
The Black-Derman-Toy Modela

• This model is extensively used by practitioners.

• The BDT short rate process is the lognormal binomial

interest rate process described on pp. 1002ff.b

• The volatility structurec is given by the market.

• From it, the short rate volatilities (thus vi) are

determined together with the baseline rates ri.

aBlack, Derman, & Toy (BDT) (1990), but essentially finished in 1986

according to Mehrling (2005).
bRepeated on next page.
cRecall Eq. (136) on p. 1053.
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↗
r3

↗ ↘
r2 r4v4

↗ ↘ ↗
r1 r3v3

↘ ↗ ↘
r2v2 r4v24

↘ ↗
r3v23

↘
r4v34
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The Black-Derman-Toy Model (concluded)

• Our earlier binomial interest rate tree, in contrast,

assumes vi are given a priori.

• Lognormal models preclude negative short rates.
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The BDT Model: Volatility Structure

• The volatility structure defines the yield volatilities of

zero-coupon bonds of various maturities.

• Let the yield volatility of the i-period zero-coupon bond

be denoted by κi.

• Pu is the price of the i-period zero-coupon bond one

period from now if the short rate makes an up move.

• Pd is the price of the i-period zero-coupon bond one

period from now if the short rate makes a down move.
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The BDT Model: Volatility Structure (concluded)

• Corresponding to these two prices are the following

yields to maturity,

yu
Δ
= P−1/(i−1)

u − 1,

yd
Δ
= P

−1/(i−1)
d − 1.

• The yield volatility is defined asa

κi
Δ
=

ln(yu/yd)

2
.

aRyecall Eq. (136) on p. 1053.
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The BDT Model: Calibration

• The inputs to the BDT model are riskless zero-coupon

bond yields and their volatilities.

• For economy of expression, all numbers are period based.

• Suppose inductively that we have calculated

(r1, v1), (r2, v2), . . . , (ri−1, vi−1).

– They define the binomial tree up to time i− 2 (thus

period i− 1).a

– Thus the spot rates up to time i− 1 have been

matched.
aRecall that (ri−1, vi−1) defines i−1 short rates at time i−2, which

are applicable to period i− 1.
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The BDT Model: Calibration (continued)

• We now proceed to calculate ri and vi to extend the

tree to cover period i.

• Assume the price of the i-period zero can move to Pu

or Pd one period from now.

• Let y denote the current i-period spot rate, which is

known.

• In a risk-neutral economy,

Pu + Pd

2(1 + ri)
=

1

(1 + y)i
. (155)

• Obviously, Pu and Pd are functions of the unknown ri

and vi.
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The BDT Model: Calibration (continued)

• Viewed from now, the future (i− 1)-period spot rate at

time 1 is uncertain.

• Recall that yu and yd represent the spot rates at the

up node and the down node, respectively.a

• With κ2i denoting their variance, we have

κi =
1

2
ln

(
Pu

−1/(i−1) − 1

Pd
−1/(i−1) − 1

)
. (156)

aRecall p. 1162.
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The BDT Model: Calibration (continued)

• Solving Eqs. (155)–(156) for ri and vi with backward

induction takes O(i2) time.

– That leads to a cubic-time algorithm.

• We next employ forward induction to derive a

quadratic-time calibration algorithm.a

• Forward induction figures out, by moving forward in

time, how much $1 at a node contributes to the price.b

• This number is called the state price and is the price of

the claim that pays $1 at that node and zero elsewhere.

aW. J. Chen (R84526007) & Lyuu (1997); Lyuu (1999).
bReview p. 1030(a).
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The BDT Model: Calibration (continued)

• Let the unknown baseline rate for period i be ri = r.

• Let the unknown multiplicative ratio be vi = v.

• Let the state prices at time i− 1 be

P1, P2, . . . , Pi.

• They correspond to rates

r, rv, . . . , rvi−1

for period i, respectively.

