Biases in Pricing Continuously Monitored Options with Monte Carlo

- We are asked to price a continuously monitored up-and-out call with barrier *H*.
- The Monte Carlo method samples the stock price at n discrete time points t_1, t_2, \ldots, t_n .
- A sample path

$$S(t_0), S(t_1), \ldots, S(t_n)$$

is produced.

- Here, $t_0 = 0$ is the current time, and $t_n = T$ is the expiration time of the option.

Biases in Pricing Continuously Monitored Options with Monte Carlo (continued)

- If all of the sampled prices are below the barrier, this sample path pays $\max(S(t_n) X, 0)$.
- Repeating these steps and averaging the payoffs yield a Monte Carlo estimate.

1:
$$C := 0;$$

2: for $i = 1, 2, 3, ..., N$ do
3: $P := S;$ hit $:= 0;$
4: for $j = 1, 2, 3, ..., n$ do
5: $P := P \times e^{(r - \sigma^2/2) (T/n) + \sigma \sqrt{(T/n)} \xi};$ {By Eq. (120) on p.
853.}
6: if $P \ge H$ then
7: hit $:= 1;$
8: break;
9: end if
10: end for
11: if hit = 0 then
12: $C := C + \max(P - X, 0);$
13: end if
14: end for
15: return $Ce^{-rT}/N;$

Biases in Pricing Continuously Monitored Options with Monte Carlo (continued)

- This estimate is biased.^a
 - Suppose none of the sampled prices on a sample path equals or exceeds the barrier H.
 - It remains possible for the continuous sample path that passes through them to hit the barrier *between* sampled time points (see plot on next page).
 - Hence knock-out probabilities are underestimated.

^aShevchenko (2003).

Biases in Pricing Continuously Monitored Options with Monte Carlo (concluded)

- The bias can be lowered by increasing the number of observations along the sample path.
 - For trees, the knock-out probabilities may *decrease* as the number of time steps is increased.
- However, even daily sampling may not suffice.
- The computational cost also rises as a result.

Brownian Bridge Approach to Pricing Barrier Options

- We desire an unbiased estimate which can be calculated efficiently.
- The above-mentioned payoff should be multiplied by the probability *p* that a *continuous* sample path does *not* hit the barrier conditional on the sampled prices.
- This methodology is called the Brownian bridge approach.
- Formally, we have

$$p \stackrel{\Delta}{=} \operatorname{Prob}[S(t) < H, 0 \le t \le T \mid S(t_0), S(t_1), \dots, S(t_n)].$$

• As a barrier is hit over a time interval if and only if the maximum stock price over that period is at least H,

$$p = \operatorname{Prob}\left[\max_{0 \le t \le T} S(t) < H \,|\, S(t_0), S(t_1), \dots, S(t_n)\right].$$

• Luckily, the conditional distribution of the maximum over a time interval given the beginning and ending stock prices is known.

Lemma 21 Assume S follows $dS/S = \mu dt + \sigma dW$ and define^a $\zeta(x) \stackrel{\Delta}{=} \exp\left[-\frac{2\ln(x/S(t))\ln(x/S(t+\Delta t)))}{\sigma^2 \Delta t}\right].$ (1) If $H > \max(S(t), S(t + \Delta t))$, then $\operatorname{Prob}\left[\max_{t < u < t + \Delta t} S(u) < H \mid S(t), S(t + \Delta t)\right] = 1 - \zeta(H).$ (2) If $h < \min(S(t), S(t + \Delta t))$, then $\operatorname{Prob}\left[\min_{t < u < t + \Delta t} S(u) > h \mid S(t), S(t + \Delta t)\right] = 1 - \zeta(h).$ ^aHere, Δt is an arbitrary positive real number.

- Lemma 21 gives the probability that the barrier is not hit in a time interval, given the starting and ending stock prices.
- For our up-and-out^a call, choose n = 1.
- As a result,

$$p = \begin{cases} 1 - \exp\left[-\frac{2\ln(H/S(0))\ln(H/S(T))}{\sigma^2 T}\right], & \text{if } H > \max(S(0), S(T)), \\ 0, & \text{otherwise.} \end{cases}$$

^aSo S(0) < H by definition.

The following algorithm works for up-and-out *and* down-and-out calls.

