Time-Varying Double Barriers under Time-Dependent Volatility^a

- More general models allow a time-varying $\sigma(t)$ (p. 312).
- Let the two barriers L(t) and H(t) be functions of time.^b
- They do not have to be differentiable or even continuous.
- Still, we can price double-barrier options in $O(n^2)$ time or less with trinomial trees.
- Continuously monitored double-barrier knock-out options with time-varying barriers are called hot dog options.^c

^aY. Zhang (R05922052) (2019).

^bSo the barriers are continuously monitored.

^cEl Babsiri & Noel (1998).

General Local-Volatility Models and Their Trees

• Consider the general local-volatility model

$$\frac{dS}{S} = (r_t - q_t) dt + \sigma(S, t) dW,$$

where $L \leq \sigma(S, t) \leq U$ for some positive L and U.

- This model has a unique (weak) solution.^a
- The positive lower bound is justifiable because prices fluctuate.

^aAchdou & Pironneau (2005).

General Local-Volatility Models and Their Trees (continued)

- The upper-bound assumption is also reasonable.
- Even on October 19, 1987, the CBOE S&P 100 Volatility Index (VXO) was about 150%, the highest ever.^a
- An efficient quadratic-sized tree for this range-bounded model is straightforward.^b
- Pick any $\sigma' \geq U$.
- Grow the trinomial tree with the node spacing $\sigma' \sqrt{\Delta t}$.
- The branching probabilities are guaranteed to be valid.

^aCaprio (2012).

^bLok (D99922028) & Lyuu (2016, 2017, 2020).

^cHaahtela (2010).

General Local-Volatility Models and Their Trees (concluded)

- The same idea can be applied to price double-barrier options.
- Pick any

$$\sigma' \ge \max \left[\max_{S,0 \le t \le T} \sigma(S,t), \sqrt{2} \sigma(S_0,0) \right].$$

- Grow the trinomial tree with the node spacing $\sigma' \sqrt{\Delta t}$.
- Apply the mean-tracking idea to the first period and Eqs. (100)–(105) on p. 760 to obtain the probabilities

Merton's Jump-Diffusion Model

- Empirically, stock returns tend to have fat tails, inconsistent with the Black-Scholes model's assumptions.
- Stochastic volatility and jump processes have been proposed to address this problem.
- Merton's (1976) jump-diffusion model is our focus.

- This model superimposes a jump component on a diffusion component.
- The diffusion component is the familiar geometric Brownian motion.
- The jump component is composed of lognormal jumps driven by a Poisson process.
 - It models the rare but large changes in the stock price because of the arrival of important new information.^a

^aDerman & M. B. Miller (2016), "There is no precise, universally accepted definition of a jump, but it usually comes down to magnitude, duration, and frequency."

- Let S_t be the stock price at time t.
- The risk-neutral jump-diffusion process for the stock price follows^a

$$\frac{dS_t}{S_t} = (r - \lambda \bar{k}) dt + \sigma dW_t + k dq_t.$$
 (107)

• Above, σ denotes the volatility of the diffusion component.

^aDerman & M. B. Miller (2016), "[M]ost jump-diffusion models simply assume risk-neutral pricing without convincing justification."

- The jump event is governed by a compound Poisson process q_t with intensity λ , where k denotes the magnitude of the random jump.
 - The distribution of k obeys

$$\ln(1+k) \sim N\left(\gamma, \delta^2\right)$$

with mean $\bar{k} \stackrel{\Delta}{=} E(k) = e^{\gamma + \delta^2/2} - 1$.

- Note that k > -1.
- Note also that k is not related to dt.
- The model with $\lambda = 0$ reduces to the Black-Scholes model.

• The solution to Eq. (107) on p. 798 is

$$S_t = S_0 e^{(r - \lambda \bar{k} - \sigma^2/2) t + \sigma W_t} U(n(t)), \qquad (108)$$

where

$$U(n(t)) = \prod_{i=0}^{n(t)} (1 + k_i).$$

- k_i is the magnitude of the *i*th jump with $\ln(1+k_i) \sim N(\gamma, \delta^2)$.
- $-k_0=0.$
- n(t) is a Poisson process with intensity λ .

- Recall that n(t) denotes the number of jumps that occur up to time t.
- It is known that $E[n(t)] = \text{Var}[n(t)] = \lambda t$.
- As $k_i > -1$, stock prices will stay positive.
- The geometric Brownian motion, the lognormal jumps, and the Poisson process are assumed to be independent.

Tree for Merton's Jump-Diffusion Model^a

• Define the S-logarithmic return of the stock price S' as $\ln(S'/S)$.

• Define the logarithmic distance between stock prices S' and S as

$$|\ln(S') - \ln(S)| = |\ln(S'/S)|.$$

 $^{^{\}rm a}{\rm Dai}$ (B82506025, R86526008, D8852600), C. Wang (F95922018), Lyuu, & Y. Liu (2010).

• Take the logarithm of Eq. (108) on p. 800:

$$M_t \stackrel{\Delta}{=} \ln\left(\frac{S_t}{S_0}\right) = X_t + Y_t, \tag{109}$$

where

$$X_t \stackrel{\Delta}{=} \left(r - \lambda \bar{k} - \frac{\sigma^2}{2}\right) t + \sigma W_t,$$
 (110)

$$Y_t \stackrel{\Delta}{=} \sum_{i=0}^{n(t)} \ln(1+k_i). \tag{111}$$

• It decomposes the S_0 -logarithmic return of S_t into the diffusion component X_t and the jump component Y_t .

- Motivated by decomposition (109) on p. 803, the tree construction divides each period into a diffusion phase followed by a jump phase.
- In the diffusion phase, X_t is approximated by the BOPM.
- So X_t makes an up move to $X_t + \sigma \sqrt{\Delta t}$ with probability p_u or a down move to $X_t \sigma \sqrt{\Delta t}$ with probability p_d .

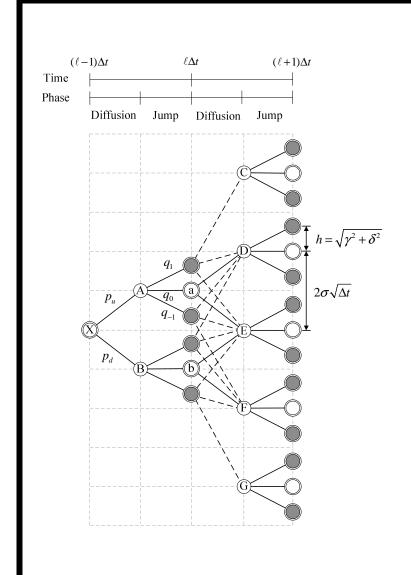
• According to BOPM,

$$p_u = \frac{e^{\mu \Delta t} - d}{u - d},$$

$$p_d = 1 - p_u,$$

except that $\mu = r - \lambda \bar{k}$ here.

