
Barrier Optionsa

• Their payoff depends on whether the underlying asset’s

price reaches a certain price level H throughout its life.

• A knock-out (KO) option is an ordinary European

option which ceases to exist if the barrier H is reached

by the price of its underlying asset.

• A call knock-out option is sometimes called a

down-and-out option if H < S.

• A put knock-out option is sometimes called an

up-and-out option when H > S.
aA former MBA student in finance told me on March 26, 2004, that

she did not understand why I covered barrier options until she started

working in a bank. She was working for Lehman Brothers in Hong Kong

as of April, 2006.
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Time

Price

S Barrier hit

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 392



Barrier Options (concluded)

• A knock-in (KI) option comes into existence if a certain

barrier is reached.

• A down-and-in option is a call knock-in option that

comes into existence only when the barrier is reached

and H < S.

• An up-and-in is a put knock-in option that comes into

existence only when the barrier is reached and H > S.

• Formulas exist for all the possible barrier options

mentioned above.a

aHaug (2006).
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A Formula for Down-and-In Callsa

• Assume X ≥ H.

• The value of a European down-and-in call on a stock
paying a dividend yield of q is

Se−qτ

(
H

S

)2λ

N(x)−Xe−rτ

(
H

S

)2λ−2

N(x− σ
√
τ),

(53)

– x
Δ
= ln(H2/(SX))+(r−q+σ2/2) τ

σ
√
τ

.

– λ
Δ
= (r − q + σ2/2)/σ2.

• A European down-and-out call can be priced via the

in-out parity (see text).

aMerton (1973). See Exercise 17.1.6 of the textbook for a proof.
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A Formula for Up-and-In Putsa

• Assume X ≤ H.

• The value of a European up-and-in put is

Xe−rτ

(
H

S

)2λ−2

N(−x+ σ
√
τ)− Se−qτ

(
H

S

)2λ

N(−x).

• Again, a European up-and-out put can be priced via the

in-out parity.

aMerton (1973).
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Barrier Options: Popularity

• Knock-out options were issued in the U.S. in 1967.a

• Knock-in puts are the most popular barrier options.b

• Knock-out puts are the second most popular barrier

options.c

• Knock-out calls are the most popular among barrier call

options.d

aCox & Rubinstein (1985).
bBennett (2014).
cBennett (2014).
dBennett (2014).
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Are American Options Barrier Options?a

• American options are barrier options with the exercise

boundary as the barrier and the payoff as the rebate?

• One salient difference is that the exercise boundary must

be found by backward induction.

• It cannot be specified in an arbitrary way.

aContributed by Mr. Yang, Jui-Chung (D97723002) on March 25,

2009.
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Are American Options Barrier Options? (concluded)

• In conrast, the barrier in a barrier option is fixed by a

contract.a

– The option remains European-style, without the

right to early exercise.b

• One can also have American barrier options.

– Need to specify whether one can exercise the option

early if the stock price has not touched the barrier.c

aCox & Rubinstein (1985).
bContributed by Ms. Chen, Sin-Huei (Amber) (P00922005) on March

31, 2021.
cContributed by Mr. Lu, Yu-Ming (R06723032, D08922008) on March

31, 2021.
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Interesting Observations

• Assume H < X .

• Replace S in the Merton pricing formula Eq. (43) on p.

329 for the call with H2/S.

– Equation (53) on p. 394 for the down-and-in call

becomes Eq. (43) when r − q = σ2/2.

– Equation (53) becomes S/H times Eq. (43) when

r − q = 0.
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Interesting Observations (concluded)

• Replace S in the pricing formula for the down-and-in

call, Eq. (53), with H2/S.

– Equation (53) becomes Eq. (43) when r − q = σ2/2.

– Equation (53) becomes H/S times Eq. (43) when

r − q = 0.a

• Why?

aContributed by Mr. Chou, Ming-Hsin (R02723073) on April 24, 2014.
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Binomial Tree Algorithms

• Barrier options can be priced by binomial tree

algorithms.

