
Product of Geometric Brownian Motion Processes

• Let

dY

Y
= a dt+ b dWY ,

dZ

Z
= f dt+ g dWZ .

• Assume dWY and dWZ have correlation ρ.

• Consider the Ito process

U
Δ
= Y Z.
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Product of Geometric Brownian Motion Processes
(continued)

• Apply Ito’s lemma (Theorem 20 on p. 611):

dU = Z dY + Y dZ + dY dZ

= ZY (a dt+ b dWY ) + Y Z(f dt+ g dWZ)

+Y Z(a dt+ b dWY )(f dt+ g dWZ)

= U(a+ f + bgρ) dt+ Ub dWY + Ug dWZ .

• The product of correlated geometric Brownian motion

processes thus remains geometric Brownian motion.
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Product of Geometric Brownian Motion Processes
(continued)

• Note that

Y = exp
[(
a− b2/2

)
dt+ b dWY

]
,

Z = exp
[(
f − g2/2

)
dt+ g dWZ

]
,

U = exp
[ (

a+ f − (
b2 + g2

)
/2
)
dt+ b dWY + g dWZ

]
.

– There is no bgρ term in U !

• The strong solutions are:

Y (t) = exp
[(
a− b2/2

)
t+ bWY (t)

]
,

Z(t) = exp
[(
f − g2/2

)
t+ gWZ(t)

]
,

U(t) = exp
[ (

a+ f − (
b2 + g2

)
/2
)
t+ b dWY + gWZ(t)

]
.
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Product of Geometric Brownian Motion Processes
(concluded)

• lnU is Brownian motion with a mean equal to the sum

of the means of lnY and lnZ.

• This holds even if Y and Z are correlated.

• Finally, lnY and lnZ have correlation ρ.
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Quotients of Geometric Brownian Motion Processes

• Suppose Y and Z are drawn from p. 618.

• Let

U
Δ
= Y/Z.

• We now show thata

dU

U
= (a− f + g2 − bgρ) dt+ b dWY − g dWZ .

(83)

• Keep in mind that dWY and dWZ have correlation ρ.

aExercise 14.3.6 of the textbook is erroneous.
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Quotients of Geometric Brownian Motion Processes
(concluded)

• The multidimensional Ito’s lemma (Theorem 20 on

p. 611) can be employed to show that

dU

= (1/Z) dY − (Y/Z2) dZ − (1/Z2) dY dZ + (Y/Z3) (dZ)2

= (1/Z)(aY dt+ bY dWY )− (Y/Z2)(fZ dt+ gZ dWZ)

−(1/Z2)(bgY Zρ dt) + (Y/Z3)(g2Z2 dt)

= U(a dt+ b dWY )− U(f dt+ g dWZ)

−U(bgρ dt) + U(g2 dt)

= U(a− f + g2 − bgρ) dt+ Ub dWY − Ug dWZ .

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 623



Forward Price

• Suppose S follows

dS

S
= μ dt+ σ dW.

• Consider functional F (S, t)
Δ
= Sey(T−t) for constants y

and T .

• As F is a function of two variables, we need the various

partial derivatives of F (S, t) with respect to S and t.

• Note that in partial differentiation with respect to one

variable, other variables are held constant.a

aContributed by Mr. Sun, Ao (R05922147) on April 26, 2017.
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Forward Prices (continued)

• Now,

∂F

∂S
= ey(T−t),

∂2F

∂S2
= 0,

∂F

∂t
= −ySey(T−t).

• Thena

dF = ey(T−t) dS − ySey(T−t) dt

= Sey(T−t) (μ dt+ σ dW )− ySey(T−t) dt

= F (μ− y) dt+ Fσ dW.

aOne can also prove it by Eq. (81) on p. 610.

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 625



Forward Prices (concluded)

• Thus F follows

dF

F
= (μ− y) dt+ σ dW.

• This result has applications in forward and futures

contracts.

• In Eq. (57) on p. 487, μ = r = y.

• So
dF

F
= σ dW,

a martingale.a

aIt is also consistent with p. 563. Furthermore, it explains why Black’s

formulas (65)–(66) on p. 515 use the same volatility σ as the stock’s.
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Ornstein-Uhlenbeck (OU) Process

• The OU process:

dX = −κX dt+ σ dW,

where κ, σ ≥ 0.

• For t0 ≤ s ≤ t and X(t0) = x0, it is known that

E[X(t) ] = e−κ(t−t0) E[x0 ],

Var[X(t) ] =
σ2

2κ

(
1− e−2κ(t−t0)

)
+ e−2κ(t−t0) Var[x0 ],

Cov[X(s),X(t) ] =
σ2

2κ
e−κ(t−s)

[
1− e−2κ(s−t0)

]

+e−κ(t+s−2t0) Var[x0 ].
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Ornstein-Uhlenbeck Process (continued)

• X(t) is normally distributed if x0 is a constant or

normally distributed.