• One dollar at time i has a present value of

f(r, v)
Δ
=

P1

1 + r
+

P2

1 + rv
+

P3

1 + rv2
+ · · ·+ Pi

1 + rvi−1
.
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The BDT Model: Calibration (continued)

• By Eq. (156) on p. 1165, the yield volatility is

g(r, v)
Δ
=

1

2
ln

⎛
⎜⎝

(
Pu,1

1+rv
+

Pu,2

1+rv2 + · · · +
Pu,i−1

1+rvi−1

)−1/(i−1) − 1

(
Pd,1

1+r
+

Pd,2

1+rv
+ · · · +

Pd,i−1

1+rvi−2

)−1/(i−1) − 1

⎞
⎟⎠ .

• Above, Pu,1, Pu,2, . . . denote the state prices at time

i− 1 of the subtree rooted at the up node.a

• And Pd,1, Pd,2, . . . denote the state prices at time i− 1

of the subtree rooted at the down node.b

aLike r2v2 on p. 1159.
bLike r2 on p. 1159.
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The BDT Model: Calibration (concluded)

• Note that every node maintains three state prices:

Pi, Pu,i, Pd,i.

• Now solve

f(r, v) =
1

(1 + y)i
,

g(r, v) = κi,

for r = ri and v = vi.

• This O(n2)-time algorithm appears on p. 382 of the

textbook.

c©2020 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 1169



Calibrating the BDT Model with the Differential Tree
(in seconds)a

Number Running Number Running Number Running

of years time of years time of years time

3000 398.880 39000 8562.640 75000 26182.080

6000 1697.680 42000 9579.780 78000 28138.140

9000 2539.040 45000 10785.850 81000 30230.260

12000 2803.890 48000 11905.290 84000 32317.050

15000 3149.330 51000 13199.470 87000 34487.320

18000 3549.100 54000 14411.790 90000 36795.430

21000 3990.050 57000 15932.370 120000 63767.690

24000 4470.320 60000 17360.670 150000 98339.710

27000 5211.830 63000 19037.910 180000 140484.180

30000 5944.330 66000 20751.100 210000 190557.420

33000 6639.480 69000 22435.050 240000 249138.210

36000 7611.630 72000 24292.740 270000 313480.390

75MHz Sun SPARCstation 20, one period per year.

aLyuu (1999).
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The BDT Model: Continuous-Time Limit

• The continuous-time limit of the BDT model isa

d ln r =

(
θ(t) +

σ′(t)
σ(t)

ln r

)
dt+ σ(t) dW.

• The short rate volatility σ(t) should be a declining

function of time for the model to display mean reversion.

– That makes σ′(t) < 0.

• In particular, constant σ(t) will not attain mean

reversion.

aJamshidian (1991).
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The Black-Karasinski Modela

• The BK model stipulates that the short rate follows

d ln r = κ(t)(θ(t)− ln r) dt+ σ(t) dW.

• This explicitly mean-reverting model depends on time

through κ( · ), θ( · ), and σ( · ).
• The BK model hence has one more degree of freedom

than the BDT model.

• The speed of mean reversion κ(t) and the short rate

volatility σ(t) are independent.

aBlack & Karasinski (1991).

c©2020 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 1172



The Black-Karasinski Model: Discrete Time

• The discrete-time version of the BK model has the same

representation as the BDT model.

• To maintain a combining binomial tree, however,

requires some manipulations.

• The next plot illustrates the ideas in which

t2
Δ
= t1 +Δt1,

t3
Δ
= t2 +Δt2.
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↗
ln rd(t2)

↗ ↘
ln r(t1) ln rdu(t3) = ln rud(t3)

↘ ↗
ln ru(t2)

↘

c©2020 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 1174



The Black-Karasinski Model: Discrete Time
(continued)

• Note that

ln rd(t2) = ln r(t1) + κ(t1)(θ(t1) − ln r(t1)) Δt1 − σ(t1)
√

Δt1 ,

ln ru(t2) = ln r(t1) + κ(t1)(θ(t1) − ln r(t1)) Δt1 + σ(t1)
√

Δt1 .