• Below is for the down-and-out option.

0 H

• Pricing down-and-in options is subtler.

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 401



8

16

4

32

8

2

64

16

4

1

4.992

12.48

1.6

27.2

4.0

0

58

10

0

0

0.0

S = 8, X = 6, H = 4, R = 1.25, u = 2, and d = 0.5.

Backward-induction: C = (0.5× Cu + 0.5× Cd)/1.25.
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Binomial Tree Algorithms (continued)

• But convergence is erratic because H is not at a price

level on the tree (see plot on next page).a

– The barrier H is moved lower (or higher, if you so

choose) to a close-by node price.

– This “effective barrier” thus changes as n increases.

• In fact, the binomial tree is O(1/
√
n) convergent.b

• Solutions will be presented later.

aBoyle & Lau (1994).
bTavella & Randall (2000); J. Lin (R95221010) (2008); J. Lin

(R95221010) & Palmer (2013).
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Binomial Tree Algorithms (concluded)a

aLyuu (1998).
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Other Types of Barrier Optionsa

• Partial barrier options.

• Forward-starting barrier options.

• Window barrier options.

• Rolling barrier options.

• Moving barrier options.

aArmtrong (2001); Carr & A. Chou (1997); Davydov & Linetsky

(2001/2002); Haug (1998).
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Daily Monitoring

• Many barrier options monitor the barrier only for daily

closing prices.

• If so, only nodes at the end of a day need to check for

the barrier condition.

• We can even remove intraday nodes to create a

multinomial tree.

– A node is then followed by d+ 1 nodes if each day is

partitioned into d periods.

• Does this save time or space?a

aContributed by Ms. Chen, Tzu-Chun (R94922003) and others on

April 12, 2006.

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 406



A Heptanomial Tree (6 Periods Per Day)

�� 1 day
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Discrete Monitoring vs. Continuous Monitoring

• Discrete barriers are more expensive for knock-out

options than continuous ones.

• But discrete barriers are less expensive for knock-in

options than continuous ones.

• Discrete barriers are far less popular than continuous

ones for individual stocks.a

• They are equally popular for indices.b

aBennett (2014).
bBennett (2014).
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Data! data! data!

— Arthur Conan Doyle (1892),

The Adventures of Sherlock Holmes
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Foreign Currencies

• S denotes the spot exchange rate in domestic/foreign

terms.

– By that we mean the number of domestic currencies

per unit of foreign currency.a

• σ denotes the volatility of the exchange rate.

• r denotes the domestic interest rate.

• r̂ denotes the foreign interest rate.

aThe market convention is the opposite: A/B = x means one unit of

currency A (the reference currency or base currency) is equal to x units

of currency B (the counter-value currency).
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Foreign Currencies (concluded)

• A foreign currency is analogous to a stock paying a

known dividend yield.

– Foreign currencies pay a “continuous dividend yield”

equal to r̂ in the foreign currency.
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Time Series of the Daily Euro–USD Exchange Rate
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Distribution of the Daily Euro–USD Exchange Rate
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Distribution of the Daily Euro–USD Exchange Rate
(concluded)
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Time Series of the Minutely Euro–USD Exchange Rate
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Distribution of the Minutely Euro–USD Exchange Rate
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Time Series of the Daily GBP–USD Exchange Rate
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Distribution of the Daily GBP–USD Exchange Rate
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Distribution of the Minutely GBP–USD Exchange Rate
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Distribution of the GBP–USD Exchange Rate (after the

Collapse of Lehman Brothers and before Brexit)
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Distribution of the Daily JPY–USD Exchange Rate
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Distribution of the Daily JPY–USD Exchange Rate
(concluded)
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Foreign Exchange Options

• In 2000 the total notional volume of foreign exchange

options was US$13 trillion.a

– 38.5% were vanilla calls and puts with a maturity

less than one month.

