
Delta-Gamma Hedge

• Delta hedge is based on the first-order approximation to

changes in the derivative price, Δf , due to changes in

the stock price, ΔS.

• When ΔS is not small, the second-order term, gamma

Γ
Δ
= ∂2f/∂S2, helps (theoretically).

• A delta-gamma hedge is a delta hedge that maintains

zero portfolio gamma; it is gamma neutral.

• To meet this extra condition, one more security needs to

be brought in.
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Delta-Gamma Hedge (concluded)

• Suppose we want to hedge short calls as before.

• A hedging call f2 is brought in.

• To set up a delta-gamma hedge, we solve

−N × f + n1 × S + n2 × f2 − B = 0 (self-financing),

−N ×Δ+ n1 + n2 ×Δ2 − 0 = 0 (delta neutrality),

−N × Γ + 0 + n2 × Γ2 − 0 = 0 (gamma neutrality),

for n1, n2, and B.

– The gammas of the stock and bond are 0.

• See the numerical example on pp. 231–232 of the text.

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 705



Other Hedges

• If volatility changes, delta-gamma hedge may not work

well.

• An enhancement is the delta-gamma-vega hedge, which

also maintains vega zero portfolio vega.

• To accomplish this, still one more security has to be

brought into the process.

• In practice, delta-vega hedge, which may not maintain

gamma neutrality, performs better than delta hedge.
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Trees
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I love a tree more than a man.

— Ludwig van Beethoven (1770–1827)

All those holes and pebbles.

Who could count them?

— James Joyce, Ulysses (1922)

And though the holes were rather small,

they had to count them all.

— The Beatles, A Day in the Life (1967)
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The Combinatorial Method

• The combinatorial method can often cut the running

time by an order of magnitude.

• The basic paradigm is to count the number of admissible

paths that lead from the root to any terminal node.

• We first used this method in the linear-time algorithm

for standard European option pricing on p. 282.

• We will now apply it to price barrier options.
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The Reflection Principlea

• Imagine a particle at position (0,−a) on the integral

lattice that is to reach (n,−b).

• Without loss of generality, assume a > 0 and b ≥ 0.

• This particle’s movement:

(i, j)
�(i+ 1, j + 1) up move S → Su

�(i+ 1, j − 1) down move S → Sd

• How many paths touch the x axis?

aAndré (1887).
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The Reflection Principle (continued)

• For a path from (0,−a) to (n,−b) that touches the x

axis, let J denote the first point this happens.

• Reflect the portion of the path from (0,−a) to J .

• A path from (0,a) to (n,−b) is constructed.

• It also hits the x axis at J for the first time.

• The one-to-one mapping shows the number of paths

from (0,−a) to (n,−b) that touch the x axis equals

the number of paths from (0,a) to (n,−b).
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The Reflection Principle (concluded)

• A path of this kind has (n+ b+ a)/2 down moves and

(n− b− a)/2 up moves.a

• Hence there are (
n

n+a+b
2

)
=

(
n

n−a−b
2

)
(94)

such paths for even n+ a+ b.

– Convention:
(
n
k

)
= 0 for k < 0 or k > n.

aVerify it!
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Pricing Barrier Options (Lyuu, 1998)

• Focus on the down-and-in call with barrier H < X .

• Assume H < S without loss of generality.

• Define

a
Δ
=

⌈
ln (X/ (Sdn))

ln(u/d)

⌉
=

⌈
ln(X/S)

2σ
√
Δt

+
n

2

⌉
,

h
Δ
=

⌊
ln (H/ (Sdn))

ln(u/d)

⌋
=

⌊
ln(H/S)

2σ
√
Δt

+
n

2

⌋
.

– a is such that X̃
Δ
= Suadn−a is the terminal price

that is closest to X from above.

– h is such that H̃
Δ
= Suhdn−h is the terminal price

that is closest to H from below.a

aSo we underestimate the price.
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Pricing Barrier Options (continued)

• The true barrier is replaced by the effective barrier H̃

in the binomial model.