• To make sure an up move followed by a down move

coincides with a down move followed by an up move,

ln rd(t2) + κ(t2)(θ(t2)− ln rd(t2))Δt2 + σ(t2)
√
Δt2 ,

= ln ru(t2) + κ(t2)(θ(t2)− ln ru(t2))Δt2 − σ(t2)
√
Δt2 .
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The Black-Karasinski Model: Discrete Time
(continued)

• They imply

κ(t2) =
1− (σ(t2)/σ(t1))

√
Δt2/Δt1

Δt2
.

(157)

• So from Δt1, we can calculate the Δt2 that satisfies the

combining condition and then iterate.

– t0 → Δt1 → t1 → Δt2 → t2 → Δt3 → · · · → T

(roughly).a

aAs κ(t), θ(t), σ(t) are independent of r, the Δti will not depend on

r either.
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The Black-Karasinski Model: Discrete Time
(concluded)

• Unequal durations Δti are often necessary to ensure a

combining tree.a

aAmin (1991); C. I. Chen (R98922127) (2011); Lok (D99922028) &

Lyuu (2016, 2017).
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Problems with Lognormal Models in General

• Lognormal models such as BDT and BK share the

problem that Eπ[M(t) ] = ∞ for any finite t if they

model the continuously compounded rate.a

• So periodically compounded rates should be modeled.b

• Another issue is computational.

• Lognormal models usually do not admit of analytical

solutions to even basic fixed-income securities.

• As a result, to price short-dated derivatives on long-term

bonds, the tree has to be built over the life of the

underlying asset instead of the life of the derivative.
aHogan & Weintraub (1993).
bSandmann & Sondermann (1993).
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Problems with Lognormal Models in General
(concluded)

• This problem can be somewhat mitigated by adopting

variable-duration time steps.a

– Use a fine time step up to the maturity of the

short-dated derivative.

– Use a coarse time step beyond the maturity.

• A down side of this procedure is that it has to be

tailor-made for each derivative.

• Finally, empirically, interest rates do not follow the

lognormal distribution.

aHull & White (1993).
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The Extended Vasicek Modela

• Hull and White proposed models that extend the

Vasicek model and the CIR model.

• They are called the extended Vasicek model and the

extended CIR model.

• The extended Vasicek model adds time dependence to

the original Vasicek model,

dr = (θ(t)− a(t) r) dt+ σ(t) dW.

• Like the Ho-Lee model, this is a normal model.

• The inclusion of θ(t) allows for an exact fit to the

current spot rate curve.
aHull & White (1990).
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The Extended Vasicek Model (concluded)

• Function σ(t) defines the short rate volatility, and a(t)

determines the shape of the volatility structure.

• Many European-style securities can be evaluated

analytically.

• Efficient numerical procedures can be developed for

American-style securities.
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The Hull-White Model

• The Hull-White model is the following special case,

dr = (θ(t)− ar) dt+ σ dW. (158)

• When the current term structure is matched,a

θ(t) =
∂f(0, t)

∂t
+ af(0, t) +

σ2

2a

(
1− e−2at

)
.

– Recall that f(0, t) defines the forward rate curve.

aHull & White (1993).

c©2020 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 1182



The Extended CIR Model

• In the extended CIR model the short rate follows

dr = (θ(t)− a(t) r) dt+ σ(t)
√
r dW.

• The functions θ(t), a(t), and σ(t) are implied from

market observables.

• With constant parameters, there exist analytical

solutions to a small set of interest rate-sensitive

securities.
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The Hull-White Model: Calibrationa

• We describe a trinomial forward induction scheme to

calibrate the Hull-White model given a and σ.

• As with the Ho-Lee model, the set of achievable short

rates is evenly spaced.

• Let r0 be the annualized, continuously compounded

short rate at time zero.

• Every short rate on the tree takes on a value

r0 + jΔr

for some integer j.

aHull & White (1993).
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The Hull-White Model: Calibration (continued)

• Time increments on the tree are also equally spaced at

Δt apart.

• Hence nodes are located at times iΔt for i = 0, 1, 2, . . . .

• We shall refer to the node on the tree with

ti
Δ
= iΔt,

rj
Δ
= r0 + jΔr,

as the (i, j) node.