1:
$$C := 0;$$

2: for $i = 1, 2, 3, ..., N$ do
3: $P := S \times e^{(r-q-\sigma^2/2)T+\sigma\sqrt{T}\xi()};$
4: if $(S < H \text{ and } P < H)$ or $(S > H \text{ and } P > H)$ then
5: $C := C + \max(P - X, 0) \times \left\{1 - \exp\left[-\frac{2\ln(H/S) \times \ln(H/P)}{\sigma^2 T}\right]\right\};$
6: end if
7: end for
8: return $Ce^{-rT}/N;$

- The idea can be generalized.
- For example, we can handle more complex barrier options.
- Consider an up-and-out call with barrier H_i for the time interval $(t_i, t_{i+1}], 0 \le i < n$.
- This option contains n barriers.
- Multiply the probabilities for the *n* time intervals to obtain the desired probability adjustment term.

Pricing Barrier Options without Brownian Bridge

- Let T_h denote the amount of time for a process X_t to hit
 h for the *first* time.
- It is called the first passage time or the first hitting time.
- Suppose X_t is a (μ, σ) Brownian motion:

$$dX_t = \mu \, dt + \sigma \, dW_t, \quad t \ge 0.$$

Pricing Barrier Options without Brownian Bridge (continued)

• The first passage time T_h follows the inverse Gaussian (IG) distribution with probability density function:^a

$$\frac{|h - X(0)|}{\sigma t^{3/2}\sqrt{2\pi}} e^{-(h - X(0) - \mu x)^2/(2\sigma^2 x)}.$$

• For pricing a barrier option with barrier H by simulation, the density function becomes

$$\frac{|\ln(H/S(0))|}{\sigma t^{3/2}\sqrt{2\pi}} e^{-\left[\ln(H/S(0)) - (r - \sigma^2/2)x\right]^2/(2\sigma^2 x)}.$$

^aA. N. Borodin & Salminen (1996), with Laplace transform $E[e^{-\lambda T_h}] = e^{-|h-X(0)|\sqrt{2\lambda}}, \lambda > 0.$

Pricing Barrier Options without Brownian Bridge (concluded)

- Draw an x from this distribution.^a
- If x > T, a knock-in option fails to knock in, whereas a knock-out option does not knock out.
- If $x \leq T$, the opposite is true.
- If the barrier option survives at maturity T, then draw an S(T) to calculate its payoff.
- Repeat the above process many times to average the discounted payoff.

 $^{^{\}rm a}{\rm The}$ IG distribution can be very efficiently sampled (Michael, Schucany, & Haas, 1976).

Brownian Bridge Approach to Pricing Lookback $$\operatorname{\mathsf{Options}^a}$$

• By Lemma 21(1) (p. 876),

$$F_{\max}(y) \stackrel{\Delta}{=} \operatorname{Prob}\left[\max_{0 \le t \le T} S(t) < y \,|\, S(0), S(T)\right]$$
$$= 1 - \exp\left[-\frac{2\ln(y/S(0))\ln(y/S(T))}{\sigma^2 T}\right]$$

• So F_{max} is the conditional distribution function of the maximum stock price.

^aEl Babsiri & Noel (1998).

Brownian Bridge Approach to Pricing Lookback Options (continued)

- A random variable with that distribution can be generated by $F_{\max}^{-1}(x)$, where x is uniformly distributed over (0, 1).^a
- In other words,

$$x = 1 - \exp\left[-\frac{2\ln(y/S(0))\ln(y/S(T))}{\sigma^2 T}\right]$$

^aThis is called the inverse-transform technique (see p. 259 of the textbook).

Brownian Bridge Approach to Pricing Lookback Options (continued)

• Equivalently,

$$\ln(1-x) = -\frac{2\ln(y/S(0))\ln(y/S(T))}{\sigma^2 T}$$

$$= -\frac{2}{\sigma^2 T} \{ \left[\ln(y) - \ln S(0) \right] \left[\ln(y) - \ln S(T) \right] \}.$$

Brownian Bridge Approach to Pricing Lookback Options (continued)

- There are two solutions for $\ln y$.
- But only one is consistent with $y \ge \max(S(0), S(T))$:

$$= \frac{\ln y}{\ln(S(0) S(T)) + \sqrt{\left(\ln \frac{S(T)}{S(0)}\right)^2 - 2\sigma^2 T \ln(1-x)}}{2}$$

Brownian Bridge Approach to Pricing Lookback Options (concluded)

The following algorithm works for the lookback put on the maximum.