– E[x0 ] = x0 and Var[x0 ] = 0 if x0 is a constant.

• X is said to be a normal process.

• The OU process has the following mean-reverting

property if κ > 0.

– When X > 0, X is pulled toward zero.

– When X < 0, it is pulled toward zero again.
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Ornstein-Uhlenbeck Process (continued)

• A generalized version:

dX = κ(μ−X) dt+ σ dW,

where κ, σ ≥ 0.

• Given X(t0) = x0, a constant, it is known that

E[X(t) ] = μ+ (x0 − μ) e−κ(t−t0), (84)

Var[X(t) ] =
σ2

2κ

[
1− e−2κ(t−t0)

]
,

for t0 ≤ t.
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Ornstein-Uhlenbeck Process (concluded)

• The mean and standard deviation are roughly μ and

σ/
√
2κ , respectively.

• For large t, the probability of X < 0 is extremely

unlikely in any finite time interval when μ > 0 is large

relative to σ/
√
2κ .

• The process is mean-reverting.

– X tends to move toward μ.

– Useful for modeling term structure, stock price

volatility, and stock price return.a

aSee Knutson, Wimmer, Kuhnen, & Winkielman (2008) for the bio-

logical basis for mean reversion in financial decision making.
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Square-Root Process

• Suppose X is an OU process.

• Consider

V
Δ
= X2.

• Ito’s lemma says V has the differential,

dV = 2X dX + (dX)2

= 2
√
V (−κ

√
V dt+ σ dW ) + σ2 dt

=
(−2κV + σ2

)
dt+ 2σ

√
V dW,

a square-root process.
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Square-Root Process (continued)

• In general, the square-root process has the SDE,

dX = κ(μ−X) dt+ σ
√
X dW,

where κ, σ > 0, μ ≥ 0, and X(0) ≥ 0 is a constant.

• Like the OU process, it possesses mean reversion: X

tends to move toward μ, but the volatility is

proportional to
√
X instead of a constant.
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Square-Root Process (continued)

• When X hits zero and μ ≥ 0, the probability is one

that it will not move below zero.

– Zero is a reflecting boundary.

• Hence, the square-root process is a good candidate for

modeling interest rates.a

• The OU process, in contrast, allows negative interest

rates.b

• The two processes are related, however.c

aCox, Ingersoll, & Ross (1985).
bSome rates did go negative in Europe in 2015.
cRecall p. 631.

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 633



Square-Root Process (concluded)

• The random variable 2cX(t) follows the noncentral

chi-square distribution,a

χ

(
4κμ

σ2
, 2cX(0) e−κt

)
,

where c
Δ
= (2κ/σ2)(1− e−κt)−1 and μ > 0.

• Given X(0) = x0, a constant,

E[X(t) ] = x0e
−κt + μ

(
1− e−κt

)
,

Var[X(t) ] = x0
σ2

κ

(
e−κt − e−2κt

)
+ μ

σ2

2κ

(
1− e−κt

)2
,

for t ≥ 0.
aWilliam Feller (1906–1970) in 1951.
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Modeling Stock Prices

• The most popular stochastic model for stock prices has

been the geometric Brownian motion,

dS

S
= μ dt+ σ dW.

• The logarithmic price X
Δ
= lnS follows

dX =

(
μ− σ2

2

)
dt+ σ dW

by Ito’s lemma.a

aRecall Eq. (82) on p. 614. Consistent with Lemma 9 (p. 297).
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Local-Volatility Models

• The deterministic-volatility model for “smile” posits

dS

S
= (rt − qt) dt+ σ(S, t) dW,

where instantaneous volatility σ(S, t) is called the

local-volatility function.a

– “A local volatility model is the only complete

consistent volatility model[.]”b

• A (weak) solution exists if Sσ(S, t) is continuous and

grows at most linearly in S and t.c

aDerman & Kani (1994); Dupire (1994).
bBennett (2014).
cSkorokhod (1961); Achdou & Pironneau (2005).
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Local-Volatility Models (continued)

• One needs to recover the local volatility surface σ(S, t)

from the implied volatility surface.

• Theoretically,a

σ(X,T )2 = 2
∂C
∂T + (rT − qT )X

∂C
∂X + qTC

X2 ∂2C
∂X2

.

(85)

– C is the call price at time t = 0 (today) with strike

price X and time to maturity T .