• A process with n moves hence ends up in the money if

and only if the number of up moves is at least a.

• The price Sukdn−k is at a distance of 2k from the

lowest possible price Sdn on the binomial tree.

–

Sukdn−k = Sd−kdn−k = Sdn−2k. (95)
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Pricing Barrier Options (continued)

• A path from S to the terminal price Sujdn−j has

probability pj(1− p)n−j of being taken.

• With reference to p. 716, the reflection principle (p. 711)

can be applied with

a = n− 2h,

b = 2j − 2h,

in Eq. (94) on p. 713 by treating the H̃ line as the x

axis.
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Pricing Barrier Options (continued)

• Therefore,(
n

n+(n−2h)+(2j−2h)
2

)
=

(
n

n− 2h+ j

)

paths hit H̃ in the process for h ≤ n/2.

• The terminal price Sujdn−j is reached by a path that

hits the effective barrier with probability(
n

n− 2h+ j

)
pj(1− p)n−j , j ≤ 2h.
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Pricing Barrier Options (concluded)

• The option value equals∑2h
j=a

(
n

n−2h+j

)
pj(1− p)n−j

(
Sujdn−j −X

)
Rn

. (96)

– R
Δ
= erτ/n is the riskless return per period.

• It yields a linear-time algorithm.a

aLyuu (1998).
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Convergence of BOPM

• Equation (96) results in the same sawtooth-like

convergence shown on p. 404 (repeated on next page).

• The reasons are not hard to see.

• The true barrier H most likely does not equal the

effective barrier H̃.
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Convergence of BOPM (continued)
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Convergence of BOPM (continued)

• Convergence is actually good if we limit n to certain

values—191, for example.

• These values make the true barrier coincide with or just

above one of the stock price levels, that is,

H ≈ Sdj = Se−jσ
√

τ/n

for some integer j.

• The preferred n’s are thus

n =

⌊
τ

(ln(S/H)/(jσ))2

⌋
, j = 1, 2, 3, . . .
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Convergence of BOPM (continued)

• There is only one minor technicality left.

• We picked the effective barrier to be one of the n+ 1

possible terminal stock prices.

• However, the effective barrier above, Sdj , corresponds to

a terminal stock price only when n− j is even.a

• To close this gap, we decrement n by one, if necessary,

to make n− j an even number.

aThis is because j = n − 2k for some k by Eq. (95) on p. 715. Of

course we could have adopted the form Sdj (−n ≤ j ≤ n) for the

effective barrier. It makes a good exercise.
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Convergence of BOPM (concluded)

• The preferred n’s are now

n =

⎧⎨
⎩ �, if �− j is even,

�− 1, otherwise,

j = 1, 2, 3, . . . , where

�
Δ
=

⌊
τ

(ln(S/H)/(jσ))
2

⌋
.

• Evaluate pricing formula (96) on p. 719 only with the

n’s above.
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Practical Implicationsa

• This binomial model is O(1/
√
n) convergent in general

but O(1/n) convergent when the barrier is matched.b

• Now that barrier options can be efficiently priced, we

can afford to pick very large n’s (p. 727).

• This has profound consequences.c

aLyuu (1998).
bJ. Lin (R95221010) (2008); ; J. Lin (R95221010) & Palmer (2013).
cSee pp. 741ff.
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n Combinatorial method

Value Time (milliseconds)

21 5.507548 0.30

84 5.597597 0.90

191 5.635415 2.00

342 5.655812 3.60

533 5.652253 5.60

768 5.654609 8.00

1047 5.658622 11.10

1368 5.659711 15.00

1731 5.659416 19.40

2138 5.660511 24.70

2587 5.660592 30.20

3078 5.660099 36.70

3613 5.660498 43.70

4190 5.660388 44.10

4809 5.659955 51.60

5472 5.660122 68.70

6177 5.659981 76.70

6926 5.660263 86.90

7717 5.660272 97.20
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Practical Implications (concluded)

• Pricing is prohibitively time consuming when S ≈ H

because

n ∼ 1/ ln2(S/H).