- The diffusion component gives rise to diffusion nodes.
- They are spaced at $2\sigma\sqrt{\Delta t}$ apart such as the white nodes A, B, C, D, E, F, and G on p. 806.



White nodes are diffusion nodes. Gray nodes are jump nodes. In the diffusion phase, the solid black lines denote the binomial structure of BOPM; the dashed lines denote the trinomial structure. Only the double-circled nodes will remain after the construction. Note that a and b are diffusion nodes because no jump occurs in the jump phase.

- In the jump phase, $Y_{t+\Delta t}$ is approximated by moves from *each* diffusion node to 2m jump nodes that match the first 2m moments of the lognormal jump.
- The m jump nodes above the diffusion node are spaced at $h \stackrel{\Delta}{=} \sqrt{\gamma^2 + \delta^2}$ apart.
- Note that h is independent of Δt .

- The same holds for the m jump nodes below the diffusion node.
- The gray nodes at time $\ell \Delta t$ on p. 806 are jump nodes.
 - We set m = 1 on p. 806.
- The size of the tree is $O(n^{2.5})$.

Multivariate Contingent Claims

- They depend on two or more underlying assets.
- The basket call on m assets has the terminal payoff

$$\max\left(\sum_{i=1}^{m} \alpha_i S_i(\tau) - X, 0\right),\,$$

where α_i is the percentage of asset i.

- Basket options are essentially options on a portfolio of stocks (or index options).^a
- Option on the best of two risky assets and cash has a terminal payoff of $\max(S_1(\tau), S_2(\tau), X)$.

^aExcept that membership and weights do *not* change for basket options (Bennett, 2014).

Multivariate Contingent Claims (concluded)^a

Name	Payoff	
Exchange option	$\max(S_1(\tau) - S_2(\tau), 0)$	
Better-off option	$\max(S_1(\tau),\ldots,S_k(\tau),0)$	
Worst-off option	$\min(S_1(\tau),\ldots,S_k(\tau),0)$	
Binary maximum option	$I\{ \max(S_1(\tau), \dots, S_k(\tau)) > X \}$	
Maximum option	$\max(\max(S_1(\tau),\ldots,S_k(\tau))-X,0)$	
Minimum option	$\max(\min(S_1(\tau),\ldots,S_k(\tau))-X,0)$	
Spread option	$\max(S_1(\tau) - S_2(\tau) - X, 0)$	
Basket average option	$\max((S_1(\tau) + \dots + S_k(\tau))/k - X, 0)$	
Multi-strike option	$\max(S_1(\tau) - X_1, \dots, S_k(\tau) - X_k, 0)$	
Pyramid rainbow option	$\max(S_1(\tau) - X_1 + \dots + S_k(\tau) - X_k - X$	0)
Madonna option	$\max(\sqrt{(S_1(\tau) - X_1)^2 + \dots + (S_k(\tau) - X_k)^2})$	-X,0)

 $^{^{\}rm a}$ Lyuu & Teng (R91723054) (2011).

Correlated Trinomial Model^a

• Two risky assets S_1 and S_2 follow

$$\frac{dS_i}{S_i} = r \, dt + \sigma_i \, dW_i$$

in a risk-neutral economy, i = 1, 2.

• Let

$$M_i \stackrel{\Delta}{=} e^{r\Delta t},$$
 $V_i \stackrel{\Delta}{=} M_i^2 (e^{\sigma_i^2 \Delta t} - 1).$

- $-S_iM_i$ is the mean of S_i at time Δt .
- $-S_i^2V_i$ the variance of S_i at time Δt .

^aBoyle, Evnine, & Gibbs (1989).

Correlated Trinomial Model (continued)

- The value of S_1S_2 at time Δt has a joint lognormal distribution with mean $S_1S_2M_1M_2e^{\rho\sigma_1\sigma_2\Delta t}$, where ρ is the correlation between dW_1 and dW_2 .
- Next match the 1st and 2nd moments of the approximating discrete distribution to those of the continuous counterpart.
- At time Δt from now, there are 5 distinct outcomes.

Correlated Trinomial Model (continued)

• The five-point probability distribution of the asset prices is

Probability	Asset 1	Asset 2
p_1	S_1u_1	S_2u_2
p_2	S_1u_1	S_2d_2
p_3	S_1d_1	S_2d_2
p_4	S_1d_1	S_2u_2
p_5	S_1	S_2

• As usual, impose $u_i d_i = 1$.

Correlated Trinomial Model (continued)

• The probabilities must sum to one, and the means must be matched:

$$1 = p_1 + p_2 + p_3 + p_4 + p_5,$$

$$S_1 M_1 = (p_1 + p_2) S_1 u_1 + p_5 S_1 + (p_3 + p_4) S_1 d_1,$$

$$S_2 M_2 = (p_1 + p_4) S_2 u_2 + p_5 S_2 + (p_2 + p_3) S_2 d_2.$$

Correlated Trinomial Model (concluded)

- Let $R \stackrel{\Delta}{=} M_1 M_2 e^{\rho \sigma_1 \sigma_2 \Delta t}$.
- Match the variances and covariance:

$$S_1^2 V_1 = (p_1 + p_2) \left[(S_1 u_1)^2 - (S_1 M_1)^2 \right] + p_5 \left[S_1^2 - (S_1 M_1)^2 \right]$$

$$+ (p_3 + p_4) \left[(S_1 d_1)^2 - (S_1 M_1)^2 \right],$$

$$S_2^2 V_2 = (p_1 + p_4) \left[(S_2 u_2)^2 - (S_2 M_2)^2 \right] + p_5 \left[S_2^2 - (S_2 M_2)^2 \right]$$

$$+ (p_2 + p_3) \left[(S_2 d_2)^2 - (S_2 M_2)^2 \right],$$

$$S_1 S_2 R = (p_1 u_1 u_2 + p_2 u_1 d_2 + p_3 d_1 d_2 + p_4 d_1 u_2 + p_5) S_1 S_2.$$

• The solutions appear on p. 246 of the textbook.