– 52.5% were vanilla calls and puts with a maturity

between one and 18 months.

– 4% were barrier options.

– 1.5% were vanilla calls and puts with a maturity

more than 18 months.

– 1% were binary options (recall p. 207 or see p. 859).

– 0.7% were Asian options (see p. 434).
aLipton (2002).
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Foreign Exchange Options (continued)

• Foreign exchange options are settled via delivery of the

underlying currency.

• A primary use of foreign exchange (or forex) options is

to hedge currency risk.

• Consider a U.S. company expecting to receive 100

million Japanese yen in March 2000.

• Those 100 million Japanese yen will be exchanged for

U.S. dollars.
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Foreign Exchange Options (continued)

• The contract size for the Japanese yen option is

JPY6,250,000.

• The company purchases

100,000,000

6,250,000
= 16

puts on the Japanese yen with a strike of $.0088/JPY1

and an exercise month in March 2000.

• This put is in the money if the JPY-USD exchange rate

drops below 0.0088.
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Foreign Exchange Options (continued)

• These puts provide the company the right to sell

100,000,000 Japanese yen for

100,000,000× .0088 = 880,000

U.S. dollars.

• Note that these puts are equivalent to the right to buy

880,000 U.S. dollars with 100,000,000 Japanese yen.

– From this angle, they become calls.
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Foreign Exchange Options (concluded)

• Assume the exchange rate S is lognormally distributed.

• The formulas derived for stock index options in Eqs. (43)

on p. 329 apply with the dividend yield equal to r̂:

C = Se−r̂τN(x)−Xe−rτN(x− σ
√
τ), (54)

P = Xe−rτN(−x+ σ
√
τ)− Se−r̂τN(−x).

(54′)

– Above,

x
Δ
=

ln(S/X) + (r − r̂ + σ2/2) τ

σ
√
τ

.
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Distribution of the Logarithmic Euro–USD Exchange Rate
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Distribution of the Logarithmic GBP–USD Exchange Rate
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Distribution of the Logarithmic JPY–USD Exchange Rate
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Bar the roads!

Bar the paths!

Wert thou to flee from here, wert thou

to find all the roads of the world,

the way thou seekst

the path to that thou’dst find not[.]

— Richard Wagner (1813–1883), Parsifal
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Path-Dependent Derivatives

• Let S0, S1, . . . , Sn denote the prices of the underlying

asset over the life of the option.

• S0 is the known price at time zero.

• Sn is the price at expiration.

• The standard European call has a terminal value

depending only on the last price, max(Sn −X, 0).

• Its value thus depends only on the underlying asset’s

terminal price regardless of how it gets there.a

aCalled simple claims (Björk, 2009).
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Path-Dependent Derivatives (continued)

• Some derivatives are path-dependent in that their

terminal payoff depends explicitly on the path.

• The (arithmetic) average-rate call has this terminal

value:

max

(
1

n+ 1

n∑
i=0

Si −X, 0

)
.

• The average-rate put’s terminal value is given by

max

(
X − 1

n+ 1

n∑
i=0

Si, 0

)
.
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Path-Dependent Derivatives (continued)

• Average-rate options are also called Asian options.

• They are very popular.a

• They are useful hedging tools for firms that will make a

stream of purchases over a time period because the costs

are likely to be linked to the average price.

• They are mostly European.

• The averaging clause is also common in convertible

bonds and structured notes.

aAs of the late 1990s, the outstanding volume was in the range of

5–10 billion U.S. dollars (Nielsen & Sandmann, 2003).
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Path-Dependent Derivatives (continued)

• A lookback call option on the minimum has a terminal

payoff of

Sn − min
0≤i≤n

Si.