– This is called the barrier-too-close problem.

• This observation is indeed true of standard

quadratic-time binomial tree algorithms.

• But it no longer applies to linear-time algorithms (see

p. 729).

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 728



Barrier at 95.0 Barrier at 99.5 Barrier at 99.9

n Value Time n Value Time n Value Time

.

.

. 795 7.47761 8 19979 8.11304 253

2743 2.56095 31.1 3184 7.47626 38 79920 8.11297 1013

3040 2.56065 35.5 7163 7.47682 88 179819 8.11300 2200

3351 2.56098 40.1 12736 7.47661 166 319680 8.11299 4100

3678 2.56055 43.8 19899 7.47676 253 499499 8.11299 6300

4021 2.56152 48.1 28656 7.47667 368 719280 8.11299 8500

True 2.5615 7.4767 8.1130

(All times in milliseconds.)
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Trinomial Tree

• Set up a trinomial approximation to the geometric

Brownian motiona

dS

S
= r dt+ σ dW.

• The three stock prices at time Δt are S, Su, and Sd,

where ud = 1.

• Let the mean and variance of the stock price be SM and

S2V , respectively.

aBoyle (1988).
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Trinomial Tree (continued)

• By Eqs. (29) on p. 180,

M
Δ
= erΔt,

V
Δ
= M2(eσ

2Δt − 1).

• Impose the matching of mean and that of variance:

1 = pu + pm + pd,

SM = (puu+ pm + (pd/u))S,

S2V = pu(Su− SM)2 + pm(S − SM)2 + pd(Sd− SM)2.
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Trinomial Tree (continued)

• Use linear algebra to verify that

pu =
u
(
V +M2 −M

)− (M − 1)

(u− 1) (u2 − 1)
,

pd =
u2

(
V +M2 −M

)− u3(M − 1)

(u− 1) (u2 − 1)
.

– We must also make sure the probabilities lie between

0 and 1.
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Trinomial Tree (concluded)

• There are countless variations.

• But all converge to the Black-Scholes option pricing

model.a

• The trinomial model has a linear-time algorithm for

European options.b

aMadan, Milne, & Shefrin (1989).
bT. Chen (R94922003) (2007).
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A Trinomial Tree

• Use u = eλσ
√
Δt, where λ ≥ 1 is a tunable parameter.

• Then

pu → 1

2λ2
+

(
r + σ2

)√
Δt

2λσ
,

pd → 1

2λ2
−

(
r − 2σ2

)√
Δt

2λσ
.

• A nice choice for λ is
√
π/2 .a

aOmberg (1988).
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Barrier Options Revisited

• BOPM introduces a specification error by replacing the

barrier with a nonidentical effective barrier.

• The trinomial model solves the problem by adjusting λ

so that the barrier is hit exactly.a

• When

Se−hλσ
√
Δt = H,

it takes h down moves to go from S to H, if h is an

integer.

• Then

h =
ln(S/H)

λσ
√
Δt

.

aRitchken (1995).
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Barrier Options Revisited (continued)

• This is easy to achieve by adjusting λ.

• Typically, we find the smallest λ ≥ 1 such that h is an

integer.a

– Such a λ may not exist for very small n’s.

– This is not hard to check.

• Toward that end, we find the largest integer j ≥ 1 that

satisfies ln(S/H)

jσ
√
Δt

≥ 1 to be our h.

• Then let

λ =
ln(S/H)

hσ
√
Δt

.

aWhy must λ ≥ 1?
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Barrier Options Revisited (continued)

• Alternatively, we can pick

h =

⌊
ln(S/H)

σ
√
Δt

⌋
.

• Make sure h ≥ 1.

• Then let

λ =
ln(S/H)

hσ
√
Δt

.
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Barrier Options Revisited (concluded)

• This done, one of the layers of the trinomial tree

coincides with the barrier.