Correlated Trinomial Model Simplified^a

- Let $\mu_i' \stackrel{\Delta}{=} r \sigma_i^2/2$ and $u_i \stackrel{\Delta}{=} e^{\lambda \sigma_i \sqrt{\Delta t}}$ for i = 1, 2.
- The following simpler scheme is good enough:

$$p_{1} = \frac{1}{4} \left[\frac{1}{\lambda^{2}} + \frac{\sqrt{\Delta t}}{\lambda} \left(\frac{\mu'_{1}}{\sigma_{1}} + \frac{\mu'_{2}}{\sigma_{2}} \right) + \frac{\rho}{\lambda^{2}} \right],$$

$$p_{2} = \frac{1}{4} \left[\frac{1}{\lambda^{2}} + \frac{\sqrt{\Delta t}}{\lambda} \left(\frac{\mu'_{1}}{\sigma_{1}} - \frac{\mu'_{2}}{\sigma_{2}} \right) - \frac{\rho}{\lambda^{2}} \right],$$

$$p_{3} = \frac{1}{4} \left[\frac{1}{\lambda^{2}} + \frac{\sqrt{\Delta t}}{\lambda} \left(-\frac{\mu'_{1}}{\sigma_{1}} - \frac{\mu'_{2}}{\sigma_{2}} \right) + \frac{\rho}{\lambda^{2}} \right],$$

$$p_{4} = \frac{1}{4} \left[\frac{1}{\lambda^{2}} + \frac{\sqrt{\Delta t}}{\lambda} \left(-\frac{\mu'_{1}}{\sigma_{1}} + \frac{\mu'_{2}}{\sigma_{2}} \right) - \frac{\rho}{\lambda^{2}} \right],$$

$$p_{5} = 1 - \frac{1}{\lambda^{2}}.$$

^aMadan, Milne, & Shefrin (1989).

Correlated Trinomial Model Simplified (continued)

• All of the probabilities lie between 0 and 1 if and only if

$$-1 + \lambda \sqrt{\Delta t} \left| \frac{\mu_1'}{\sigma_1} + \frac{\mu_2'}{\sigma_2} \right| \le \rho \le 1 - \lambda \sqrt{\Delta t} \left| \frac{\mu_1'}{\sigma_1} - \frac{\mu_2'}{\sigma_2} \right| (112)$$

$$1 \le \lambda. \tag{113}$$

• We call a multivariate tree (correlation-) optimal if it guarantees valid probabilities as long as

$$-1 + O(\sqrt{\Delta t}) < \rho < 1 - O(\sqrt{\Delta t}),$$

such as the above one.^a

^aW. Kao (R98922093) (2011); W. Kao (R98922093), Lyuu, & Wen (D94922003) (2014).

Correlated Trinomial Model Simplified (continued)

- But this model cannot price 2-asset 2-barrier options accurately.^a
- Few multivariate trees are both optimal and able to handle multiple barriers.^b
- An alternative is to use orthogonalization.^c

^aSee Y. Chang (B89704039, R93922034), Hsu (R7526001, D89922012), & Lyuu (2006); W. Kao (R98922093), Lyuu, & Wen (D94922003) (2014) for solutions.

^bSee W. Kao (R98922093), Lyuu, & Wen (D94922003) (2014) for an exception.

^cHull & White (1990); Dai (B82506025, R86526008, D8852600), C. Wang (F95922018), & Lyuu (2013).

Correlated Trinomial Model Simplified (concluded)

- Suppose we allow each asset's volatility to be a function of time.^a
- \bullet There are k assets.
- Can you build an optimal multivariate tree that can handle two barriers on each asset in time $O(n^{k+1})$?

^aRecall p. 311.

^bSee Y. Zhang (R05922052) (2019) for a complete solution.

Extrapolation

- It is a method to speed up numerical convergence.
- Say f(n) converges to an unknown limit f at rate of 1/n:

$$f(n) = f + \frac{c}{n} + o\left(\frac{1}{n}\right). \tag{114}$$

- Assume c is an unknown constant independent of n.
 - Convergence is basically monotonic and smooth.

Extrapolation (concluded)

• From two approximations $f(n_1)$ and $f(n_2)$ and ignoring the smaller terms,

$$f(n_1) = f + \frac{c}{n_1},$$

$$f(n_2) = f + \frac{c}{n_2}.$$

 \bullet A better approximation to the desired f is

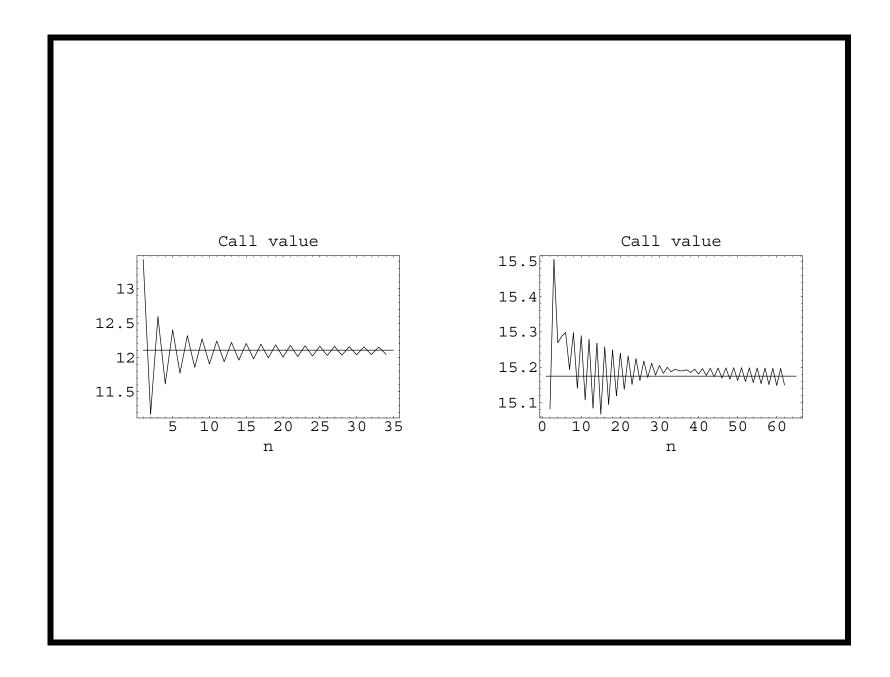
$$f = \frac{n_1 f(n_1) - n_2 f(n_2)}{n_1 - n_2}. (115)$$

- This estimate should converge faster than 1/n.
- The Richardson extrapolation uses $n_2 = 2n_1$.