1:
$$C := 0;$$

2: for $i = 1, 2, 3, ..., N$ do
3: $P := S \times e^{(r-q-\sigma^2/2)T+\sigma\sqrt{T} \xi()}; \{By Eq. (120) \text{ on p. 853.}\}$
4: $Y := \exp\left[\frac{\ln(SP) + \sqrt{(\ln \frac{P}{S})^2 - 2\sigma^2 T \ln[1-U(0,1)]}}{2}\right];$
5: $C := C + (Y - P);$
6: end for
7: return $Ce^{-rT}/N;$

Pricing Lookback Options without Brownian Bridge

- Suppose we do not draw S(T) in simulation.
- Now, the distribution function of the maximum logarithmic stock price is^a

$$\begin{split} & \operatorname{Prob}\left[\max_{0\leq t\leq T}\ln\frac{S(t)}{S(0)} < y\right] \\ = & 1-N\left(\frac{-y+\left(r-q-\frac{\sigma^2}{2}\right)T}{\sigma\sqrt{T}}\right) \\ & -e^{\frac{2y\left(r-q-\frac{\sigma^2}{2}\right)}{\sigma^2}}N\left(\frac{-y-\left(r-q-\frac{\sigma^2}{2}\right)T}{\sigma\sqrt{T}}\right), \quad y\geq 0. \end{split}$$

• The inverse of that is much harder to calculate.

^aA. N. Borodin & Salminen (1996).

Variance Reduction

- The *statistical* efficiency of Monte Carlo simulation can be measured by the variance of its output.
- If this variance can be lowered without changing the expected value, fewer replications are needed.
- Methods that improve efficiency in this manner are called variance-reduction techniques.
- Such techniques become practical when the added costs are outweighed by the reduction in sampling.

Variance Reduction: Antithetic Variates

- We are interested in estimating $E[g(X_1, X_2, \ldots, X_n)]$.
- Let Y_1 and Y_2 be random variables with the same distribution as $g(X_1, X_2, \ldots, X_n)$.
- Then

$$\operatorname{Var}\left[\frac{Y_1 + Y_2}{2}\right] = \frac{\operatorname{Var}[Y_1]}{2} + \frac{\operatorname{Cov}[Y_1, Y_2]}{2}$$

- $\operatorname{Var}[Y_1]/2$ is the variance of the Monte Carlo method with two *independent* replications.

• The variance $\operatorname{Var}[(Y_1 + Y_2)/2]$ is smaller than $\operatorname{Var}[Y_1]/2$ when Y_1 and Y_2 are negatively correlated.

Variance Reduction: Antithetic Variates (continued)

- For each simulated sample path X, a second one is obtained by *reusing* the random numbers on which the first path is based.
- This yields a second sample path Y.
- Two estimates are then obtained: One based on X and the other on Y.
- If N independent sample paths are generated, the antithetic-variates estimator averages over 2Nestimates.

Variance Reduction: Antithetic Variates (continued)

- Consider process $dX = a_t dt + b_t \sqrt{dt} \xi$.
- Let g be a function of n samples X_1, X_2, \ldots, X_n on the sample path.
- We are interested in $E[g(X_1, X_2, \ldots, X_n)].$
- Suppose one simulation run has realizations
 ξ₁, ξ₂,..., ξ_n for the normally distributed fluctuation term ξ.
- This generates samples x_1, x_2, \ldots, x_n .
- The estimate is then $g(\boldsymbol{x})$, where $\boldsymbol{x} \stackrel{\Delta}{=} (x_1, x_2 \dots, x_n)$.

Variance Reduction: Antithetic Variates (concluded)

- The antithetic-variates method does not sample n more numbers from ξ for the second estimate $g(\mathbf{x}')$.
- Instead, generate the sample path $\mathbf{x}' \stackrel{\Delta}{=} (x'_1, x'_2 \dots, x'_n)$ from $-\xi_1, -\xi_2, \dots, -\xi_n$.
- Compute $g(\boldsymbol{x}')$.
- Output (g(x) + g(x'))/2.
- Repeat the above steps for as many times as required by accuracy.

Variance Reduction: Conditioning

- We are interested in estimating E[X].
- Suppose here is a random variable Z such that E[X | Z = z] can be efficiently and precisely computed.
- E[X] = E[E[X | Z]] by the law of iterated conditional expectations.
- Hence the random variable E[X | Z] is also an unbiased estimator of E[X].