• The following probabilities may be used,

pu =
1

2λ2
+

μ′√Δt

2λσ
,

pm = 1− 1

λ2
,

pd =
1

2λ2
− μ′√Δt

2λσ
.

– μ′ Δ
= r − (σ2/2).
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Algorithms Comparisona

• So which algorithm is better, binomial or trinomial?

• Algorithms are often compared based on the n value at

which they converge.

– The one with the smallest n wins.

• So giraffes are faster than cheetahs because they take

fewer strides to travel the same distance!

• Performance must be based on actual running times, not

n.b

aLyuu (1998).
bPatterson & Hennessy (1994).
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Algorithms Comparison (continued)

• Pages 721 and 740 seem to show the trinomial model

converges at a smaller n than BOPM.

• It is in this sense when people say trinomial models

converge faster than binomial ones.

• But does it make the trinomial model better then?
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Algorithms Comparison (concluded)

• The linear-time binomial tree algorithm actually

performs better than the trinomial one.

• See the next page, expanded from p. 727.

• The barrier-too-close problem is also too hard for a

quadratic-time trinomial tree algorithm.a

– See pp. 754ff for an alternative solution.

aLyuu (1998).
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n Combinatorial method Trinomial tree algorithm

Value Time Value Time

21 5.507548 0.30

84 5.597597 0.90 5.634936 35.0

191 5.635415 2.00 5.655082 185.0

342 5.655812 3.60 5.658590 590.0

533 5.652253 5.60 5.659692 1440.0

768 5.654609 8.00 5.660137 3080.0

1047 5.658622 11.10 5.660338 5700.0

1368 5.659711 15.00 5.660432 9500.0

1731 5.659416 19.40 5.660474 15400.0

2138 5.660511 24.70 5.660491 23400.0

2587 5.660592 30.20 5.660493 34800.0

3078 5.660099 36.70 5.660488 48800.0

3613 5.660498 43.70 5.660478 67500.0

4190 5.660388 44.10 5.660466 92000.0

4809 5.659955 51.60 5.660454 130000.0

5472 5.660122 68.70

6177 5.659981 76.70

(All times in milliseconds.)
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Double-Barrier Options

• Double-barrier options are barrier options with two

barriers L < H.

– They make up “less than 5% of the light exotic

market.”a

• Assume L < S < H.

• The binomial model produces oscillating option values

(see plot on next page).b

aBennett (2014).
bChao (R86526053) (1999); Dai (B82506025, R86526008, D8852600) &

Lyuu (2005).
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Double-Barrier Options (concluded)

• The combinatorial method yields a linear-time

algorithm.a

• This binomial model is O(1/
√
n) convergent in general.b

• If the barriers L and H depend on time, we have

moving-barrier options.c

aSee p. 241 of the textbook.
bGobet (1999).
cRogers & Zane (1998).
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Double-Barrier Knock-Out Options

• We knew how to pick the λ so that one of the layers of

the trinomial tree coincides with one barrier, say H.

• This choice, however, does not guarantee that the other

barrier, L, is also hit.

• One way to handle this problem is to lower the layer of

the tree just above L to coincide with L.a

– More general ways to make the trinomial model hit

both barriers are available.b

aRitchken (1995); Hull (1999).
bHsu (R7526001, D89922012) & Lyuu (2006). Dai (B82506025,

R86526008, D8852600) & Lyuu (2006) combine binomial and trinomial

trees to derive an O(n)-time algorithm for double-barrier options (see

pp. 754ff).
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Double-Barrier Knock-Out Options (continued)

• The probabilities of the nodes on the layer above L

must be adjusted.

• Let � be the positive integer such that

Sd�+1 < L < Sd�.

• Hence the layer of the tree just above L has price Sd�.a

aYou probably cannot do the same thing for binomial models (why?).