^aIt is identical to the forward rate formula (22) on p. 150!

Improving BOPM with Extrapolation

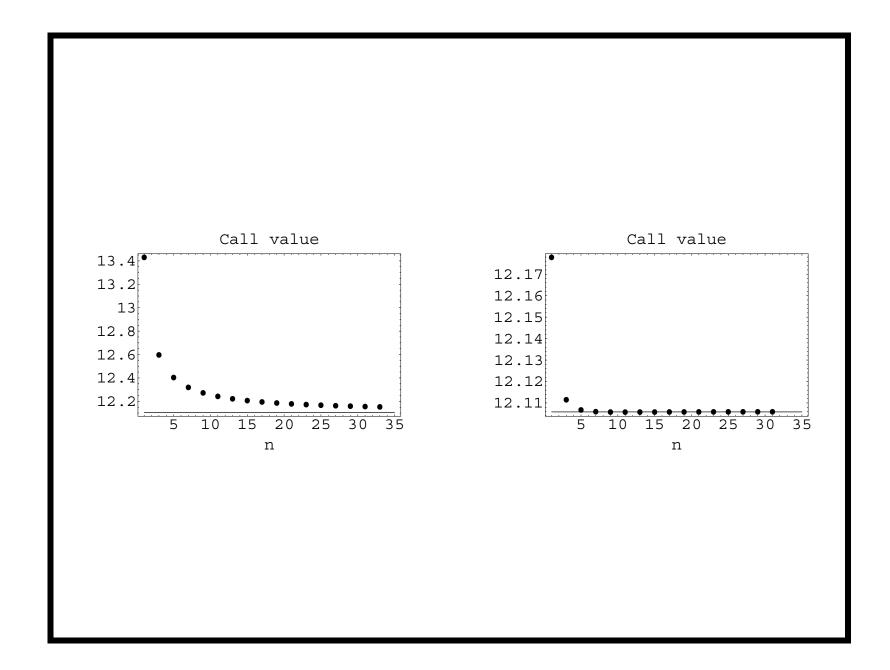
- Consider standard European options.
- Denote the option value under BOPM using n time periods by f(n).
- It is known that BOPM convergences at the rate of 1/n, consistent with Eq. (114) on p. 820.
- The plots on p. 302 (redrawn on next page) show that convergence to the true option value oscillates with n.
- Extrapolation is inapplicable at this stage.

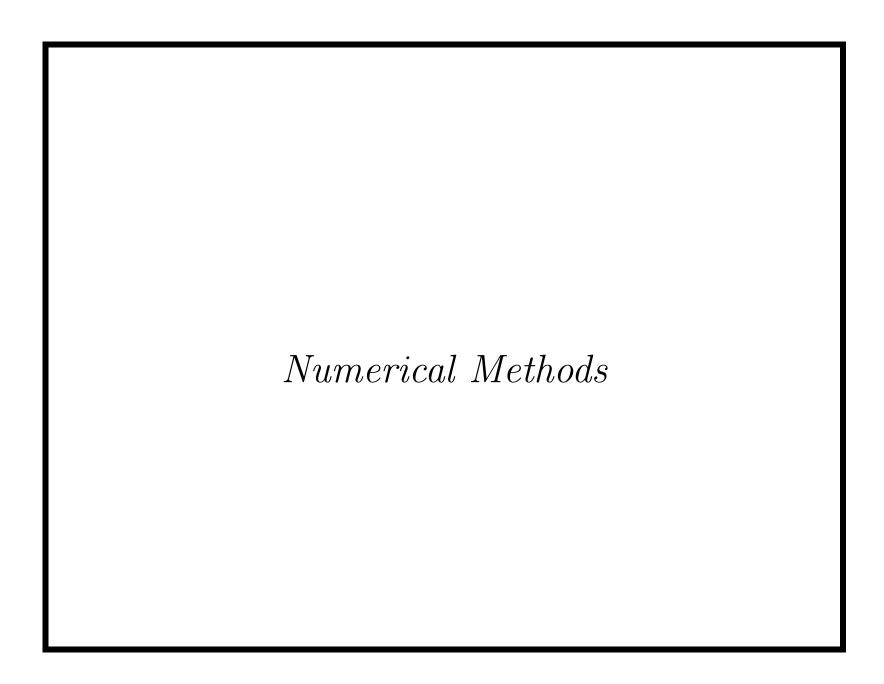


Improving BOPM with Extrapolation (concluded)

- Take the at-the-money option in the left plot on p. 823.
- The sequence with odd n turns out to be monotonic and smooth (see the left plot on p. 825).^a
- Apply extrapolation (115) on p. 821 with $n_2 = n_1 + 2$, where n_1 is odd.
- Result is shown in the right plot on p. 825.
- The convergence rate is amazing.
- See Exercise 9.3.8 (p. 111) of the text for ideas in the general case.

^aThis can be proved (L. Chang & Palmer, 2007).

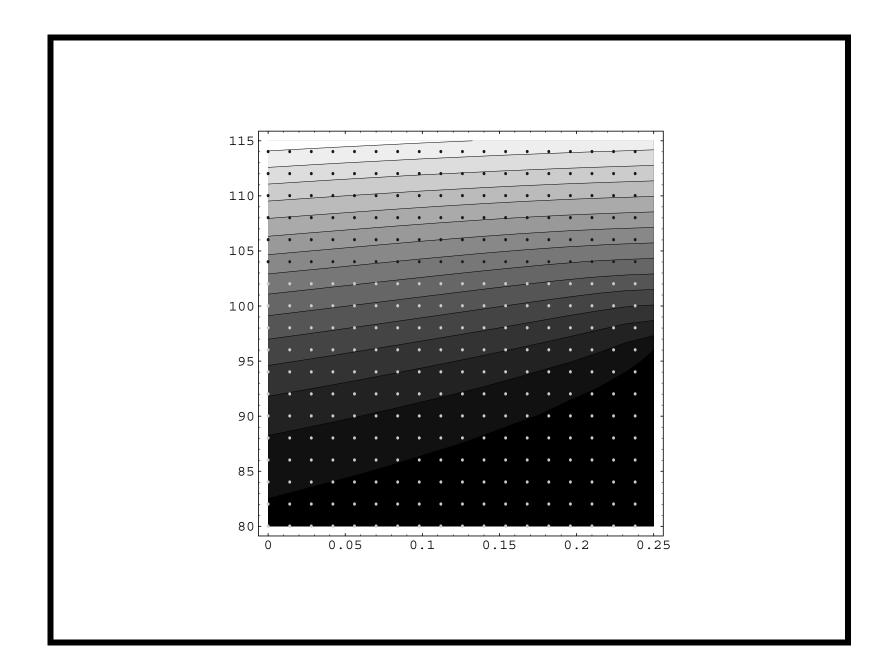




All science is dominated by the idea of approximation. — Bertrand Russell

Finite-Difference Methods

- Place a grid of points on the space over which the desired function takes value.
- Then approximate the function value at each of these points (p. 829).
- Solve the equation numerically by introducing difference equations in place of derivatives.