• The short rate at node (i, j), which equals rj , is

effective for the time period [ ti, ti+1).
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The Hull-White Model: Calibration (continued)

• Use

μi,j
Δ
= θ(ti)− arj (159)

to denote the drift ratea of the short rate as seen from

node (i, j).

• The three distinct possibilities for node (i, j) with three

branches incident from it are displayed on p. 1187.

• The middle branch may be an increase of Δr, no

change, or a decrease of Δr.

aOr, the annualized expected change.
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The Hull-White Model: Calibration (continued)

(i, j)

�
(i+ 1, j + 2)

�(i+ 1, j + 1)

� (i+ 1, j)

(i, j)

�(i+ 1, j + 1)

� (i+ 1, j)

�(i+ 1, j − 1)

(i, j) � (i+ 1, j)

�(i+ 1, j − 1)

�
(i+ 1, j − 2)
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The Hull-White Model: Calibration (continued)

• The upper and the lower branches bracket the middle

branch.

• Define

p1(i, j)
Δ
= the probability of following the upper branch from node (i, j),

p2(i, j)
Δ
= the probability of following the middle branch from node (i, j),

p3(i, j)
Δ
= the probability of following the lower branch from node (i, j).

• The root of the tree is set to the current short rate r0.

• Inductively, the drift μi,j at node (i, j) is a function of

(the still unknown) θ(ti).

– It describes the expected change from node (i, j).
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The Hull-White Model: Calibration (continued)

• Once θ(ti) is available, μi,j can be derived via

Eq. (159) on p. 1186.

• This in turn determines the branching scheme at every

node (i, j) for each j, as we will see shortly.

• The value of θ(ti) must thus be made consistent with

the spot rate r(0, ti+2).
a

aNot r(0, ti+1)!
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The Hull-White Model: Calibration (continued)

• The branches emanating from node (i, j) with their

probabilitiesa must be chosen to be consistent with μi,j

and σ.

• This is done by selecting the middle node to be as

closest to the current short rate rj plus the drift μi,jΔt.
b

aThat is, p1(i, j), p2(i, j), and p3(i, j).
bA precursor of Lyuu and C. Wu’s (R90723065) (2003, 2005) mean-

tracking idea, which is the precursor of the binomial-trinomial tree of

Dai (B82506025, R86526008, D8852600) & Lyuu (2006, 2008, 2010).
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The Hull-White Model: Calibration (continued)

• Let k be the number among { j − 1, j, j + 1 } that

makes the short rate reached by the middle branch, rk,

closest to

rj + μi,jΔt.

– But note that μi,j is still not computed yet.

• Then the three nodes following node (i, j) are nodes

(i+ 1, k + 1), (i+ 1, k), (i+ 1, k − 1).

• See p. 1192 for a possible geometry.

• The resulting tree combines.
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The Hull-White Model: Calibration (continued)

• The probabilities for moving along these branches are

functions of μi,j , σ, j, and k:

p1(i, j) =
σ2Δt+ η2

2(Δr)2
+

η

2Δr
, (160)

p2(i, j) = 1− σ2Δt+ η2

(Δr)2
, (160′)

p3(i, j) =
σ2Δt+ η2

2(Δr)2
− η

2Δr
, (160′′)

where

η
Δ
= μi,jΔt+ (j − k)Δr.
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The Hull-White Model: Calibration (continued)

• As trinomial tree algorithms are but explicit methods in

disguise,a certain relations must hold for Δr and Δt to

guarantee stability.

• It can be shown that their values must satisfy

σ
√
3Δt

2
≤ Δr ≤ 2σ

√
Δt

for the probabilities to lie between zero and one.

– For example, Δr can be set to σ
√
3Δt .b

• Now it only remains to determine θ(ti).

aRecall p. 826.
bHull & White (1988).
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The Hull-White Model: Calibration (continued)

• At this point at time ti,

r(0, t1), r(0, t2), . . . , r(0, ti+1)

have already been matched.

• Let Q(i, j) be the state price at node (i, j).

• By construction, the state prices Q(i, j) for all j are

known by now.