• A lookback put on the maximum has a terminal payoff of

max
0≤i≤n

Si − Sn.
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Path-Dependent Derivatives (concluded)

• The fixed-strike lookback option provides a payoff of

– max(max0≤i≤n Si −X, 0) for the call.

– max(X −min0≤i≤n Si, 0) for the put.

• Lookback calls and puts on the average (instead of a

constant X) are called average-strike options.
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Average-Rate Options

• Average-rate options are notoriously hard to price.

• The binomial tree for the averages does not combine (see

next page).

• A naive algorithm enumerates the 2n paths for an

n-period binomial tree and then averages the payoffs.

• But the complexity is exponential.a

• The Monte Carlo methodb and approximation

algorithms are some of the alternatives left.

aDai (B82506025, R86526008, D8852600) & Lyuu (2007) reduce it to

2O(
√
n ).

bSee pp. 846ff.
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States and Their Transitions

• The tuple

(i, S, P )

captures the statea for the Asian option.

– i: the time.

– S: the prevailing stock price.

– P : the running sum.b

aA “sufficient statistic,” if you will.
bWhen the average is a moving average, a different technique is needed

(C. Kao (R89723057) & Lyuu, 2003).
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States and Their Transitions (concluded)

• For the binomial model, the state transition is:

(i+ 1, Su, P + Su), for the up move

↗
(i, S, P )

↘
(i+ 1, Sd, P + Sd), for the down move

• This leads to an exponential-time algorithm.
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Pricing Some Path-Dependent Options

• Not all path-dependent derivatives are hard to price.

– Barrier options are easy to price.

• When averaging is done geometrically, the option payoffs

are

max
(
(S0S1 · · ·Sn)

1/(n+1) −X, 0
)
,

max
(
X − (S0S1 · · ·Sn)

1/(n+1), 0
)
.

c©2021 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 441



Pricing Some Path-Dependent Options (concluded)

• The limiting analytical solutions are the Black-Scholes

formulas:a

C = Se−qaτN(x)−Xe−rτN(x− σa

√
τ), (55)

P = Xe−rτN(−x+ σa

√
τ)− Se−qaτN(−x),

(55′)

– With the volatility set to σa
Δ
= σ/

√
3 .

– With the dividend yield set to qa
Δ
= (r + q + σ2/6)/2.

– x
Δ
=

ln(S/X)+(r−qa+σ2
a/2)τ

σa
√
τ

.

aSee Angus (1999), for example.
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An Approximate Formula for Asian Callsa

C = e−rτ

[
S

τ

∫ τ

0

eμt+σ2t/2N

(
−γ + (σt/τ)(τ − t/2)√

τ/3

)
dt

−XN

(
−γ√
τ/3

)]
,

where

• μ
Δ
= r − σ2/2.

• γ is the unique value that satisfies

S

τ

∫ τ

0

e3γσt(τ−t/2)/τ2+μt+σ2[ t−(3t2/τ3)(τ−t/2)2 ]/2 dt = X.

aRogers & Shi (1995); Thompson (1999); K. Chen (R92723061)

(2005); K. Chen (R92723061) & Lyuu (2006).
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Approximation Algorithm for Asian Options

• Based on the BOPM.

• Consider a node at time j with the underlying asset

price equal to S0u
j−idi.

• Name such a node N(j, i).

• The running sum
∑j

m=0 Sm at this node has a

maximum value of

S0(1 +

j︷ ︸︸ ︷
u+ u2 + · · ·+ uj−i + uj−id+ · · ·+ uj−idi)

= S0
1− uj−i+1

1− u
+ S0u

j−id
1− di

1− d
.
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Path with maximum
running average

Path with minimum
running average

N
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Approximation Algorithm for Asian Options
(continued)

• Divide this value by j + 1 and call it Amax(j, i).

• Similarly, the running sum has a minimum value of

S0(1 +

j︷ ︸︸ ︷
d+ d2 + · · ·+ di + diu+ · · ·+ diuj−i)

= S0
1− di+1

1− d
+ S0d

iu
1− uj−i

1− u
.