Example: Poisson's Equation

- It is $\partial^2 \theta / \partial x^2 + \partial^2 \theta / \partial y^2 = -\rho(x, y)$, which describes the electrostatic field.
- Replace second derivatives with finite differences through central difference.
- Introduce evenly spaced grid points with distance of Δx along the x axis and Δy along the y axis.
- The finite-difference form is

$$-\rho(x_i, y_j) = \frac{\theta(x_{i+1}, y_j) - 2\theta(x_i, y_j) + \theta(x_{i-1}, y_j)}{(\Delta x)^2} + \frac{\theta(x_i, y_{j+1}) - 2\theta(x_i, y_j) + \theta(x_i, y_{j-1})}{(\Delta y)^2}.$$

Example: Poisson's Equation (concluded)

- In the above, $\Delta x \stackrel{\Delta}{=} x_i x_{i-1}$ and $\Delta y \stackrel{\Delta}{=} y_j y_{j-1}$ for $i, j = 1, 2, \dots$
- When the grid points are evenly spaced in both axes so that $\Delta x = \Delta y = h$, the difference equation becomes

$$-h^{2}\rho(x_{i}, y_{j}) = \theta(x_{i+1}, y_{j}) + \theta(x_{i-1}, y_{j}) + \theta(x_{i}, y_{j+1}) + \theta(x_{i}, y_{j-1}) - 4\theta(x_{i}, y_{j}).$$

- Given boundary values, we can solve for the x_i s and the y_j s within the square $[\pm L, \pm L]$.
- From now on, $\theta_{i,j}$ will denote the finite-difference approximation to the exact $\theta(x_i, y_j)$.

Explicit Methods

- Consider the diffusion equation $D(\partial^2 \theta / \partial x^2) (\partial \theta / \partial t) = 0, D > 0.$
- Use evenly spaced grid points (x_i, t_j) with distances Δx and Δt , where $\Delta x \stackrel{\Delta}{=} x_{i+1} x_i$ and $\Delta t \stackrel{\Delta}{=} t_{j+1} t_j$.
- Employ central difference for the second derivative and forward difference for the time derivative to obtain

$$\left. \frac{\partial \theta(x,t)}{\partial t} \right|_{t=t_j} = \frac{\theta(x,t_{j+1}) - \theta(x,t_j)}{\Delta t} + \cdots, \tag{116}$$

$$\frac{\partial^2 \theta(x,t)}{\partial x^2} \bigg|_{x=x_i} = \frac{\theta(x_{i+1},t) - 2\theta(x_i,t) + \theta(x_{i-1},t)}{(\Delta x)^2} + \cdots (117)$$

Explicit Methods (continued)

- Next, assemble Eqs. (116) and (117) into a single equation at (x_i, t_j) .
- But we need to decide how to evaluate x in the first equation and t in the second.
- Since central difference around x_i is used in Eq. (117), we might as well use x_i for x in Eq. (116).
- Two choices are possible for t in Eq. (117).
- The first choice uses $t = t_j$ to yield the following finite-difference equation,

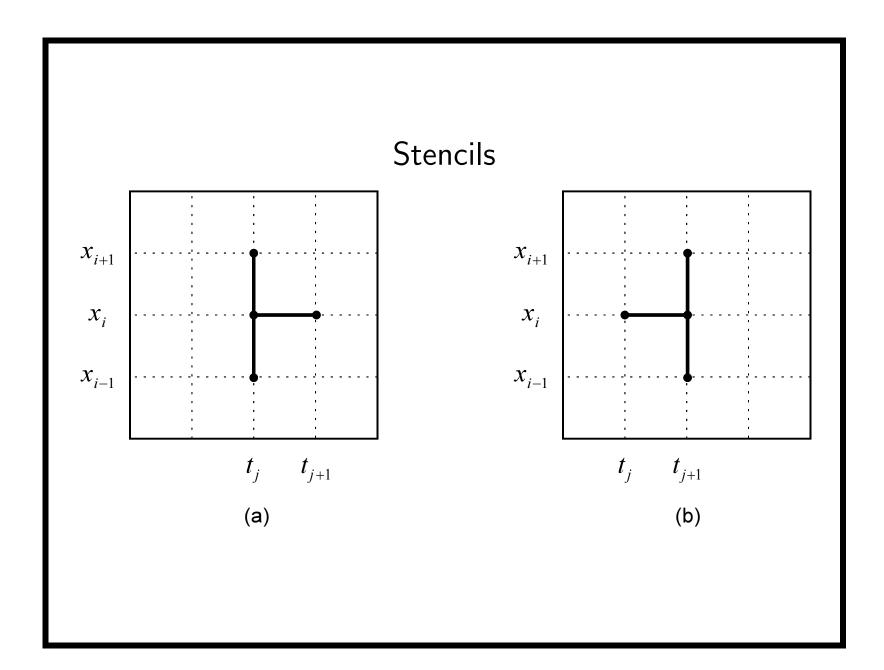
$$\frac{\theta_{i,j+1} - \theta_{i,j}}{\Delta t} = D \frac{\theta_{i+1,j} - 2\theta_{i,j} + \theta_{i-1,j}}{(\Delta x)^2}.$$
 (118)

Explicit Methods (continued)

- The stencil of grid points involves four values, $\theta_{i,j+1}$, $\theta_{i,j}$, $\theta_{i+1,j}$, and $\theta_{i-1,j}$.
- Rearrange Eq. (118) on p. 833 as

$$\theta_{i,j+1} = \frac{D\Delta t}{(\Delta x)^2} \,\theta_{i+1,j} + \left(1 - \frac{2D\Delta t}{(\Delta x)^2}\right) \theta_{i,j} + \frac{D\Delta t}{(\Delta x)^2} \,\theta_{i-1,j}.$$

• We can calculate $\theta_{i,j+1}$ from $\theta_{i,j}, \theta_{i+1,j}, \theta_{i-1,j}$, at the previous time t_j (see exhibit (a) on next page).