Variance Reduction: Conditioning (concluded)

• As

```
\operatorname{Var}[E[X | Z]] \leq \operatorname{Var}[X],
```

 $E[X \mid Z]$ has a smaller variance than observing X directly.

- First, obtain a random observation z on Z.
- Then calculate E[X | Z = z] as our estimate.
 - There is no need to resort to simulation in computing E[X | Z = z].
- The procedure can be repeated a few times to reduce the variance.

Control Variates

- Use the analytic solution of a "similar" yet "simpler" problem to improve the solution.
- Suppose we want to estimate E[X] and there exists a random variable Y with a known mean $\mu \stackrel{\Delta}{=} E[Y]$.
- Then $W \stackrel{\Delta}{=} X + \beta(Y \mu)$ can serve as a "controlled" estimator of E[X] for any constant β .
 - However β is chosen, W remains an unbiased estimator of E[X] as

$$E[W] = E[X] + \beta E[Y - \mu] = E[X].$$

Control Variates (continued)

• Note that

$$\operatorname{Var}[W] = \operatorname{Var}[X] + \beta^{2} \operatorname{Var}[Y] + 2\beta \operatorname{Cov}[X, Y],$$
(121)

• Hence W is less variable than X if and only if $\beta^2 \operatorname{Var}[Y] + 2\beta \operatorname{Cov}[X, Y] < 0. \quad (122)$

Control Variates (concluded)

- The success of the scheme clearly depends on both β and the choice of Y.
 - American options can be priced by choosing Y to be the otherwise identical European option and μ the Black-Scholes formula.^a
 - Arithmetic Asian options can be priced by choosing Y to be the otherwise identical geometric Asian option's price and $\beta = -1$.
- This approach is much more effective than the antithetic-variates method.^b

^aHull & White (1988). ^bBoyle, Broadie, & Glasserman (1997).

Choice of Y

- In general, the choice of Y is ad hoc,^a and experiments must be performed to confirm the wisdom of the choice.
- Try to match calls with calls and puts with puts.^b
- On many occasions, Y is a discretized version of the derivative that gives μ.
 - Discretely monitored geometric Asian option vs. the continuously monitored version.^c
- The discrepancy can be large (e.g., lookback options).^d

^aBut see Dai (B82506025, R86526008, D8852600), C. Chiu (B90201037, R94922072), & Lyuu (2015, 2018).

^bContributed by Ms. Teng, Huei-Wen (R91723054) on May 25, 2004. ^cPriced by formulas (55) on p. 442.

^dContributed by Mr. Tsai, Hwai (R92723049) on May 12, 2004.

Optimal Choice of β

• Equation (121) on p. 897 is minimized when

$$\beta = -\operatorname{Cov}[X, Y] / \operatorname{Var}[Y].$$

- It is called beta in the book.

• For this specific β ,

$$\operatorname{Var}[W] = \operatorname{Var}[X] - \frac{\operatorname{Cov}[X,Y]^2}{\operatorname{Var}[Y]} = \left(1 - \rho_{X,Y}^2\right) \operatorname{Var}[X],$$

where $\rho_{X,Y}$ is the correlation between X and Y.

Optimal Choice of β (continued)

- Note that the variance can never be increased with the optimal choice.
- Furthermore, the stronger X and Y are correlated, the greater the reduction in variance.
- For example, if this correlation is nearly perfect (± 1) , we could control X almost exactly.

Optimal Choice of β (continued)

- Typically, neither $\operatorname{Var}[Y]$ nor $\operatorname{Cov}[X, Y]$ is known.
- Therefore, we cannot obtain the maximum reduction in variance.
- We can guess these values and hope that the resulting W does indeed have a smaller variance than X.
- A second possibility is to use the simulated data to estimate these quantities.
 - How to do it efficiently in terms of time and space?

Optimal Choice of β (concluded)

- Observe that $-\beta$ has the same sign as the correlation between X and Y.
- Hence, if X and Y are positively correlated, $\beta < 0$, then X is adjusted downward whenever $Y > \mu$ and upward otherwise.
- The opposite is true when X and Y are negatively correlated, in which case $\beta > 0$.
- Suppose a suboptimal $\beta + \epsilon$ is used instead.
- The variance increases by only $\epsilon^2 \operatorname{Var}[Y]$.^a

^aHan & Y. Lai (2010).
A Pitfall

- A potential pitfall is to sample X and Y independently.
- In this case, $\operatorname{Cov}[X, Y] = 0$.
- Equation (121) on p. 897 becomes

 $\operatorname{Var}[W] = \operatorname{Var}[X] + \beta^2 \operatorname{Var}[Y].$

- So whatever Y is, the variance is *increased*!
- Lesson: X and Y must be correlated.