• Divide this value by j + 1 and call it Amin(j, i).

• Amin and Amax are running averages.
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Approximation Algorithm for Asian Options
(continued)

• The number of paths to N(j, i) are far too many:
(
j
i

)
.

– For example, (
j

j/2

)
∼ 2j

√
2/(πj) .

• The number of distinct running averages for the nodes

at any given time step n seems to be bimodal for n big

enough.a

– In the plot on the next page, u = 5/4 and d = 4/5.

aContributed by Mr. Liu, Jun (R99944027) on April 15, 2014.
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Approximation Algorithm for Asian Options
(continued)

• But all averages must lie between Amin(j, i) and

Amax(j, i).

• Pick k + 1 equally spaced values in this range and treat

them as the true and only running averages:

Am(j, i)
Δ
=

(
k −m

k

)
Amin(j, i) +

(m
k

)
Amax(j, i)

for m = 0, 1, . . . , k.
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m

Amin(j,i)

Amax(j,i)

Am(j,i)
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Approximation Algorithm for Asian Options
(continued)

• Such “bucketing” or “binning ” introduces errors, but it

works reasonably well in practice.a

• A better alternative picks values whose logarithms are

equally spaced.b

• Still other alternatives are possible (considering the

distribution of averages on p. 448).

aHull &White (1993); Ritchken, Sankarasubramanian, & Vijh (1993).
bCalled log-linear interpolation.
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Approximation Algorithm for Asian Options
(continued)

• Backward induction calculates the option values at each

node for the k + 1 running averages.

• Suppose the current node is N(j, i) and the running

average is a.

• Assume the next node is N(j + 1, i), after an up move.

• As the asset price there is S0u
j+1−idi, we seek the

option value corresponding to the new running average

Au
Δ
=

(j + 1) a+ S0u
j+1−idi

j + 2
.
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Approximation Algorithm for Asian Options
(continued)

• But Au is not likely to be one of the k + 1 running

averages at N(j + 1, i)!

• Find the 2 running averages that bracket it:

A�(j + 1, i) ≤ Au < A�+1(j + 1, i).

• In “most” cases, the fastest way to nail � is via

� =

⌊
Au −Amin(j + 1, i)

[Amax(j + 1, i)−Amin(j + 1, i) ]/k

⌋
.
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Approximation Algorithm for Asian Options
(continued)

• But watch out for the rare case where

Au = A�(j + 1, i)

for some �.

• Also watch out for the case where

Au = Amax(j, i).

• Finally, watch out for the degenerate case where

A0(j + 1, i) = · · · = Ak(j + 1, i).

– It will happen along extreme paths!
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Approximation Algorithm for Asian Options
(continued)

• Express Au as a linearly interpolated value of the two

running averages,

Au = xA�(j + 1, i) + (1− x)A�+1(j + 1, i), 0 < x ≤ 1.

• Obtain the approximate option value given the running

average Au via

Cu
Δ
= xC�(j + 1, i) + (1− x)C�+1(j + 1, i).

– C�(t, s) denotes the option value at node N(t, s)

with running average A�(t, s).
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Approximation Algorithm for Asian Options
(continued)

• This interpolation introduces the second source of error.

– Alternatives to linear interpolation exist.

• The same steps are repeated for the down node

N(j + 1, i+ 1) to obtain another approximate option

value Cd.

• Finally obtain the option value as

[ pCu + (1− p)Cd ] e
−rΔt.
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Approximation Algorithm for Asian Options
(continued)

• For the calculations at time step n− 1, no interpolation

is needed.a

– The running time is O(kn2).

∗ There are O(n2) nodes.

∗ Each node has O(k) buckets.

– The option values are simply (for calls):

Cu = max(Au −X, 0),

Cd = max(Ad −X, 0).