• We begin with state price Q(0, 0) = 1.
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The Hull-White Model: Calibration (continued)

• Let r̂(i) refer to the short rate value at time ti.

• The value at time zero of a zero-coupon bond maturing

at time ti+2 is then

e−r(0,ti+2)(i+2)Δt

=
∑
j

Q(i, j) e−rjΔtEπ
[
e−r̂(i+1)Δt

∣∣∣ r̂(i) = rj

]
.(161)

• The right-hand side represents the value of $1 at time

ti+2 as seen at node (i, j) at timea ti before being

discounted by Q(i, j).

aThus r̂(i+ 1) is stochastic.
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The Hull-White Model: Calibration (continued)

• The expectation in Eq. (161) can be approximated bya

Eπ
[
e−r̂(i+1)Δt

∣∣∣ r̂(i) = rj

]
≈ e−rjΔt

(
1− μi,j(Δt)

2 +
σ2(Δt)3

2

)
. (162)

– This solves the chicken-egg problem!

• Substitute Eq. (162) into Eq. (161) and replace μi,j

with θ(ti)− arj to obtain

θ(ti) ≈
∑

j Q(i, j) e
−2rjΔt (

1 + arj(Δt)2 + σ2(Δt)3/2
)

− e
−r(0,ti+2)(i+2)Δt

(Δt)2
∑

j Q(i, j) e
−2rjΔt

.

aSee Exercise 26.4.2 of the textbook.
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The Hull-White Model: Calibration (continued)

• For the Hull-White model, the expectation in Eq. (162)

is actually known analytically by Eq. (30) on p. 179:

Eπ
[
e−r̂(i+1)Δt

∣∣∣ r̂(i) = rj

]
= e−rjΔt+(−θ(ti)+arj+σ2Δt/2)(Δt)2 .

• Therefore, alternatively,

θ(ti) =
r(0, ti+2)(i+ 2)

Δt
+
σ2Δt

2
+
ln
∑

j Q(i, j) e−2rjΔt+arj(Δt)2

(Δt)2
.

• With θ(ti) in hand, we can compute μi,j .
a

aSee Eq. (159) on p. 1186.
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The Hull-White Model: Calibration (concluded)

• With μi,j available, we compute the probabilities.a

• Finally the state prices at time ti+1:

Q(i+ 1, j)

=
∑

(i, j∗) is connected to (i + 1, j) with probability pj∗

pj∗e
−rj∗ΔtQ(i, j∗).

• There are at most 5 choices for j∗ (why?).

• The total running time is O(n2).

• The space requirement is O(n) (why?).

aSee Eqs. (160) on p. 1193.
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Comments on the Hull-White Model

• One can try different values of a and σ for each option.

• Or have an a value common to all options but use a

different σ value for each option.

• Either approach can match all the option prices exactly.

• But suppose the demand is for a single set of parameters

that replicate all option prices.

• Then the Hull-White model can be calibrated to all the

observed option prices by choosing a and σ that

minimize the mean-squared pricing error.a

aHull & White (1995).
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The Hull-White Model: Calibration with Irregular
Trinomial Trees

• The previous calibration algorithm is quite general.

• For example, it can be modified to apply to cases where

the diffusion term has the form σrb.

• But it has at least two shortcomings.

• First, the resulting trinomial tree is irregular (p. 1192).

– So it is harder to program (for nonprogrammers).

• The second shortcoming is a consequence of the tree’s

irregular shape.
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The Hull-White Model: Calibration with Irregular
Trinomial Trees (concluded)

• Recall that the algorithm figured out θ(ti) that matches

the spot rate r(0, ti+2) in order to determine the

branching schemes for the nodes at time ti.

• But without those branches, the tree was not specified,

and backward induction on the tree was not possible.

• To avoid this chicken-egg dilemma, the algorithm turned

to the continuous-time model to evaluate Eq. (161) on

p. 1196 that helps derive θ(ti).

• The resulting θ(ti) hence might not yield a tree that

matches the spot rates exactly.
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The Hull-White Model: Calibration with Regular
Trinomial Treesa

• The next, simpler algorithm exploits the fact that the

Hull-White model has a constant diffusion term σ.