Problems with the Monte Carlo Method

- The error bound is only probabilistic.
- The probabilistic error bound of $O(1/\sqrt{N})$ does not benefit from regularity of the integrand function.
- The requirement that the points be independent random samples are wasteful because of clustering.
- In reality, pseudorandom numbers generated by completely deterministic means are used.
- Monte Carlo simulation exhibits a great sensitivity on the seed of the pseudorandom-number generator.

Matrix Computation

To set up a philosophy against physics is rash; philosophers who have done so have always ended in disaster. — Bertrand Russell

Definitions and Basic Results

- Let $A \stackrel{\Delta}{=} [a_{ij}]_{1 \leq i \leq m, 1 \leq j \leq n}$, or simply $A \in \mathbb{R}^{m \times n}$, denote an $m \times n$ matrix.
- It can also be represented as $[a_1, a_2, \ldots, a_n]$ where $a_i \in \mathbb{R}^m$ are vectors.

- Vectors are column vectors unless stated otherwise.

- A is a square matrix when m = n.
- The rank of a matrix is the largest number of linearly independent columns.

Definitions and Basic Results (continued)

- A square matrix A is said to be symmetric if $A^{T} = A$.
- A real $n \times n$ matrix

$$A \stackrel{\Delta}{=} [a_{ij}]_{i,j}$$

is diagonally dominant if $|a_{ii}| > \sum_{j \neq i} |a_{ij}|$ for $1 \le i \le n$.

- Such matrices are nonsingular.

• The identity matrix is the square matrix

 $I \stackrel{\Delta}{=} \operatorname{diag}[1, 1, \dots, 1].$

Definitions and Basic Results (concluded)

- A matrix has full column rank if its columns are linearly independent.
- A real symmetric matrix A is positive definite if

$$x^{\mathrm{T}}Ax = \sum_{i,j} a_{ij} x_i x_j > 0$$

for any nonzero vector x.

 A matrix A is positive definite if and only if there exists a matrix W such that A = W^TW and W has full column rank.

Cholesky Decomposition

• Positive definite matrices can be factored as

$$A = LL^{\mathrm{T}},$$

called the Cholesky decomposition.

- Above, L is a lower triangular matrix.

Generation of Multivariate Distribution

• Let $\boldsymbol{x} \stackrel{\Delta}{=} [x_1, x_2, \dots, x_n]^{\mathrm{T}}$ be a vector random variable with a positive definite covariance matrix C.

• As usual, assume $E[\boldsymbol{x}] = \boldsymbol{0}$.

- This covariance structure can be matched by Py. $- y \stackrel{\Delta}{=} [y_1, y_2, \dots, y_n]^{\mathrm{T}}$ is a vector random variable
 - with a covariance matrix equal to the identity matrix.

 $-C = PP^{T}$ is the Cholesky decomposition of $C.^{a}$

^aWhat if C is not positive definite? See Y. Y. Lai (R93942114) & Lyuu (2007).

Generation of Multivariate Normal Distribution

- Suppose we want to generate the multivariate normal distribution with a covariance matrix $C = PP^{T}$.
 - First, generate independent standard normal distributions y_1, y_2, \ldots, y_n .

– Then

$$P[y_1, y_2, \ldots, y_n]^{\mathrm{T}}$$

has the desired distribution.

– These steps can then be repeated.

Multivariate Derivatives Pricing

- Generating the multivariate normal distribution is essential for the Monte Carlo pricing of multivariate derivatives (pp. 809ff).
- For example, the rainbow option on k assets has payoff

$$\max(\max(S_1, S_2, \ldots, S_k) - X, 0)$$

at maturity.

• The closed-form formula is a multi-dimensional integral.^a

^aJohnson (1987); C. Y. Chen (D95723006) & Lyuu (2009).

Multivariate Derivatives Pricing (concluded)

- Suppose $dS_j/S_j = r dt + \sigma_j dW_j$, $1 \le j \le k$, where C is the correlation matrix for dW_1, dW_2, \ldots, dW_k .
- Let $C = PP^{\mathrm{T}}$.
- Let ξ consist of k independent random variables from N(0, 1).
- Let $\xi' = P\xi$.
- Similar to Eq. (120) on p. 853, for each asset $1 \le j \le k$,

$$S_{i+1} = S_i e^{(r - \sigma_j^2/2)\Delta t + \sigma_j \sqrt{\Delta t} \xi_j'}$$

by Eq. (120) on p. 853.