– σ(X,T ) is the local volatility that will prevail at

future time T and stock price ST = X .

aDupire (1994); Andersen & Brotherton-Ratcliffe (1998).
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Local-Volatility Models (continued)

• For more general models, this equation gives the

expectation as seen from today, under the risk-neural

probability, of the instantaneous variance at time T

given that ST = X .a

• In practice, the σ(S, t)2 derived by Dupire’s formula (85)

may have spikes, vary wildly, or even be negative.

• The term ∂2C/∂X2 in the denominator often results in

numerical instability.

aDerman & Kani (1997); R. W. Lee (2001); Derman & M. B. Miller

(2016).
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Local-Volatility Models (continued)

• Denote the implied volatility surface by Σ(X,T ) and the

local volatility surface by σ(S, t).

• The relation between Σ(X,T ) and σ(X,T ) isa

σ(X,T )2 =
Σ2 + 2Στ

[
∂Σ
∂T

+ (rT − qT )X
∂Σ
∂X

]
(
1− Xy

Σ
∂Σ
∂X

)2
+XΣτ

[
∂Σ
∂X

− XΣτ
4

(
∂Σ
∂X

)2
+X ∂2Σ

∂X2

] ,
τ

Δ
= T − t,

y
Δ
= ln(X/St) +

∫ T

t

(qs − rs) ds.

aAndreasen (1996); Andersen & Brotherton-Ratcliffe (1998);

Gatheral (2003); Wilmott (2006); Kamp (2009).
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Local-Volatility Models (continued)

• Although this version may be more stable than Eq. (85)

on p. 637, it is expected to suffer from similar problems.

• Under fairly loose conditions, Σ is symmetric if and only

if σ is, in terms of y
Δ
= ln(St/X) instead of X .a

• Small changes to the implied volatility surface may

produce big changes to the local volatility surface.

aR. W. Lee (2001).

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 640



Implied and Local Volatility Surfacesa
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aContributed by Mr. Lok, U Hou (D99922028) on April 5, 2014.
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Local-Volatility Models (continued)

• In reality, option prices only exist for a finite set of

maturities and strike prices.

• Hence interpolation and extrapolation may be needed to

construct the volatility surface.a

• But then some implied volatility surfaces generate

option prices that allow arbitrage opportunities.b

aDoing it to the option prices produces worse results (Li, 2000/2001).
bSee Rebonato (2004) for an example.
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Local-Volatility Models (concluded)

• There exist conditions for a set of option prices to be

arbitrage-free.a

• Some adopt parameterized implied volatility surfaces

that guarantee freedom from certain arbitrages.b

• For some vanilla equity options, the Black-Scholes model

seems better than the local-volatility model in predictive

power.c

• The exact opposite is concluded for hedging in equity

index markets!d

aKahalé (2004); Davis & Hobson (2007).
bGatheral & Jacquier (2014).
cDumas, Fleming, & Whaley (1998).
dCrépey (2004); Derman & M. B. Miller (2016).
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Local-Volatility Models: Popularity

• Hirsa and Neftci (2014), “most traders and firms

actively utilize this [ local-volatility ] model.”

• Bennett (2014), “Of all the four volatility regimes, [

sticky local volatility ] is arguably the most realistic and

fairly prices skew.”

• Derman & M. B. Miller (2016), “Right or wrong, local

volatility models have become popular and ubiquitousin

modeling the smile.”
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Implied Trees

• The trees for the local volatility model are called implied

trees.a

• Their construction requires option prices at all strike

prices and maturities.

– That is, an implied volatility surface.

• The local volatility model does not require that the

implied tree combine.

• Exponential-sized implied trees exist.b

aDerman & Kani (1994); Dupire (1994); Rubinstein (1994).
bCharalambousa, Christofidesb, & Martzoukosa (2007); Gong & Xu

(2019).
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Implied Trees (continued)

• How to construct a valid implied tree with efficiency has

been open for a long time.a

– Reasons may include: noise and nonsynchrony in

data, arbitrage opportunities in the smoothed and

interpolated/extrapolated implied volatility surface,

wrong model, wrong algorithms, nonlinearity,

instability, etc.

• Inversion is an ill-posed numerical problem.b

aRubinstein (1994); Derman & Kani (1994); Derman, Kani, & Chriss

(1996); Jackwerth & Rubinstein (1996); Jackwerth (1997); Coleman,

Kim, Li, & Verma (2000); Li (2000/2001); Rebonato (2004); Moriggia,

Muzzioli, & Torricelli (2009).
bAyache, Henrotte, Nassar, & X. Wang (2004).
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Implied Trees (continued)

• It is finally solved for separable local volatilities.a

– The local-volatility function σ(S, t) is separableb if

σ(S, t) = σ1(S)σ2(t).