– That saves O(nk) calculations.

aContributed by Mr. Chen, Shih-Hang (R02723031) on April 9, 2014.
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Approximation Algorithm for Asian Options
(concluded)

• Arithmetic average-rate options were assumed to be

newly issued: no historical average to deal with.

• This problem can be easily addressed.a

• How about the Greeks?b

aSee Exercise 11.7.4 of the textbook.
bThanks to lively class discussions on March 31, 2004, and April 9,

2014.
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A Numerical Example

• Consider a European arithmetic average-rate call with

strike price 50.

• Assume zero interest rate in order to dispense with

discounting.

• The minimum running average at node A in the figure

on p. 461 is 48.925.

• The maximum running average at node A in the same

figure is 51.149.
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A Numerical Example (continued)

• Each node picks k = 3 for 4 equally spaced running

averages.

• The same calculations are done for node A’s successor

nodes B and C.

• Suppose node A is 2 periods from the root node.

• Consider the up move from node A with running

average 49.666.
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A Numerical Example (continued)

• Because the stock price at node B is 53.447, the new

running average will be

3× 49.666 + 53.447

4
≈ 50.612.

• With 50.612 lying between 50.056 and 51.206 at node B,

we solve

50.612 = x× 50.056 + (1− x)× 51.206

to obtain x ≈ 0.517.
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A Numerical Example (continued)

• The option value corresponding to running average

50.056 at node B is 0.056.

• The option values corresponding to running average

51.206 at node B is 1.206.

• Their contribution to the option value corresponding to

running average 49.666 at node A is weighted linearly as

x× 0.056 + (1− x)× 1.206 ≈ 0.611.
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A Numerical Example (continued)

• Now consider the down move from node A with running

average 49.666.

• Because the stock price at node C is 46.775, the new

running average will be

3× 49.666 + 46.775

4
≈ 48.944.

• With 48.944 lying between 47.903 and 48.979 at node C,

we solve

48.944 = x× 47.903 + (1− x)× 48.979

to obtain x ≈ 0.033.
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A Numerical Example (concluded)

• The option values corresponding to running averages

47.903 and 48.979 at node C are both 0.0.

• Their contribution to the option value corresponding to

running average 49.666 at node A is 0.0.

• Finally, the option value corresponding to running

average 49.666 at node A equals

p× 0.611 + (1− p)× 0.0 ≈ 0.2956,

where p = 0.483.

• The remaining three option values at node A can be

computed similarly.
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Convergence Behavior of the Approximation
Algorithm with k = 50000a

60 80 100 120 140
n

0.325

0.33

0.335

0.34

0.345

0.35

Asian option value

aDai (B82506025, R86526008, D8852600) & Lyuu (2002).
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Remarks on Asian Option Pricing

• Asian option pricing is an active research area.

• The above algorithm overestimates the “true” value.a

• To guarantee convergence, k needs to grow with n at

least.b

• There is a convergent approximation algorithm that

does away with interpolation with a running time ofc

2O(
√
n ).

aDai (B82506025, R86526008, D8852600), G. Huang (F83506075), &

Lyuu (2002).
bDai (B82506025, R86526008, D8852600), G. Huang (F83506075), &

Lyuu (2002).
cDai (B82506025, R86526008, D8852600) & Lyuu (2002, 2004).
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Remarks on Asian Option Pricing (continued)

• There is an O(kn2)-time algorithm with an error bound

of O(Xn/k) from the naive O(2n)-time binomial tree

algorithm in the case of European Asian options.a

– k can be varied for trade-off between time and

accuracy.

– If we pick k = O(n2), then the error is O(1/n), and

the running time is O(n4).

aAingworth, Motwani (1962–2009), & Oldham (2000).
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Remarks on Asian Option Pricing (continued)

• Another approximation algorithm reduces the error to

O(X
√
n/k).a

– It varies the number of buckets per node.

– If we pick k = O(n), the error is O(n−0.5).