Least-Squares Problems

• The least-squares (LS) problem is concerned with

 $\min_{x \in \mathbb{R}^n} \parallel Ax - b \parallel,$

where $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, and $m \ge n$.

- The LS problem is called regression analysis in statistics and is equivalent to minimizing the mean-square error.
- Often written as

$$Ax = b.$$

Polynomial Regression

- In polynomial regression, $x_0 + x_1x + \cdots + x_nx^n$ is used to fit the data $\{(a_1, b_1), (a_2, b_2), \dots, (a_m, b_m)\}.$
- This leads to the LS problem,

$$\begin{bmatrix} 1 & a_1 & a_1^2 & \cdots & a_1^n \\ 1 & a_2 & a_2^2 & \cdots & a_2^n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & a_m & a_m^2 & \cdots & a_m^n \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$

• Consult p. 273 of the textbook for solutions.

American Option Pricing by Simulation

- The continuation value of an American option is the conditional expectation of the payoff from keeping the option alive now.
- The option holder must compare the immediate exercise value and the continuation value.
- In standard Monte Carlo simulation, each path is treated independently of other paths.
- But the decision to exercise the option cannot be reached by looking at one path alone.

The Least-Squares Monte Carlo Approach

- The continuation value can be estimated from the cross-sectional information in the simulation by using least squares.^a
- The result is a function (of the state) for estimating the continuation values.
- Use the function to estimate the continuation value for each path to determine its cash flow.
- This is called the least-squares Monte Carlo (LSM) approach.

^aLongstaff & Schwartz (2001).

The Least-Squares Monte Carlo Approach (concluded)

- The LSM is provably convergent.^a
- The LSM can be easily parallelized.^b
 - Partition the paths into subproblems and perform LSM on each of them independently.
 - The speedup is close to linear (i.e., proportional to the number of cores).
- Surprisingly, accuracy is not affected.

^aClément, Lamberton, & Protter (2002); Stentoft (2004). ^bK. Huang (B96902079, R00922018) (2013); C. W. Chen (B97902046, R01922005) (2014); C. W. Chen (B97902046, R01922005), K. Huang (B96902079, R00922018) & Lyuu (2015).

A Numerical Example

- Consider a 3-year American put on a non-dividend-paying stock.
- The put is exercisable at years 0, 1, 2, and 3.
- The strike price X = 105.
- The annualized riskless rate is r = 5%.
 - The annual discount factor hence equals 0.951229.
- The current stock price is 101.
- We use 8 price paths to illustrate the algorithm.

	, , , , , , , , , , , , , , , , , , , ,			
		Stock price	e paths	
Path	Year 0	Year 1	Year 2	Year 3
1	101	97.6424	92.5815	107.5178
2	101	101.2103	105.1763	102.4524
3	101	105.7802	103.6010	124.5115
4	101	96.4411	98.7120	108.3600
5	101	124.2345	101.0564	104.5315
6	101	95.8375	93.7270	99.3788
7	101	108.9554	102.4177	100.9225
8	101	104.1475	113.2516	115.0994

- We use the basis functions $1, x, x^2$.
 - Other basis functions are possible.^a
- The plot next page shows the final estimated optimal exercise strategy given by LSM.
- We now proceed to tackle our problem.
- The idea is to calculate the cash flow along each path, using information from *all* paths.

^aLaguerre polynomials, Hermite polynomials, Legendre polynomials, Chebyshev polynomials, Gedenbauer polynomials, or Jacobi polynomials.

ΑN	umerical	l Examp	le (cont	inued)
	Cash flows at year 3			
Path	Year 0	Year 1	Year 2	Year 3
1				0
2				2.5476
3				0
4				0
5				0.4685
6				5.6212
7				4.0775
8				0

- The cash flows at year 3 are the exercise value if the put is in the money.
- Only 4 paths are in the money: 2, 5, 6, 7.
- Some of the cash flows may not occur if the put is exercised earlier, which we will find out later.
- Incidentally, the *European* counterpart has a value of

$$0.951229^3 \times \frac{2.5476 + 0.4685 + 5.6212 + 4.0775}{8}$$
1.3680.