Thanks to a lively discussion on April 25, 2012.
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Double-Barrier Knock-Out Options (concluded)

• Define γ > 1 as the number satisfying

L = Sd�−1e−γλσ
√
Δt.

– The prices between the barriers are (from low to

high)

L, Sd�−1, . . . , Sd2, Sd, S, Su, Su2, . . . , Suh−1, Suh = H.

• The probabilities for the nodes with price equal to

Sd�−1 are

p′u =
b+ aγ

1 + γ
, p′d =

b− a

γ + γ2
, and p′m = 1− p′u − p′d,

where a
Δ
= μ′√Δt/(λσ) and b

Δ
= 1/λ2.
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Convergence: Binomial vs. Trinomial
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Ideas for Binomial Trees To Handle Two Barriers
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The Binomial-Trinomial Tree

• Append a trinomial structure to a binomial tree can lead

to improved convergence and efficiency.a

• The resulting tree is called the binomial-trinomial tree.b

• Suppose a binomial tree will be built with Δt as the

duration of one period.

• Node X at time t needs to pick three nodes on the

binomial tree at time t+Δt′ as its successor nodes.

– Later, Δt ≤ Δt′ < 2Δt.

aDai (B82506025, R86526008, D8852600) & Lyuu (2006, 2008, 2010).
bThe idea first emerged in a hotel in Muroran, Hokkaido, Japan, in

May of 2005.
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The Binomial-Trinomial Tree (continued)
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The Binomial-Trinomial Tree (continued)

• These three nodes should guarantee:

1. The mean and variance of the stock price are

matched.

2. The branching probabilities are between 0 and 1.

• Let S be the stock price at node X.

• Use s(z) to denote the stock price at node z.
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The Binomial-Trinomial Tree (continued)

• Recall that the expected value of the logarithmic return

ln(St+Δt′/S) at time t+Δt′ equalsa

μ
Δ
=

(
r − σ2

2

)
Δt′. (97)

• Its variance equals

Var
Δ
= σ2Δt′. (98)

• Let node B be the node whose logarithmic return

μ̂
Δ
= ln(s(B)/S) is closest to μ among all the nodes at

time t+Δt′.
aSee p. 297.
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The Binomial-Trinomial Tree (continued)

• The middle branch from node X will end at node B.

• The two nodes A and C, which bracket node B, are the

destinations of the other two branches from node X.

• Recall that adjacent nodes on the binomial tree are

spaced at 2σ
√
Δt apart.

• Review the illustration on p. 755.
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The Binomial-Trinomial Tree (continued)

• The three branching probabilities from node X are

obtained through matching the mean and variance of

the logarithmic return ln(St+Δt′/S).

• Recall that

μ̂
Δ
= ln (s(B)/S)

is the logarithmic return of the middle node B.

• Let α, β, and γ be the differences between μ and the

logarithmic returns

ln(s(Z)/S), Z = A,B,C,

in that order.
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The Binomial-Trinomial Tree (continued)

• In other words,

α
Δ
= μ̂+ 2σ

√
Δt− μ = β + 2σ

√
Δt , (99)

β
Δ
= μ̂− μ, (100)

γ
Δ
= μ̂− 2σ

√
Δt− μ = β − 2σ

√
Δt . (101)

• The three branching probabilities pu, pm, pd then satisfy

puα+ pmβ + pdγ = 0, (102)

puα
2 + pmβ2 + pdγ

2 = Var, (103)

pu + pm + pd = 1. (104)

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 760



The Binomial-Trinomial Tree (concluded)

• Equation (102) matches the mean (97) of the

logarithmic return ln(St+Δt′/S) on p. 757.

• Equation (103) matches its variance (98) on p. 757.

• The three probabilities can be proved to lie between 0

and 1 by Cramer’s rule.
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Pricing Double-Barrier Options

• Consider a double-barrier option with two barriers L

and H, where L < S < H.

• We need to make each barrier coincide with a layer of

the binomial tree for better convergence.