– If we pick k = O(n1.5), then the error is O(1/n), and

the running time is O(n3.5).

• Under “reasonable assumptions,” an O(n2)-time

algorithm with an error bound of O(1/n) exists.b

aDai (B82506025, R86526008, D8852600), G. Huang (F83506075), &

Lyuu (2002).
bHsu (R7526001, D89922012) & Lyuu (2004).
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Remarks on Asian Option Pricing (concluded)

• The basic idea is a nonuniform allocation of running

averages instead of a uniform k.

• It strikes a tight balance between error and complexity.

Uniform allocation
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A Grand Comparisona

aHsu (R7526001, D89922012) & Lyuu (2004); J. E. Zhang (2001,2003);

K. Chen (R92723061) & Lyuu (2006).
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X σ r Exact AA2 AA3 Hsu-Lyuu Chen-Lyuu

95 0.05 0.05 7.1777275 7.1777244 7.1777279 7.178812 7.177726

100 2.7161745 2.7161755 2.7161744 2.715613 2.716168

105 0.3372614 0.3372601 0.3372614 0.338863 0.337231

95 0.09 8.8088392 8.8088441 8.8088397 8.808717 8.808839

100 4.3082350 4.3082253 4.3082331 4.309247 4.308231

105 0.9583841 0.9583838 0.9583841 0.960068 0.958331

95 0.15 11.0940944 11.0940964 11.0940943 11.093903 11.094094

100 6.7943550 6.7943510 6.7943553 6.795678 6.794354

105 2.7444531 2.7444538 2.7444531 2.743798 2.744406

90 0.10 0.05 11.9510927 11.9509331 11.9510871 11.951610 11.951076

100 3.6413864 3.6414032 3.6413875 3.642325 3.641344

110 0.3312030 0.3312563 0.3311968 0.331348 0.331074

90 0.09 13.3851974 13.3851165 13.3852048 13.385563 13.385190

100 4.9151167 4.9151388 4.9151177 4.914254 4.915075

110 0.6302713 0.6302538 0.6302717 0.629843 0.630064

90 0.15 15.3987687 15.3988062 15.3987860 15.398885 15.398767

100 7.0277081 7.0276544 7.0277022 7.027385 7.027678

110 1.4136149 1.4136013 1.4136161 1.414953 1.413286
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A Grand Comparison (concluded)

X σ r Exact AA2 AA3 Hsu-Lyuu Chen-Lyuu

90 0.20 0.05 12.5959916 12.5957894 12.5959304 12.596052 12.595602

100 5.7630881 5.7631987 5.7631187 5.763664 5.762708

110 1.9898945 1.9894855 1.9899382 1.989962 1.989242

90 0.09 13.8314996 13.8307782 13.8313482 13.831604 13.831220

100 6.7773481 6.7775756 6.7773833 6.777748 6.776999

110 2.5462209 2.5459150 2.5462598 2.546397 2.545459

90 0.15 15.6417575 15.6401370 15.6414533 15.641911 15.641598

100 8.4088330 8.4091957 8.4088744 8.408966 8.408519

110 3.5556100 3.5554997 3.5556415 3.556094 3.554687

90 0.30 0.05 13.9538233 13.9555691 13.9540973 13.953937 13.952421

100 7.9456288 7.9459286 7.9458549 7.945918 7.944357

110 4.0717942 4.0702869 4.0720881 4.071945 4.070115

90 0.09 14.9839595 14.9854235 14.9841522 14.984037 14.982782

100 8.8287588 8.8294164 8.8289978 8.829033 8.827548

110 4.6967089 4.6956764 4.6969698 4.696895 4.694902

90 0.15 16.5129113 16.5133090 16.5128376 16.512963 16.512024

100 10.2098305 10.2110681 10.2101058 10.210039 10.208724

110 5.7301225 5.7296982 5.7303567 5.730357 5.728161
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