- We move on to year 2.
- For each state that is in the money at year 2, we must decide whether to exercise it.
- There are 6 paths for which the put is in the money: 1, 3, 4, 5, 6, 7 (p. 923).
- Only in-the-money paths will be used in the regression because they are where early exercise is relevant.
 - If there were none, move on to year 1.

- Let x denote the stock prices at year 2 for those 6 paths.
- Let y denote the corresponding discounted future cash flows (at year 3) if the put is *not* exercised at year 2.

Regression at ye	ear 2
x	y
92.5815	0×0.951229
103.6010	0×0.951229
98.7120	0×0.951229
101.0564 0.468	5 imes 0.951229
93.7270 5.621	2×0.951229
102.4177 4.077	5 imes 0.951229

- We regress y on 1, x, and x^2 .
- The result is

 $f(x) = 22.08 - 0.313114 \times x + 0.00106918 \times x^2.$

- f(x) estimates the *continuation value* conditional on the stock price at year 2.
- We next compare the immediate exercise value and the estimated continuation value.^a

^aThe f(102.4177) entry on the next page was corrected by Mr. Tu, Yung-Szu (B79503054, R83503086) on May 25, 2017.

Optimal early exercise decision at year 2		
Continuation	Exercise	Path
f(92.5815) = 2.2558	12.4185	1
		2
f(103.6010) = 1.1168	1.3990	3
f(98.7120) = 1.5901	6.2880	4
f(101.0564) = 1.3568	3.9436	5
f(93.7270) = 2.1253	11.2730	6
f(102.4177) = 1.2266	2.5823	7
		8

- Amazingly, the put should be exercised in all 6 paths: 1, 3, 4, 5, 6, 7.
- Now, any positive cash flow at year 3 vanishes for these paths as the put is exercised before year 3 (p. 923).

- They are paths 5, 6, 7.

• The cash flows on p. 927 become the ones on next slide.

А	Numerica	al Examp	ole (conti	nued)
	Cash f	lows at ye	ears 2 & 3	
Path	n Year 0	Year 1	Year 2	Year 3
1			12.4185	0
2			0	2.5476
3			1.3990	0
4			6.2880	0
5			3.9436	0
6			11.2730	0
7			2.5823	0
8			0	0

- We move on to year 1.
- For each state that is in the money at year 1, we must decide whether to exercise it.
- There are 5 paths for which the put is in the money: 1, 2, 4, 6, 8 (p. 923).
- Only in-the-money paths will be used in the regression because they are where early exercise is relevant.
 - If there were none, move on to year 0.

- Let x denote the stock prices at year 1 for those 5 paths.
- Let y denote the corresponding discounted future cash flows if the put is not exercised at year 1.
- From p. 935, we have the following table.

A Numerical Example (continued)		
Regression at year 1		
y	x	Path
12.4185×0.951229	97.6424	1
$2.5476 imes 0.951229^2$	101.2103	2
		3
6.2880 imes 0.951229	96.4411	4
		5
11.2730 imes 0.951229	95.8375	6
		7
0×0.951229	104.1475	8

- We regress y on 1, x, and x^2 .
- The result is

 $f(x) = -420.964 + 9.78113 \times x - 0.0551567 \times x^2.$

- f(x) estimates the continuation value conditional on the stock price at year 1.
- We next compare the immediate exercise value and the estimated continuation value.
A Numerical Example (continued)

Continuation	Exercise	Path
f(97.6424) = 8.2230	7.3576	1
f(101.2103) = 3.9882	3.7897	2
		3
f(96.4411) = 9.3329	8.5589	4
		5
f(95.8375) = 9.83042	9.1625	6
		7
f(104.1475) = -0.551885	0.8525	8

Optimal early exercise decision at year 1

A Numerical Example (continued)

• The put should be exercised for 1 path only: 8.

- Note that f(104.1475) < 0.

- Now, any positive future cash flow vanishes for this path.
 But there is none.
- The cash flows on p. 935 become the ones on next slide.
- They also confirm the plot on p. 926.

A Numerical Example (continued)							
	Cash flows at years 1, 2, & 3						
Path	Year 0	Year 1	Year 2	Year 3			
1		0	12.4185	0			
2		0	0	2.5476			
3		0	1.3990	0			
4		0	6.2880	0			
5		0	3.9436	0			
6		0	11.2730	0			
7		0	2.5823	0			
8		0.8525	0	0			

A Numerical Example (continued)

- We move on to year 0.
- The continuation value is, from p 942,

 $(12.4185 \times 0.951229^{2} + 2.5476 \times 0.951229^{3} + 1.3990 \times 0.951229^{2} + 6.2880 \times 0.951229^{2} + 3.9436 \times 0.951229^{2} + 11.2730 \times 0.951229^{2} + 2.5823 \times 0.951229^{2} + 0.8525 \times 0.951229)/8$

= 4.66263.