• A solution is also available for any upper- and

lower-bounded σ.c

aLok (D99922028) & Lyuu (2015, 2016, 2017).
bBrace, Ga̧tarek, & Musiela (1997); Rebonato (2004).
cLok (D99922028) & Lyuu (2016, 2017, 2020).
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Implied Treesa (concluded)
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aPlot supplied by Prof. Lok, U Hou (D99922028) on May 4, 2019.
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The Hull-White Model

• Hull and White (1987) postulate the following

stochastic-volatility model,

dS

S
= r dt+

√
V dW1,

dV = μvV dt+ bV dW2.

• Above, V is the instantaneous variance.

• They assume μv depends on V and t (but not S).
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The Barone-Adesi–Rasmussen–Ravanelli Model

• Barone-Adesi, Rasmussen, and Ravanelli (2005)

postulate the following model,

dS

S
= μ dt+

√
V dW1,

dV = κ(θ − V ) dt+ bV dW2.

• Above, W1 and W2 are correlated.
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The Stein-Stein Model

• E. Stein and J. Stein (1991) postulate the following

model,

dS

S
= r dt+ V dW1,

dV = κ(μ− V ) dt+ σ dW.

• Closed-form formulas exist for European calls and puts.a

aSchöbel & Zhu (1999).
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The SABR Model

• Hagan, Kumar, Lesniewski, and Woodward (2002)

postulate the following model,

dS

S
= r dt+ SθV dW1,

dV = bV dW2,

for 0 ≤ θ ≤ 1.

• A nice feature of this model is that the implied volatility

surface has a compact approximate closed form.
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The Blacher Model

• Blacher (2001) postulates the following model,

dS

S
= r dt+ σ

[
1 + α(S − S0) + β(S − S0)

2
]
dW1,

dσ = κ(θ − σ) dt+ εσ dW2.

• The volatility σ follows a mean-reverting process to level

θ.
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The Hilliard-Schwartz Model

• Hilliard and Schwartz (1996) postulate the following

general model,

dS

S
= r dt+ f(S)V a dW1,

dV = μ(V ) dt+ bV dW2,

for some well-behaved function f(S) and constant a.

• It includes all previously mentioned stochastic-volatility

models as special cases.a

aH. Chiu (R98723059) (2012).
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Heston’s Stochastic-Volatility Model

• Heston (1993) assumes the stock price follows

dS

S
= (μ− q) dt+

√
V dW1, (86)

dV = κ(θ − V ) dt+ σ
√
V dW2. (87)

– V is the instantaneous variance, which follows a

square-root process.

– dW1 and dW2 have correlation ρ.

– The riskless rate r is constant.

• It may be the most popular continuous-time

stochastic-volatility model.a

aChristoffersen, Heston, & Jacobs (2009).
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Heston’s Stochastic-Volatility Model (continued)

• Heston assumes the market price of risk is b2
√
V .

• So μ = r + b2V .

• Define

dW ∗
1 = dW1 + b2

√
V dt,

dW ∗
2 = dW2 + ρb2

√
V dt,

κ∗ = κ+ ρb2σ,

θ∗ =
θκ

κ+ ρb2σ
.

• dW ∗
1 and dW ∗

2 have correlation ρ.
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Heston’s Stochastic-Volatility Model (continued)

• Under the risk-neutral probability measure Q, both W ∗
1

and W ∗
2 are Wiener processes.

• Heston’s model becomes, under probability measure Q,

dS

S
= (r − q) dt+

√
V dW ∗

1 ,

dV = κ∗(θ∗ − V ) dt+ σ
√
V dW ∗

2 .

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 657



Heston’s Stochastic-Volatility Model (continued)

• Define

φ(u, τ) = exp { ıu(lnS + (r − q) τ)

+θ∗κ∗σ−2

[
(κ∗ − ρσuı− d) τ − 2 ln

1− ge−dτ

1− g

]

+
vσ−2(κ∗ − ρσuı− d)

(
1− e−dτ

)
1− ge−dτ

}
,

d =
√

(ρσuı− κ∗)2 − σ2(−ıu− u2) ,

g = (κ∗ − ρσuı− d)/(κ∗ − ρσuı+ d).
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Heston’s Stochastic-Volatility Model (continued)

The formulas for European calls and puts area

C = S

[
1

2
+

1

π

∫ ∞

0
Re

(
X−ıuφ(u− ı, τ)

ıuSerτ

)
du

]

−Xe−rτ

[
1

2
+

1

π

∫ ∞

0
Re

(
X−ıuφ(u, τ)