• The idea is to choose a Δt such that

ln(H/L)

2σ
√
Δt

(105)

is a positive integer.

– The distance between two adjacent nodes such as

nodes Y and Z in the figure on p. 763 is 2σ
√
Δt .
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Pricing Double-Barrier Options (continued)
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ln(H/S)

ln(L/S) + 4σ
√
Δt

ln(L/S) + 2σ
√
Δt

0

ln(L/S)

2σ
√
Δt
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⎩

ln(H/L)
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A

B

C
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Pricing Double-Barrier Options (continued)

• Suppose that the goal is a tree with ∼ m periods.

• Suppose we pick Δτ
Δ
= T/m for the length of each

period.

• There is no guarantee that ln(H/L)

2σ
√
Δτ

is an integer.

• So we pick a Δt that is close to, but does not exceed,

Δτ and makes ln(H/L)

2σ
√
Δt

some integer κ.

• Specifically, we select

Δt =

(
ln(H/L)

2κσ

)2

,

where κ =
⌈
ln(H/L)

2σ
√
Δτ

⌉
.
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Pricing Double-Barrier Options (continued)

• We now proceed to build the binomial-trinomial tree.

• Start with the binomial part.

• Lay out the nodes from the low barrier L upward.

• Automatically, a layer coincides with the high barrier H.

• It is unlikely that Δt divides T , however.

• The position at time 0 and with logarithmic return

ln(S/S) = 0 is unlikely on a layer of the binomial tree.a

aRecall p. 763.
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Pricing Double-Barrier Options (continued)

• The binomial-trinomial structure can address this

problem as follows.

• Between time 0 and time T , the binomial tree spans

�T/Δt	 periods.

• Keep only the last �T/Δt	 − 1 periods and let the first

period have a duration equal to

Δt′ Δ
= T −

(⌊
T

Δt

⌋
− 1

)
Δt.

• Then these �T/Δt	 periods span T years.

• It is easy to verify that Δt ≤ Δt′ < 2Δt.
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Pricing Double-Barrier Options (continued)

• Start with the root node at time 0 and at a price with

logarithmic return ln(S/S) = 0.

• Find the three nodes on the binomial tree at time Δt′

as described earlier.

• Calculate the three branching probabilities to them.

• Grow the binomial tree from these three nodes until

time T to obtain a binomial-trinomial tree with

�T/Δt	 periods.

• Review the illustration on p. 763.
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Pricing Double-Barrier Options (continued)

• Now the binomial-trinomial tree can be used to price

double-barrier options by backward induction.

• That takes quadratic time.

• But a linear-time algorithm exists for double-barrier

options on the binomial tree.a

• Apply that algorithm to price the double-barrier

option’s prices at the three nodes at time Δt′.

– That is, nodes A, B, and C on p. 763.

• Then calculate their expected discounted value for the

root node.
aSee p. 241 of the textbook; Chao (R86526053) (1999); Dai

(B82506025, R86526008, D8852600) & Lyuu (2008).
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Pricing Double-Barrier Options (continued)

• The overall running time is only linear!

• Binomial trees have troubles pricing barrier options.a

• Even pit against the trinomial tree, the

binomial-trinomial tree converges faster and smoother.b

• In fact, the binomial-trinomial tree has an error of

O(1/n) for single-barrier options.c

• It has an error of O(1/n1−a) for any 0 < a < 1 for

double-barrier options.d

aSee p. 404, p. 746, and p. 752.
bSee p. 770 and p. 771.
cLyuu & Palmer (2010).
dAppolloni, Gaudenziy, & Zanette (2014).
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Pricing Double-Barrier Optionsa (continued)
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4
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Trinomial Tree
Bi−Trinomial Tree
Trinomial Tree(n = 20000)
Bi−Trinomial Tree(n = 20000)

aGenerated by Mr. Lin, Ying-Hung (R01723029) on June 6, 2014.
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Pricing Double-Barrier Options (concluded)

10.19

10.195

10.2

10.205

10.21

0.01 0.02 0.03 0.04 0.05 0.06 0.07

Value

Time

A

B

The thin line denotes the double-barrier option prices

computed by the trinomial tree against the running time in

seconds (such as point A). The thick line denotes those

computed by the binomial-trinomial tree (such as point B).
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The Barrier-Too-Close Problem (p. 728) Revisited

• Our idea solves it even if one barrier is very close to S.