A Numerical Example (concluded)

• As this is larger than the immediate exercise value of

105 - 101 = 4,

the put should not be exercised at year 0.

- Hence the put's value is estimated to be 4.66263.
- Compare this with the European put's value of 1.3680 (p. 928).

Time Series Analysis

The historian is a prophet in reverse. — Friedrich von Schlegel (1772–1829)

$\mathsf{GARCH}\ \mathsf{Option}\ \mathsf{Pricing}^{\mathrm{a}}$

- Options can be priced when the underlying asset's return follows a GARCH process.
- Let S_t denote the asset price at date t.
- Let h_t^2 be the *conditional* variance of the return over the period [t, t+1) given the information at date t.
 - "One day" is merely a convenient term for any elapsed time Δt .

^aARCH (autoregressive conditional heteroskedastic) is due to Engle (1982), co-winner of the 2003 Nobel Prize in Economic Sciences. GARCH (generalized ARCH) is due to Bollerslev (1986) and Taylor (1986). A Bloomberg quant said to me on Feb 29, 2008, that GARCH is seldom used in trading.

• Adopt the following risk-neutral process for the price dynamics:^a

$$\ln \frac{S_{t+1}}{S_t} = r - \frac{h_t^2}{2} + h_t \epsilon_{t+1}, \qquad (123)$$

where

$$h_{t+1}^{2} = \beta_{0} + \beta_{1}h_{t}^{2} + \beta_{2}h_{t}^{2}(\epsilon_{t+1} - c)^{2}, \qquad (124)$$

$$\epsilon_{t+1} \sim N(0, 1) \text{ given information at date } t,$$

$$r = \text{ daily riskless return,}$$

$$c \geq 0.$$

^aDuan (1995).

- The five unknown parameters of the model are c, h_0, β_0, β_1 , and β_2 .
- It is postulated that $\beta_0, \beta_1, \beta_2 \ge 0$ to make the conditional variance positive.
- There are other inequalities to satisfy (see text).
- The above process is called the nonlinear asymmetric GARCH (or NGARCH) model.

- It captures the volatility clustering in asset returns first noted by Mandelbrot (1963).^a
 - When c = 0, a large ϵ_{t+1} results in a large h_{t+1} , which in turns tends to yield a large h_{t+2} , and so on.
- It also captures the negative correlation between the asset return and changes in its (conditional) volatility.^b
 - For c > 0, a positive ϵ_{t+1} (good news) tends to decrease h_{t+1} , whereas a negative ϵ_{t+1} (bad news) tends to do the opposite.

^a"... large changes tend to be followed by large changes—of either sign—and small changes tend to be followed by small changes"

^bNoted by Black (1976): Volatility tends to rise in response to "bad news" and fall in response to "good news."

- This is called the leverage effect.
 - A falling stock price raises the fixed costs, relatively speaking.^a
- With $y_t \stackrel{\Delta}{=} \ln S_t$ denoting the logarithmic price, the model becomes

$$y_{t+1} = y_t + r - \frac{h_t^2}{2} + h_t \epsilon_{t+1}.$$
 (125)

• The pair (y_t, h_t^2) completely describes the current state.

^aBlack (1992).

• The conditional mean and variance of y_{t+1} are clearly

$$E[y_{t+1} | y_t, h_t^2] = y_t + r - \frac{h_t^2}{2}, \qquad (126)$$

Var $[y_{t+1} | y_t, h_t^2] = h_t^2. \qquad (127)$

• Finally, given (y_t, h_t^2) , the correlation between y_{t+1} and h_{t+1} equals

$$-\frac{2c}{\sqrt{2+4c^2}},$$

which is negative for c > 0.

GARCH Model: Inferences

- Suppose the parameters c, h_0, β_0, β_1 , and β_2 are given.
- Then we can recover h_1, h_2, \ldots, h_n and $\epsilon_1, \epsilon_2, \ldots, \epsilon_n$ from the prices

$$S_0, S_1, \ldots, S_n$$

under the GARCH model (123) on p. 948.

• This property is useful in statistical inferences.