Explicit Methods (concluded)

• Starting from the initial conditions at t_0 , that is, $\theta_{i,0} = \theta(x_i, t_0), i = 1, 2, \dots$, we calculate

$$\theta_{i,1}, \quad i = 1, 2, \dots$$

• And then

$$\theta_{i,2}, \quad i = 1, 2, \dots$$

• And so on.

Stability

• The explicit method is numerically unstable unless

$$\Delta t \le (\Delta x)^2 / (2D).$$

- A numerical method is unstable if the solution is highly sensitive to changes in initial conditions.
- The stability condition may lead to high running times and memory requirements.
- For instance, halving Δx would imply quadrupling $(\Delta t)^{-1}$, resulting in a running time 8 times as much.

Explicit Method and Trinomial Tree

Recall that

$$\theta_{i,j+1} = \frac{D\Delta t}{(\Delta x)^2} \,\theta_{i+1,j} + \left(1 - \frac{2D\Delta t}{(\Delta x)^2}\right) \theta_{i,j} + \frac{D\Delta t}{(\Delta x)^2} \,\theta_{i-1,j}.$$

- When the stability condition is satisfied, the three coefficients for $\theta_{i+1,j}$, $\theta_{i,j}$, and $\theta_{i-1,j}$ all lie between zero and one and sum to one.
- They can be interpreted as probabilities.
- So the finite-difference equation becomes identical to backward induction on trinomial trees!

Explicit Method and Trinomial Tree (concluded)

- The freedom in choosing Δx corresponds to similar freedom in the construction of trinomial trees.
- The explicit finite-difference equation is also identical to backward induction on a binomial tree.^a
 - Let the binomial tree take 2 steps each of length $\Delta t/2$.
 - It is now a trinomial tree.

^aHilliard (2014).

Implicit Methods

- Suppose we use $t = t_{j+1}$ in Eq. (117) on p. 832 instead.
- The finite-difference equation becomes

$$\frac{\theta_{i,j+1} - \theta_{i,j}}{\Delta t} = D \frac{\theta_{i+1,j+1} - 2\theta_{i,j+1} + \theta_{i-1,j+1}}{(\Delta x)^2}.$$
(119)

- The stencil involves $\theta_{i,j}$, $\theta_{i,j+1}$, $\theta_{i+1,j+1}$, and $\theta_{i-1,j+1}$.
- This method is implicit:
 - The value of any one of the three quantities at t_{j+1} cannot be calculated unless the other two are known.
 - See exhibit (b) on p. 835.

Implicit Methods (continued)

• Equation (119) can be rearranged as

$$\theta_{i-1,j+1} - (2+\gamma) \,\theta_{i,j+1} + \theta_{i+1,j+1} = -\gamma \theta_{i,j},$$
where $\gamma \stackrel{\Delta}{=} (\Delta x)^2/(D\Delta t)$.

- This equation is unconditionally stable.
- Suppose the boundary conditions are given at $x = x_0$ and $x = x_{N+1}$.
- After $\theta_{i,j}$ has been calculated for i = 1, 2, ..., N, the values of $\theta_{i,j+1}$ at time t_{j+1} can be computed as the solution to the following tridiagonal linear system,

Implicit Methods (continued)

$$\begin{bmatrix} a & 1 & 0 & \cdots & \cdots & 0 \\ 1 & a & 1 & 0 & \cdots & \cdots & 0 \\ 0 & 1 & a & 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & \cdots & \cdots & 0 & 1 & a & 1 \\ 0 & \cdots & \cdots & 0 & 1 & a & 1 \\ 0 & \cdots & \cdots & 0 & 1 & a & 1 \\ \end{bmatrix} \begin{bmatrix} \theta_{1,j+1} \\ \theta_{2,j+1} \\ \theta_{3,j+1} \\ \vdots \\ \vdots \\ \vdots \\ \theta_{N,j+1} \end{bmatrix} = \begin{bmatrix} -\gamma\theta_{1,j} - \theta_{0,j+1} \\ -\gamma\theta_{2,j} \\ -\gamma\theta_{3,j} \\ \vdots \\ \vdots \\ -\gamma\theta_{N-1,j} \\ -\gamma\theta_{N,j} - \theta_{N+1,j+1} \end{bmatrix},$$

where $a \stackrel{\Delta}{=} -2 - \gamma$.

Implicit Methods (concluded)

- Tridiagonal systems can be solved in O(N) time and O(N) space.
 - Never invert a matrix to solve a tridiagonal system.
- The matrix above is nonsingular when $\gamma \geq 0$.
 - A square matrix is nonsingular if its inverse exists.

Crank-Nicolson Method

• Take the average of explicit method (118) on p. 833 and implicit method (119) on p. 840:

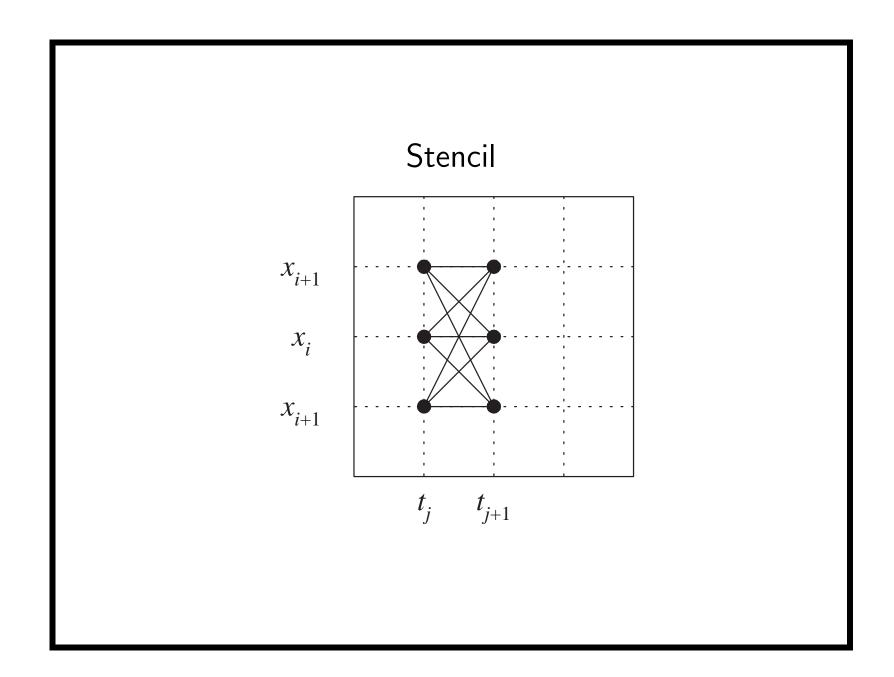
$$\frac{\frac{\theta_{i,j+1} - \theta_{i,j}}{\Delta t}}{2}$$

$$= \frac{1}{2} \left(D \frac{\theta_{i+1,j} - 2\theta_{i,j} + \theta_{i-1,j}}{(\Delta x)^2} + D \frac{\theta_{i+1,j+1} - 2\theta_{i,j+1} + \theta_{i-1,j+1}}{(\Delta x)^2} \right).$$