• The resulting trinomial tree will be regular.

• All the θ(ti) terms can be chosen by backward

induction to match the spot rates exactly.

• The tree is constructed in two phases.

aHull & White (1994).
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The Hull-White Model: Calibration with Regular
Trinomial Trees (continued)

• In the first phase, a tree is built for the θ(t) = 0 case,

which is an Ornstein-Uhlenbeck process:

dr = −ar dt+ σ dW, r(0) = 0.

– The tree is dagger-shaped (see p. 1205).

– The number of nodes above the r0-line is jmax, and

that below the line is jmin.

– They will be picked so that the probabilities (160) on

p. 1193 are positive for all nodes.
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The short rate at node (0, 0) equals r0 = 0; here jmax = 3

and jmin = 2.
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The Hull-White Model: Calibration with Regular
Trinomial Trees (concluded)

• The tree’s branches and probabilities are now in place.

• Phase two fits the term structure.

– Backward induction is applied to calculate the βi to

add to the short rates on the tree at time ti so that

the spot rate r(0, ti+1) is matched.a

aContrast this with the previous algorithm, where it was r(0, ti+2)

that was matched!
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The Hull-White Model: Calibration

• Set Δr = σ
√
3Δt and assume that a > 0.

• Node (i, j) is a top node if j = jmax and a bottom node

if j = −jmin.

• Because the root of the tree has a short rate of r0 = 0,

phase one adopts rj = jΔr.

• Hence the probabilities in Eqs. (160) on p. 1193 use

η
Δ
= −ajΔrΔt+ (j − k)Δr.

• Recall that k tracks the middle branch.
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The Hull-White Model: Calibration (continued)

• The probabilities become

p1(i, j)

=
1

6
+

a2j2(Δt)2 − 2ajΔt(j − k) + (j − k)2 − ajΔt + (j − k)

2
, (163)

p2(i, j)

=
2

3
−

[
a
2
j
2
(Δt)

2 − 2ajΔt(j − k) + (j − k)
2

]
, (164)

p3(i, j)

=
1

6
+

a2j2(Δt)2 − 2ajΔt(j − k) + (j − k)2 + ajΔt − (j − k)

2
. (165)

• p1: up move; p2: flat move; p3: down move.
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The Hull-White Model: Calibration (continued)

• The dagger shape dictates this:

– Let k = j − 1 if node (i, j) is a top node.

– Let k = j + 1 if node (i, j) is a bottom node.

– Let k = j for the rest of the nodes.

• Note that the probabilities are identical for nodes (i, j)

with the same j.

• Furthermore, p1(i, j) = p3(i,−j).
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The Hull-White Model: Calibration (continued)

• The inequalities

3−√
6

3
< jaΔt <

√
2

3
(166)

ensure that all the branching probabilities are positive in

the upper half of the tree, that is, j > 0 (verify this).

• Similarly, the inequalities

−
√

2

3
< jaΔt < −3−√

6

3

ensure that the probabilities are positive in the lower

half of the tree, that is, j < 0.
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The Hull-White Model: Calibration (continued)

• To further make the tree symmetric across the r0-line,

we let jmin = jmax.

• As
3−√

6

3
≈ 0.184,

a good choice is

jmax = �0.184/(aΔt)�.
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The Hull-White Model: Calibration (continued)

• Phase two computes the βis to fit the spot rates.

• We begin with state price Q(0, 0) = 1.

• Inductively, suppose that spot rates

r(0, t1), r(0, t2), . . . , r(0, ti)

have already been matched.

• By construction, the state prices Q(i, j) for all j are

known by now.
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The Hull-White Model: Calibration (continued)

• The value of a zero-coupon bond maturing at time ti+1

equals

e−r(0,ti+1)(i+1)Δt =
∑
j

Q(i, j) e−(βi+rj)Δt

by risk-neutral valuation.

• Hence

βi =
r(0, ti+1)(i+ 1)Δt+ ln

∑
j Q(i, j) e−rjΔt

Δt
.

