let y denote the corresponding discounted future cash

flows (at year 3) if the put is not exercised at year 2.
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A Numerical Example (continued)

Regression at year 2

L Y
92.5815 0 x 0.951229

103.6010 0 x 0.951229
98.7120 0 x 0.951229
101.0564 0.4685 x 0.951229
93.7270 5.6212 x 0.951229
102.4177 4.0775 x 0.951229
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A Numerical Example (continued)

We regress y on 1, x, and z2.

The result is

f(z) = 22.08 — 0.313114 x z + 0.00106918 x 2.

f(x) estimates the continuation value conditional on the

stock price at year 2.

We next compare the immediate exercise value and the

estimated continuation value.?

@The f(102.4177) entry on the next page was corrected by Mr. Tu,
Yung-Szu (B79503054, R83503086) on May 25, 2017.
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A Numerical Example (continued)

Optimal early exercise decision at year 2
Path  Exercise Continuation

1 124185  f(92.5815) = 2.2558

1.3990 f(103.6010) = 1.1168
6.2880  f(98.7120) = 1.5901

11.2730  f(93.7270) = 2.1253

) =
) =
3.9436  f£(101.0564) = 1.3568
) =
2.5823  £(102.4177) = 1.2266
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A Numerical Example (continued)

e Amazingly, the put should be exercised in all 6 paths: 1,
3,4,5,6, 7.

e Now, any positive cash flow at year 3 vanishes for these
paths as the put is exercised before year 3 (p. 923).

— They are paths 5, 6, 7.

e The cash flows on p. 927 become the ones on next slide.
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A Numerical Example (continued)

Cash flows at years 2 & 3
Path  Year 0 Year 1l Year 2 Year 3
1 — — 12.4185 0
— — 0 2.5476

— — 1.3990

6.2880

3.9436

11.2730

2.5823

0
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A Numerical Example (continued)

We move on to year 1.

For each state that is in the money at year 1, we must
decide whether to exercise it.

There are 5 paths for which the put is in the money: 1,
2,4, 6,8 (p. 923).

Only in-the-money paths will be used in the regression

because they are where early exercise is relevant.

— If there were none, move on to year O.
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A Numerical Example (continued)

e Let x denote the stock prices at year 1 for those 5 paths.

e Let y denote the corresponding discounted future cash
flows if the put is not exercised at year 1.

e From p. 935, we have the following table.
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A Numerical Example (continued)

Regression at year 1
x Y
97.6424 12.4185 x 0.951229
101.2103  2.5476 x 0.9512297

96.4411 6.2880 x 0.951229

95.8375 11.2730 x 0.951229

104.1475 0 x 0.951229
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A Numerical Example (continued)

We regress y on 1, x, and z2.

The result is

f(x) = —420.964 + 9.78113 x x — 0.0551567 x z°.

f(x) estimates the continuation value conditional on the

stock price at year 1.

We next compare the immediate exercise value and the

estimated continuation value.
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A Numerical Example (continued)

Optimal early exercise decision at year 1
Path  Exercise Continuation
1 7.3576 f(97.6424) = 8.2230
3.7897 £(101.2103) = 3.9882

8.9089 £(96.4411) = 9.3329

9.1625 £(95.8375) = 9.83042

0.8525  f(104.1475) = —0.551885
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A Numerical Example (continued)

The put should be exercised for 1 path only: 8.
— Note that f(104.1475) < 0.

Now, any positive future cash flow vanishes for this path.

— But there is none.
The cash flows on p. 935 become the ones on next slide.

They also confirm the plot on p. 926.
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A Numerical Example (continued)

Cash flows at years 1, 2, & 3

Path Year 0 Yearl Year 2 Year 3
1 — 12.4185 0
- 0 2.5476

— 1.3990

6.2880

3.9436

11.2730

2.5823

0
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A Numerical Example (continued)

e We move on to year 0.

e The continuation value is, from p 942,

(12.4185 x 0.9512292 + 2.5476 x 0.951229°

+1.3990 x 0.951229% 4 6.2880 x 0.951229°

+3.9436 x 0.951229% 4 11.2730 x 0.9512297

1+2.5823 x 0.951229% 4 0.8525 x 0.951229)/8
—  4.66263.
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A Numerical Example (concluded)

e As this is larger than the immediate exercise value of
105 — 101 = 4,
the put should not be exercised at year 0.

e Hence the put’s value is estimated to be 4.66263.

e Compare this with the European put’s value of 1.3680
(p- 928).
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Time Series Analysis
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The historian is a prophet in reverse.

— Friedrich von Schlegel (1772-1829)
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GARCH Option Pricing?

e Options can be priced when the underlying asset’s

return follows a GARCH process.

e Let S; denote the asset price at date t.

e Let h? be the conditional variance of the return over

the period [t,t+4 1) given the information at date t.

— “One day” is merely a convenient term for any

elapsed time At.

2ARCH (autoregressive conditional heteroskedastic) is due to Engle
(1982), co-winner of the 2003 Nobel Prize in Economic Sciences. GARCH
(generalized ARCH) is due to Bollerslev (1986) and Taylor (1986). A
Bloomberg quant said to me on Feb 29, 2008, that GARCH is seldom

used in trading.
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GARCH Option Pricing (continued)

e Adopt the following risk-neutral process for the price

dynamics:?

S h?
t+1 = r — 7t + ht€t+17 (123)

1
nSt

Bo + Bihi + Bahi (€1 — )%, (124)
N(0,1) given information at date t,
daily riskless return,

0.

2Duan (1995).

©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 948



GARCH Option Pricing (continued)

e The five unknown parameters of the model are ¢, hg, O,

517 and 62'
e It is postulated that By, 81,02 > 0 to make the

conditional variance positive.
e There are other inequalities to satisfy (see text).

e The above process is called the nonlinear asymmetric

GARCH (or NGARCH) model.

©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 949



GARCH Option Pricing (continued)

e It captures the volatility clustering in asset returns first
noted by Mandelbrot (1963).?

— When ¢ = 0, a large €;11 results in a large h; 1,
which in turns tends to yield a large h;1 2, and so on.

e It also captures the negative correlation between the

asset return and changes in its (conditional) volatility.”

— For ¢ > 0, a positive €;41 (good news) tends to
decrease h;.1, whereas a negative €11 (bad news)
tends to do the opposite.

a

. large changes tend to be followed by large changes—of either

sign—and small changes tend to be followed by small changes ...”

PNoted by Black (1976): Volatility tends to rise in response to “bad
news” and fall in response to “good news.”
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GARCH Option Pricing (continued)

This is called the leverage effect.

— A falling stock price raises the fixed costs, relatively

speaking.?

e With 2 In S; denoting the logarithmic price, the

model becomes

h2
yt—l—l — Yt —+7r — ?t + htet—i—l- (125)

e The pair (y;, h?) completely describes the current state.

2Black (1992).
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GARCH Option Pricing (concluded)

e The conditional mean and variance of y;,1 are clearly
) hi
Elyeilynhi] = ytr— =, (126)

Var[ye1 | ye, by | hi. (127)

e Finally, given (y:, h?), the correlation between y;y; and

hi11 equals
2C

V2 + 4c2’

which is negative for ¢ > 0.
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GARCH Model: Inferences

e Suppose the parameters c, hg, By, 81, and [ are given.

e Then we can recover hi,ho,... ,h, and €1,¢e9,... €,

from the prices

S0,51, -+ Sn
under the GARCH model (123) on p. 948.

e This property is useful in statistical inferences.
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