• After rearrangement,

$$\gamma \theta_{i,j+1} - \frac{\theta_{i+1,j+1} - 2\theta_{i,j+1} + \theta_{i-1,j+1}}{2} = \gamma \theta_{i,j} + \frac{\theta_{i+1,j} - 2\theta_{i,j} + \theta_{i-1,j}}{2}.$$

• This is an unconditionally stable implicit method with excellent rates of convergence.



Numerically Solving the Black-Scholes PDE (90) on p. 678

- See text.
- Brennan and Schwartz (1978) analyze the stability of the implicit method.

Monte Carlo Simulation^a

- Monte Carlo simulation is a sampling scheme.
- In many important applications within finance and without, Monte Carlo is one of the few feasible tools.
- When the time evolution of a stochastic process is not easy to describe analytically, Monte Carlo may very well be the only strategy that succeeds consistently.

^aA top 10 algorithm (Dongarra & Sullivan, 2000).

The Big Idea

- Assume X_1, X_2, \ldots, X_n have a joint distribution.
- $\theta \stackrel{\Delta}{=} E[g(X_1, X_2, \dots, X_n)]$ for some function g is desired.
- We generate

$$\left(x_1^{(i)}, x_2^{(i)}, \dots, x_n^{(i)}\right), \quad 1 \le i \le N$$

independently with the same joint distribution as (X_1, X_2, \ldots, X_n) .

• Set

$$Y_i \stackrel{\Delta}{=} g\left(x_1^{(i)}, x_2^{(i)}, \dots, x_n^{(i)}\right).$$

The Big Idea (concluded)

- Y_1, Y_2, \ldots, Y_N are independent and identically distributed random variables.
- Each Y_i has the same distribution as

$$Y \stackrel{\Delta}{=} g(X_1, X_2, \dots, X_n).$$

- Since the average of these N random variables, \overline{Y} , satisfies $E[\overline{Y}] = \theta$, it can be used to estimate θ .
- The strong law of large numbers says that this procedure converges almost surely.
- The number of replications (or independent trials), N, is called the sample size.

Accuracy

- The Monte Carlo estimate and true value may differ owing to two reasons:
 - 1. Sampling variation.
 - 2. The discreteness of the sample paths.^a
- The first can be controlled by the number of replications.
- The second can be controlled by the number of observations along the sample path.

^aThis may not be an issue if the financial derivative only requires discrete sampling along the time dimension, such as the *discrete* barrier option.

Accuracy and Number of Replications

- The statistical error of the sample mean \overline{Y} of the random variable Y grows as $1/\sqrt{N}$.
 - Because $Var[\overline{Y}] = Var[Y]/N$.
- In fact, this convergence rate is asymptotically optimal.^a
- So the variance of the estimator \overline{Y} can be reduced by a factor of 1/N by doing N times as much work.
- This is amazing because the same order of convergence holds independently of the dimension n.

^aThe Berry-Esseen theorem.

Accuracy and Number of Replications (concluded)

- In contrast, classic numerical integration schemes have an error bound of $O(N^{-c/n})$ for some constant c > 0.
 - -n is the dimension.
- The required number of evaluations thus grows exponentially in n to achieve a given level of accuracy.
 - The curse of dimensionality.
- The Monte Carlo method is more efficient than alternative procedures for multivariate derivatives when n is large.

Monte Carlo Option Pricing

- For the pricing of European options on a dividend-paying stock, we may proceed as follows.
- Assume

$$\frac{dS}{S} = \mu \, dt + \sigma \, dW.$$

• Stock prices S_1, S_2, S_3, \ldots at times $\Delta t, 2\Delta t, 3\Delta t, \ldots$ can be generated via

$$S_{i+1}$$

$$= S_i e^{(\mu - \sigma^2/2) \Delta t + \sigma \sqrt{\Delta t} \xi}, \quad \xi \sim N(0, 1), \quad (120)$$

by Eq. (84) on p. 616.

Monte Carlo Option Pricing (continued)

• If we discretize $dS/S = \mu dt + \sigma dW$ directly, we will obtain

$$S_{i+1} = S_i + S_i \mu \, \Delta t + S_i \sigma \sqrt{\Delta t} \, \xi.$$

- But this is locally normally distributed, not lognormally, hence biased.^a
- In practice, this is not expected to be a major problem as long as Δt is sufficiently small.

^aContributed by Mr. Tai, Hui-Chin (R97723028) on April 22, 2009.

Monte Carlo Option Pricing (continued)

Non-dividend-paying stock prices in a risk-neutral economy can be generated by setting $\mu = r$ and $\Delta t = T$.

1: C := 0; {Accumulated terminal option value.}

2: **for**
$$i = 1, 2, 3, \dots, N$$
 do

3:
$$P := S \times e^{(r-\sigma^2/2)T + \sigma\sqrt{T}\xi}, \ \xi \sim N(0,1);$$

4:
$$C := C + \max(P - X, 0);$$

5: end for

6: return Ce^{-rT}/N ;

Monte Carlo Option Pricing (concluded)

Pricing Asian options is also easy.

```
1: C := 0;

2: for i = 1, 2, 3, ..., N do

3: P := S; M := S;

4: for j = 1, 2, 3, ..., n do

5: P := P \times e^{(r - \sigma^2/2)(T/n) + \sigma \sqrt{T/n}} \xi;

6: M := M + P;

7: end for

8: C := C + \max(M/(n+1) - X, 0);

9: end for

10: return Ce^{-rT}/N;
```

How about American Options?