ıu

)
du

]
,

P = Xe−rτ

[
1

2
− 1

π

∫ ∞

0
Re

(
X−ıuφ(u, τ)

ıu

)
du

]
,

−S

[
1

2
− 1

π

∫ ∞

0
Re

(
X−ıuφ(u− ı, τ)

ıuSerτ

)
du

]
,

where ı =
√−1 and Re(x) denotes the real part of the

complex number x.

aContributed by Mr. Chen, Chun-Ying (D95723006) on August 17,

2008 and Mr. Liou, Yan-Fu (R92723060) on August 26, 2008. See Lord &

Kahl (2009) and Cui, Rollin, & Germano (2017) for alternative formulas.
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Heston’s Stochastic-Volatility Model (concluded)

• For American options, trees are needed.

• They are all O(n3)-sized and do not match all

moments.a

• An O(n2.5)-sized 9-jump tree that matches all means

and variances with valid probabilities is available.b

• The size reduces to O(n2) for knock-out double-barrier

options.c

aNelson & Ramaswamy (1990); Nawalkha & Beliaeva (2007); Leisen

(2010); Beliaeva & Nawalkha (2010); M. Chou (R02723073) (2015); M.

Chou (R02723073) & Lyuu (2016).
bZ. Lu (D00922011) & Lyuu (2018).
cZ. Lu (D00922011) & Lyuu (2018).
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Stochastic-Volatility Models and Further Extensionsa

• How to explain the October 1987 crash?

– The Dow Jones Industrial Average fell 22.61% on

October 19, 1987 (called the Black Monday).

– The CBOE S&P 100 Volatility Index (VXO) shot up

to 150%, the highest VXO ever recorded.b

• Stochastic-volatility models require an implausibly

high-volatility level prior to and after the crash.

– Because the processes are continuous.

• Discontinuous jump models in the asset price can

alleviate the problem somewhat.c

aEraker (2004).
bCaprio (2012).
cMerton (1976).
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Stochastic-Volatility Models and Further Extensions
(continued)

• But if the jump intensity is a constant, it cannot explain

the tendency of large movements to cluster over time.

• This assumption also has no impacts on option prices.

• Jump-diffusion models combine both.

– E.g., add a jump process to Eq. (86) on p. 655.

– Closed-form formulas exist for GARCH-jump option

pricing models.a

aLiou (R92723060) (2005).
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Stochastic-Volatility Models and Further Extensions
(concluded)

• But they still do not adequately describe the systematic

variations in option prices.a

• Jumps in volatility are alternatives.b

– E.g., add correlated jump processes to Eqs. (86) and

Eq. (87) on p. 655.

• Such models allow high level of volatility caused by a

jump to volatility.c

aBates (2000); Pan (2002).
bDuffie, Pan, & Singleton (2000).
cEraker, Johnnes, & Polson (2000); Y. Lin (2007); Zhu & Lian (2012).
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Why Are Trees for Stochastic-Volatility Models
Difficult?

• The CRR tree is 2-dimensional.a

• The constant volatility makes the span from any node

fixed.

• But a tree for a stochastic-volatility model must be

3-dimensional.

– Every node is associated with a combination of stock

price and volatility.

aRecall p. 294.
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Why Are Trees for Stochastic-Volatility Models
Difficult (Binomial Case)?
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Why Are Trees for Stochastic-Volatility Models
Difficult (Trinomial Case)?
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Why Are Trees for Stochastic-Volatility Models
Difficult? (concluded)

• Locally, the tree looks fine for one time step.

• But the volatility regulates the spans of the nodes on

the stock-price plane.

• Unfortunately, those spans differ from node to node

because the volatility varies.

• So two time steps from now, the branches will not

combine!

• Smart ideas are thus needed.
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Complexities of Stochastic-Volatility Models

• A few stochastic-volatility models suffer from

subexponential (c
√
n) tree size.

• Examples include the Hull-White (1987),

Hilliard-Schwartz (1996), and SABR (2002) models.a

• Future research may extend this negative result to more

stochastic-volatility models.

– We suspect many GARCH option pricing models

entertain similar problems.b

aH. Chiu (R98723059) (2012).
bY. C. Chen (R95723051) (2008); Y. C. Chen (R95723051), Lyuu, &

Wen (D94922003) (2011).
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Complexities of Stochastic-Volatility Models
(concluded)

• Flexible placement of nodes and removal of

low-probability nodes may make the models

O(n2.5)-sized!a

• Calibration can be computationally hard.

– Few have tried it on exotic options.b

• There are usually several local minima.c

– They will give different prices to options not used in

the calibration.