– It runs in linear time, unlike an earlier quadratic-time

solution with trinomial trees (pp. 736ff).

– Unlike an earlier solution using combinatorics (p.

719), now the choice of n is not that restricted.

• So it combines the strengths of binomial and trinomial

trees.

• This holds for single-barrier options too.

• Here is how.
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The Barrier-Too-Close Problem Revisited (continued)

• We can build the tree treating S as if it were a second

barrier.

• So both H and S are matched.

• Alternatively, we can pick Δτ
Δ
= T/m as our length of a

period Δt without the subsequent adjustment.a

• Then build the tree from the price H down.

• So H is matched.

• The initial price S is automatically matched by the

trinomial structure.

aThere is no second barrier to match!
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Plot of convergence of a down-and-out call to 5.9968

supplied by Mr. Lu, Yu-Ming (R06723032, D08922008) on

February 26. 2021.
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The Barrier-Too-Close Problem Revisited (concluded)

• The earlier trinomial tree is impractical as it needs a

very large n when the barrier H is very close to S.a

– It needs at least one up move to connect S to H as

its middle branch is flat.

– But when S ≈ H, that up move must take a very

small step, necessitating a small Δt.

• Our trinomial structure’s middle branch is not

necessarily flat.

• So S can be connected to H via the middle branch, and

the need of a very large n no longer exists!

aRecall the table on p. 729.
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Pricing Discrete and Moving Barrier Options

• Barrier options whose barrier is monitored only at

discrete times are called discrete barrier options.

• They are less common than the continuously monitored

versions for single stocks.a

• The main difficulty with pricing discrete barrier options

lies in matching the monitored times.

• Here is why.

aBennett (2014).
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Pricing Discrete and Moving Barrier Options
(continued)

• Suppose each period has a duration of Δt and the

� > 1 monitored times are

t0 = 0, t1, t2, . . . , t� = T.

• It is unlikely that all monitored times coincide with the

end of a period on the tree, or Δt divides ti for all i.

• The binomial-trinomial tree can handle discrete options

with ease, however.

• Simply build a binomial-trinomial tree from time 0 to

time t1, followed by one from time t1 to time t2, and so

on until time t�.
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Pricing Discrete and Moving Barrier Options
(concluded)

• This procedure works even if each ti is associated with

a distinct barrier or if each window [ ti, ti+1) has its own

continuously monitored barrier or double barriers.

• Pricing in both scenarios can actually be done in time

O[�n ln(n/�) ].a

• For typical discrete barriers, placing barriers midway

between two price levels on the tree may increase

accuracy.b

aY. Lu (R06723032, D08922008) (2021).
bSteiner & Wallmeier (1999); Tavella & Randall (2000).
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Options on a Stock That Pays Known Dividends

• Many ad hoc assumptions have been postulated for

option pricing with known dividends.a

1. The one we saw earlierb models the stock price minus

the present value of the anticipated dividends as

following geometric Brownian motion.

2. One can also model the stock price plus the forward

values of the dividends as following geometric

Brownian motion.

aFrishling (2002).
bOn p. 321.
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Options on a Stock That Pays Known Dividends (continued)

• Realistic models assume:

– The stock price decreases by the amount of the

dividend paid at the ex-dividend date.

– The dividend is part cash and part yield (i.e.,

α(t)S0 + β(t)St), for practitioners.
a

• The stock price follows geometric Brownian motion

between adjacent ex-dividend dates.