- Standard Monte Carlo simulation is inappropriate for American options because of early exercise.
 - Given a sample path S_0, S_1, \ldots, S_n , how to decide which S_i is an early-exercise point?
 - What is the option price at each S_i if the option is not exercised?
- It is difficult to determine the early-exercise point based on one single path.
- But Monte Carlo simulation can be modified to price American options with small biases (pp. 919ff).^a

^aLongstaff & Schwartz (2001).

Delta and Common Random Numbers

• In estimating delta, it is natural to start with the finite-difference estimate

$$e^{-r\tau} \frac{E[P(S+\epsilon)] - E[P(S-\epsilon)]}{2\epsilon}.$$

- -P(x) is the terminal payoff of the derivative security when the underlying asset's initial price equals x.
- Use simulation to estimate $E[P(S+\epsilon)]$ first.
- Use another simulation to estimate $E[P(S-\epsilon)]$.
- Finally, apply the formula to approximate the delta.
- This is also called the bump-and-revalue method.

Delta and Common Random Numbers (concluded)

- This method is not recommended because of its high variance.
- A much better approach is to use common random numbers to lower the variance:

$$e^{-r\tau} E\left[\frac{P(S+\epsilon) - P(S-\epsilon)}{2\epsilon}\right].$$

- Here, the same random numbers are used for $P(S + \epsilon)$ and $P(S \epsilon)$.
- This holds for gamma and cross gamma.^a

^aFor multivariate derivatives.

Problems with the Bump-and-Revalue Method

• Consider the binary option with payoff

$$\begin{cases} 1, & \text{if } S(T) > X, \\ 0, & \text{otherwise.} \end{cases}$$

• Then

$$P(S+\epsilon)-P(S-\epsilon) = \begin{cases} 1, & \text{if } S+\epsilon > X \text{ and } S-\epsilon < X, \\ 0, & \text{otherwise.} \end{cases}$$

- So the finite-difference estimate per run for the (undiscounted) delta is 0 or $O(1/\epsilon)$.
- This means high variance.

Problems with the Bump-and-Revalue Method (concluded)

• The price of the binary option equals

$$e^{-r\tau}N(x-\sigma\sqrt{\tau}).$$

- It equals minus the derivative of the European call with respect to X.
- It also equals $X\tau$ times the rho of a European call (p. 358).
- Its delta is

$$\frac{N'\left(x-\sigma\sqrt{\tau}\right)}{S\sigma\sqrt{\tau}}.$$

Gamma

• The finite-difference formula for gamma is

$$e^{-r\tau} E\left[\frac{P(S+\epsilon)-2\times P(S)+P(S-\epsilon)}{\epsilon^2}\right].$$

• For a correlation option with multiple underlying assets, the finite-difference formula for the cross gamma $\partial^2 P(S_1, S_2, \dots)/(\partial S_1 \partial S_2)$ is:

$$e^{-r\tau} E \left[\frac{P(S_1 + \epsilon_1, S_2 + \epsilon_2) - P(S_1 - \epsilon_1, S_2 + \epsilon_2)}{4\epsilon_1 \epsilon_2} - \frac{P(S_1 + \epsilon_1, S_2 - \epsilon_2) + P(S_1 - \epsilon_1, S_2 - \epsilon_2)}{4\epsilon_1 \epsilon_2} \right].$$

- Choosing an ϵ of the right magnitude can be challenging.
 - If ϵ is too large, inaccurate Greeks result.
 - If ϵ is too small, unstable Greeks result.
- This phenomenon is sometimes called the curse of differentiation.^a

^aAït-Sahalia & Lo (1998); Bondarenko (2003).

• In general, suppose (in some sense)

$$\frac{\partial^{i}}{\partial \theta^{i}} e^{-r\tau} E[P(S)] = e^{-r\tau} E\left[\frac{\partial^{i} P(S)}{\partial \theta^{i}}\right]$$

holds for all i > 0, where θ is a parameter of interest.^a

- A common requirement is Lipschitz continuity.^b
- Then Greeks become integrals.
- As a result, we avoid ϵ , finite differences, and resimulation.

 $^{^{\}mathrm{a}}\partial^{i}P(S)/\partial\theta^{i}$ may not be partial differentiation in the classic sense.

^bBroadie & Glasserman (1996).

- This is indeed possible for a broad class of payoff functions.^a
 - Roughly speaking, any payoff function that is equal to a sum of products of differentiable functions and indicator functions with the right kind of support.
 - For example, the payoff of a call is

$$\max(S(T) - X, 0) = (S(T) - X)I_{\{S(T) - X \ge 0\}}.$$

- The results are too technical to cover here (see next page).

^aTeng (R91723054) (2004); Lyuu & Teng (R91723054) (2011).

- Suppose $h(\theta, x) \in \mathcal{H}$ with pdf f(x) for x and $g_j(\theta, x) \in \mathcal{G}$ for $j \in \mathcal{B}$, a finite set of natural numbers.
- Then

$$\begin{split} &\frac{\partial}{\partial \theta} \int_{\Re} h(\theta, x) \prod_{j \in \mathcal{B}} \mathbf{1}_{\left\{g_{j}(\theta, x) > 0\right\}}(x) \, f(x) \, dx \\ &= \int_{\Re} h_{\theta}(\theta, x) \prod_{j \in \mathcal{B}} \mathbf{1}_{\left\{g_{j}(\theta, x) > 0\right\}}(x) \, f(x) \, dx \\ &+ \sum_{l \in \mathcal{B}} \left[h(\theta, x) J_{l}(\theta, x) \prod_{j \in \mathcal{B} \backslash l} \mathbf{1}_{\left\{g_{j}(\theta, x) > 0\right\}}(x) \, f(x) \right]_{x = \chi_{l}(\theta)}, \end{split}$$

where

$$J_l(\theta, x) = \operatorname{sign}\left(\frac{\partial g_l(\theta, x)}{\partial x_k}\right) \frac{\partial g_l(\theta, x)/\partial \theta}{\partial g_l(\theta, x)/\partial x} \text{ for } l \in \mathcal{B}.$$

Gamma (concluded)

- Similar results have been derived for Levy processes.^a
- Formulas are also recently obtained for credit derivatives.^b
- In queueing networks, this is called infinitesimal perturbation analysis (IPA).^c

^aLyuu, Teng (R91723054), & S. Wang (2013).

^bLyuu, Teng (R91723054), & Tseng (2014, 2018).

^cCao (1985); Y. C. Ho & Cao (1985).