– But which set capture the smile dynamics?
aZ. Lu (D00922011) & Lyuu (2018).
bAyache, Henrotte, Nassar, & X. Wang (2004).
cAyache (2004).
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Continuous-Time Derivatives Pricing
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I have hardly met a mathematician

who was capable of reasoning.

— Plato (428 B.C.–347 B.C.)

Fischer [ Black ] is the only real genius

I’ve ever met in finance. Other people,

like Robert Merton or Stephen Ross,

are just very smart and quick,

but they think like me.

Fischer came from someplace else entirely.

— John C. Cox, quoted in Mehrling (2005)
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Toward the Black-Scholes Differential Equation

• The price of any derivative on a non-dividend-paying

stock must satisfy a partial differential equation (PDE).

• The key step is recognizing that the same random

process drives both securities.

– Their prices are perfectly correlated.

• We then figure out the amount of stock such that the

gain from it offsets exactly the loss from the derivative.

• The removal of uncertainty forces the portfolio’s return

to be the riskless rate.

• PDEs allow many numerical methods to be applicable.
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Assumptionsa

• The stock price follows dS = μS dt+ σS dW .

• There are no dividends.

• Trading is continuous, and short selling is allowed.

• There are no transactions costs or taxes.

• All securities are infinitely divisible.

• The term structure of riskless rates is flat at r.

• There is unlimited riskless borrowing and lending.

• t is the current time, T is the expiration time, and

τ
Δ
= T − t.

aDerman & Taleb (2005) summarizes criticisms on these assumptions

and the replication argument.

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 673



Black-Scholes Differential Equation

• Let C be the price of a simple derivative on S.

• From Ito’s lemma (p. 607),

dC =

(
μS

∂C

∂S
+

∂C

∂t
+

1

2
σ2S2 ∂2C

∂S2

)
dt+ σS

∂C

∂S
dW.

– The same W drives both C and S.

– Unlike dS/S, the diffusion term of dC/C is

stochastic!

• Short one derivative and long ∂C/∂S shares of stock

(call it Π).

• By construction,

Π = −C + S(∂C/∂S).
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Black-Scholes Differential Equation (continued)

• The change in the value of the portfolio at time dt isa

dΠ = −dC +
∂C

∂S
dS.

• Substitute the formulas for dC and dS into the partial

differential equation to yield

dΠ =

(
−∂C

∂t
− 1

2
σ2S2 ∂2C

∂S2

)
dt.

• As this equation does not involve dW , the portfolio is

riskless during dt time: dΠ = rΠ dt.

aBergman (1982) and Bartels (1995) argue this is not quite right. But

see Macdonald (1997). Mathematically, it is wrong (Bingham & Kiesel,

2004).
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Black-Scholes Differential Equation (continued)

• So (
∂C

∂t
+

1

2
σ2S2 ∂2C

∂S2

)
dt = r

(
C − S

∂C

∂S

)
dt.

• Equate the terms to finally obtaina

∂C

∂t
+ rS

∂C

∂S
+

1

2
σ2S2 ∂2C

∂S2
= rC.

• This is a backward equation, which describes the

dynamics of a derivative’s price forward in physical time.

aKnown as the Feynman-Kac stochastic representation formula.
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Black-Scholes Differential Equation (concluded)

• When there is a dividend yield q,

∂C

∂t
+ (r − q)S

∂C

∂S
+

1

2
σ2S2 ∂2C

∂S2
= rC. (88)

• Dupire’s formula (85) for the local-volatility modela is

simply the dual of this equation:b

∂C

∂T
+ (rT − qT )X

∂C

∂X
− 1

2
σ(X,T )2X2 ∂

2C

∂X2
= −qTC.

• This is a forward equation, which describes the dynamics

of a derivative’s price backward in maturity time.

aSee p. 637.
bDerman & Kani (1997).
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Rephrase

• The Black-Scholes differential equation can be expressed

in terms of sensitivity numbers,

Θ + rSΔ+
1

2
σ2S2Γ = rC. (89)

• Identity (89) leads to an alternative way of computing

Θ numerically from Δ and Γ.

• When a portfolio is delta-neutral,

Θ +
1

2
σ2S2Γ = rC.

– A definite relation thus exists between Γ and Θ.
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Black-Scholes Differential Equation: An Alternative

• Perform the change of variable V
Δ
= lnS.

• The option value becomes U(V, t)
Δ
= C(eV , t).

• Furthermore,

∂C

∂t
=

∂U

∂t
,

∂C

∂S
=

1

S

∂U

∂V
, (90)

∂2C

∂2S
=

1

S2

∂2U

∂V 2
− 1

S2

∂U

∂V
. (91)

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 679



Black-Scholes Differential Equation: An Alternative
(concluded)

• Equations (90) and (91) are alternative ways to

calculate delta and gamma.a

• They are particularly useful for a tree of logarithmic

prices.