• But they result in exponential-sized binomial trees.b

• The binomial-trinomial tree can avoid this problem in

most cases.
aHenry-Labordère (2009).
bRecall p. 320.
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Options on a Stock That Pays Known Dividends (continued)

• Suppose that the known dividend is D dollars and the

ex-dividend date is at time t.

• So there are m
Δ
= t/Δt periods between time 0 and the

ex-dividend date.a

• To avoid negative stock prices, we need to make sure the

lowest stock price at time t is at least D, i.e.,

Se−(t/Δt)σ
√
Δt ≥ D.

– Or,

Δt ≥
[

tσ

ln(S/D)

]2
.

aThat is, m is an integer input and Δt
Δ
= t/m.
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Options on a Stock That Pays Known Dividends (continued)

• Build a CRR tree from time 0 to time t as before.

• Subtract D from all the stock prices on the tree at time

t to represent the price drop on the ex-dividend date.

• Assume the top node’s price equals S′.

– As usual, its two successor nodes will have prices

S′u and S′u−1.

• The remaining nodes’ successor nodes at time t+Δt

will choose from prices

S′u, S′, S′u−1, S′u−2, S′u−3, . . . ,

same as the CRR tree.
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A Stair Tree

D
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DSu −2

DS −

DSd −2
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Options on a Stock That Pays Known Dividends (continued)

• For each node at time t below the top node, we build

the trinomial connection.

• Note that the binomial-trinomial structure remains valid

in the special case when Δt′ = Δt on p. 755.
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Options on a Stock That Pays Known Dividends (concluded)

• Hence the construction can be completed.

• From time t+Δt onward, the standard binomial tree

will be used until the maturity date or the next

ex-dividend date when the procedure can be repeated.

• The resulting tree is called the stair tree.a

aDai (B82506025, R86526008, D8852600) & Lyuu (2004); Dai

(B82506025, R86526008, D8852600) (2009).
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Other Applications of Binomial-Trinomial Trees

• Pricing guaranteed minimum withdrawal benefits.a

• Option pricing with stochastic volatilities.b

• Efficient Parisian option pricing.c

• Option pricing with time-varying volatilities and

time-varying double barriers of an exponential form.d

• Defaultable bond pricing.e

aH. Wu (R96723058) (2009).
bC. Huang (R97922073) (2010).
cY. Huang (R97922081) (2010).
dC. Chou (R97944012) (2010); C. I. Chen (R98922127) (2011).
eDai (B82506025, R86526008, D8852600), Lyuu, & C. Wang

(F95922018) (2009, 2010, 2014).
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Mean Trackinga

• The general idea behind the binomial-trinomial tree on

pp. 754ff is very powerful.

• One finds the sucessor middle node as the one closest to

the mean.

• The two flanking successor nodes are then spaced at

cσ
√
Δt from the middle node for a suitably large c > 0.

• The resulting trinomial structure are then guaranteed to

have valid branching probabilities.

aLyuu & C. Wu (R90723065) (2003, 2005).
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Default Boundary as Implied Barrier

• Under the structural model,a the default boundary is

modeled as a barrier.b

• The constant barrier can be inferred from the

closed-form formula given the firm’s market

capitalization, etc.c

• More generally, the moving barrier can be inferred from

the term structure of default probabilities with the

binomial-trinomial tree.d

aRecall p. 369.
bBlack & Cox (1976).
cBrockman & Turtle (2003).
dY. Lu (R06723032, D08922008) (2019).
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Default Boundary as Implied Barrier (concluded)

• This barrier is called the implied barrier.a

• If the barrier is a step function,b the implied barrier can

be obtained in O(n lnn) time.c

• The next plot shows the implied barriers of Freddie Mac

and Fannie Mae as of February 2008 (as percentages of

initial asset values).d

aBrockman & Turtle (2003).
bThe option is then called a rolling option.
cY. Lu (R06723032, D08922008) & Lyuu (2021).
dPlot supplied by Mr. Lu, Yu-Ming (R06723032, D08922008) on Febru-

ary 26. 2021.
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