• The Black-Scholes differential equation (88) on p. 677

becomes

1

2
σ2 ∂2U

∂V 2
+

(
r − q − σ2

2

)
∂U

∂V
− rU +

∂U

∂t
= 0

subject to U(V, T ) being the payoff such as

max(X − eV , 0).
aSee Eqs. (49) on p. 361 and (50) on p. 363.
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[ Black ] got the equation [ in 1969 ] but then

was unable to solve it. Had he been a better

physicist he would have recognized it as a form

of the familiar heat exchange equation,

and applied the known solution. Had he been

a better mathematician, he could have

solved the equation from first principles.

Certainly Merton would have known exactly

what to do with the equation

had he ever seen it.

— Perry Mehrling (2005)

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 681



PDEs for Asian Options

• Add the new variable A(t)
Δ
=

∫ t

0
S(u) du.

• Then the value V of the Asian option satisfies this

two-dimensional PDE:a

∂V

∂t
+ rS

∂V

∂S
+

1

2
σ2S2 ∂2V

∂S2
+ S

∂V

∂A
= rV.

• The terminal conditions are

V (T, S,A) = max

(
A

T
−X, 0

)
for call,

V (T, S,A) = max

(
X − A

T
, 0

)
for put.

aKemna & Vorst (1990).
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PDEs for Asian Options (continued)

• The two-dimensional PDE produces algorithms similar

to that on pp. 444ff.a

• But one-dimensional PDEs are available for Asian

options.b

• For example, Večeř (2001) derives the following PDE for

Asian calls:

∂u

∂t
+ r

(
1− t

T
− z

)
∂u

∂z
+

(
1− t

T − z
)2

σ2

2

∂2u

∂z2
= 0

with the terminal condition u(T, z) = max(z, 0).

aBarraquand & Pudet (1996).
bRogers & Shi (1995); Večeř (2001); Dubois & Lelièvre (2005).
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PDEs for Asian Options (concluded)

• For Asian puts:

∂u

∂t
+ r

(
t

T
− 1− z

)
∂u

∂z
+

(
t
T − 1− z

)2
σ2

2

∂2u

∂z2
= 0

with the same terminal condition.

• One-dimensional PDEs lead to highly efficient numerical

methods.
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Hedging
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When Professors Scholes and Merton and I

invested in warrants,

Professor Merton lost the most money.

And I lost the least.

— Fischer Black (1938–1995)
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Delta Hedge

• The delta (hedge ratio) of a derivative f is defined as

Δ
Δ
=

∂f

∂S
.

• Thus

Δf ≈ Δ×ΔS

for relatively small changes in the stock price, ΔS.

• A delta-neutral portfolio is hedged as it is immunized

against small changes in the stock price.
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Delta Hedge (concluded)

• A trading strategy that dynamically maintains a

delta-neutral portfolio is called delta hedge.

– Trading strategies can also be static (or constant).a

• Delta changes with the stock price.

• A delta hedge needs to be rebalanced periodically in

order to maintain delta neutrality.

• In the limit where the portfolio is adjusted continuously,

“perfect” hedge is achieved and the strategy becomes

“self-financing.”

aRecall p. 491 for hedging the short forward contract with the under-

lying asset and loans.
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Implementing Delta Hedge

• We want to hedge N short derivatives.

• Assume the stock pays no dividends.

• The delta-neutral portfolio maintains N ×Δ shares of

stock plus B borrowed dollars such that

−N × f +N ×Δ× S − B = 0.

• At next rebalancing point when the delta is Δ′, buy
N × (Δ′ −Δ) shares to maintain N ×Δ′ shares.

• Delta hedge is the discrete-time analog of the

continuous-time limit and will rarely be self-financing.
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Example

• A hedger is short 10,000 European calls.

• S = 50, σ = 30%, and r = 6%.

• This call’s expiration is four weeks away, its strike price

is $50, and each call has a current value of f = 1.76791.

• As an option covers 100 shares of stock, N = 1,000,000.

• The trader adjusts the portfolio weekly.

• The calls are replicated well if the cumulative cost of

trading stock is close to the call premium’s FV.a

aThis takes the replication viewpoint: One starts with zero dollar.
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Example (continued)

• As Δ = 0.538560

N ×Δ = 538, 560

shares are purchased for a total cost of

538,560× 50 = 26,928,000

dollars to make the portfolio delta-neutral.

• The trader finances the purchase by borrowing

B = N ×Δ× S −N × f = 25,160,090

dollars net.a

aThis takes the hedging viewpoint: One starts with the option pre-

mium. See Exercise 16.3.2 of the text.
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Example (continued)

• At 3 weeks to expiration, the stock price rises to $51.

• The new call value is f ′ = 2.10580.

• So before rebalancing, the portfolio is worth

−N × f ′ + 538,560× 51−Be0.06/52 = 171, 622.

(92)

• A delta hedge does not replicate the calls perfectly.

– It is not self-financing because $171,622 can be

withdrawn.
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Example (continued)

• The magnitude of the tracking error—the variation in

the net portfolio value—can be mitigated if adjustments

are made more frequently.

• The tracking error over one rebalancing act is positive

about 68% of the time, but its expected value is ∼ 0

under the risk-neutral probability measure.a

– Should the profit and loss be calculated under the

real-world probability measure instead?b

aBoyle & Emanuel (1980).
bContributed by Mr. Chiu, Tzu-Hsuan (R08723061) on April 09, 2021.
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Example (continued)

• The tracking error at maturity is proportional to vega.a

• In practice tracking errors will cease to decrease beyond

a certain rebalancing frequency.

• With a higher delta Δ′ = 0.640355, the trader buys

N × (Δ′ −Δ) = 101, 795

shares for $5,191,545.

• The number of shares is increased to N ×Δ′ = 640, 355.

aKamal & Derman (1999).
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Example (continued)

• The cumulative cost isa

26,928,000× e0.06/52 + 5,191,545 = 32,150,634.

• The portfolio is again delta-neutral.

aWe take the replication viewpoint here. The replicating strategy is

by construction self-financing. And it matches the payoff perfectly under

the BOPM.
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Option Change in No. shares Cost of Cumulative

value Delta delta bought shares cost

τ S f Δ N×(5) (1)×(6) FV(8’)+(7)

(1) (2) (3) (5) (6) (7) (8)

4 50 1.7679 0.53856 — 538,560 26,928,000 26,928,000

3 51 2.1058 0.64036 0.10180 101,795 5,191,545 32,150,634

2 53 3.3509 0.85578 0.21542 215,425 11,417,525 43,605,277

1 52 2.2427 0.83983 −0.01595 −15,955 −829,660 42,825,960

0 54 4.0000 1.00000 0.16017 160,175 8,649,450 51,524,853

The total number of shares is 1,000,000 at expiration

(trading takes place at expiration, too).
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Example (continued)

• At expiration, the trader has 1,000,000 shares.

• They are exercised against by the in-the-money calls for

$50,000,000.

• The trader is left with an obligation of

51,524,853− 50,000,000 = 1,524,853,

which represents the replication cost.

• So if we had started with the PV of $1,524,853, we

would have replicated 10,000 such calls in this scenario.
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Example (concluded)

• The FV of the call premium equals

1,767,910× e0.06×4/52 = 1,776,088.

• That means the net gain is

1,776,088− 1,524,853 = 251,235

if we are hedging 10,000 European calls.
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Tracking Error Revisited

• Define the dollar gamma as S2Γ.

• The change in value of a delta-hedged long option

position after a duration of Δt is proportional to the

dollar gamma.

• It is about

(1/2)S2Γ[ (ΔS/S)2 − σ2Δt ].

– (ΔS/S)2 is called the daily realized variance.
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Tracking Error Revisited (continued)

• In our particular case,

S = 50,Γ = 0.0957074,ΔS = 1, σ = 0.3,Δt = 1/52.

• The estimated tracking error is

−(1/2)×502×0.0957074×[
(1/50)2 − (0.09/52)

]
= 159, 205.

• It is very close to our earlier number of 171,622.a

• Delta hedge is also called gamma scalping.b

aRecall Eq. (92) on p. 692.
bBennett (2014).
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Tracking Error Revisited (continued)

• Let the rebalancing times be t1, t2, . . . , tn.

• Let ΔSi = Si+1 − Si.

• The total tracking error at expiration is about

n−1∑
i=0

er(T−ti)
S2
i Γi

2

[(
ΔSi

Si

)2

− σ2Δt

]
.

• The tracking error is path dependent.

• It is also known thata

n−1∑
i=0

(
ΔSi

Si

)2

→ σ2T.

aProtter (2005).
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Tracking Error Revisited (concluded)a

• The tracking errorb εn over n rebalancing acts has

about the same probability of being positive as being

negative.

• Subject to certain regularity conditions, the

root-mean-square tracking error
√
E[ ε2n ] is O(1/

√
n ).c

• The root-mean-square tracking error increases with σ at

first and then decreases.

aBertsimas, Kogan, & Lo (2000).
bSuch as 251,235 on p. 698.
cGrannan & Swindle (1996).
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