(167)
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The Hull-White Model: Calibration (concluded)

• The short rate at node (i, j) now equals βi + rj .

• The state prices at time ti+1,

Q(i+ 1, j), −min(i+ 1, jmax) ≤ j ≤ min(i+ 1, jmax),

can now be calculated as before.a

• The total running time is O(njmax).

• The space requirement is O(n).

aRecall p. 1199.
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A Numerical Example

• Assume a = 0.1, σ = 0.01, and Δt = 1 (year).

• Immediately, Δr = 0.0173205 and jmax = 2.

• The plot on p. 1216 illustrates the 3-period trinomial

tree after phase one.

• For example, the branching probabilities for node E are

calculated by Eqs. (163)–(165) on p. 1208 with j = 2

and k = 1.

c©2020 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 1215



�

�

�

A

�

�

�

B
�

�

�

C
�

�

�

D

�

�

�

E
�

�

�

F
�

�

�

G
�

�

�

H
�

�

�I

Node A, C, G B, F E D, H I

r (%) 0.00000 1.73205 3.46410 −1.73205 −3.46410

p1 0.16667 0.12167 0.88667 0.22167 0.08667

p2 0.66667 0.65667 0.02667 0.65667 0.02667

p3 0.16667 0.22167 0.08667 0.12167 0.88667
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A Numerical Example (continued)

• Suppose that phase two is to fit the spot rate curve

0.08− 0.05× e−0.18×t.

• The annualized continuously compounded spot rates are

r(0, 1) = 3.82365%, r(0, 2) = 4.51162%, r(0, 3) = 5.08626%.

• Start with state price Q(0, 0) = 1 at node A.
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A Numerical Example (continued)

• Now, by Eq. (167) on p. 1213,

β0 = r(0, 1) + lnQ(0, 0) e−r0 = r(0, 1) = 3.82365%.

• Hence the short rate at node A equals

β0 + r0 = 3.82365%.

• The state prices at year one are calculated as

Q(1, 1) = p1(0, 0) e
−(β0+r0) = 0.160414,

Q(1, 0) = p2(0, 0) e
−(β0+r0) = 0.641657,

Q(1,−1) = p3(0, 0) e
−(β0+r0) = 0.160414.
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A Numerical Example (continued)

• The 2-year rate spot rate r(0, 2) is matched by picking

β1 = r(0, 2)×2+ln
[
Q(1, 1) e−Δr +Q(1, 0) +Q(1,−1) eΔr

]
= 5.20459%.

• Hence the short rates at nodes B, C, and D equal

β1 + rj ,

where j = 1, 0,−1, respectively.

• They are found to be 6.93664%, 5.20459%, and

3.47254%.
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A Numerical Example (continued)

• The state prices at year two are calculated as

Q(2, 2) = p1(1, 1) e−(β1+r1)Q(1, 1) = 0.018209,

Q(2, 1) = p2(1, 1) e−(β1+r1)Q(1, 1) + p1(1, 0) e−(β1+r0)Q(1, 0)

= 0.199799,

Q(2, 0) = p3(1, 1) e−(β1+r1)Q(1, 1) + p2(1, 0) e−(β1+r0)Q(1, 0)

+p1(1,−1) e−(β1+r−1)Q(1,−1) = 0.473597,

Q(2,−1) = p3(1, 0) e−(β1+r0)Q(1, 0) + p2(1,−1) e−(β1+r−1)Q(1,−1)

= 0.203263,

Q(2,−2) = p3(1,−1) e−(β1+r−1)Q(1,−1) = 0.018851.
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A Numerical Example (concluded)

• The 3-year rate spot rate r(0, 3) is matched by picking

β2 = r(0, 3)× 3 + ln
[
Q(2, 2) e−2×Δr +Q(2, 1) e−Δr +Q(2, 0)

+Q(2,−1) eΔr +Q(2,−2) e2×Δr
]
= 6.25359%.

• Hence the short rates at nodes E, F, G, H, and I equal

β2 + rj , where j = 2, 1, 0,−1,−2, respectively.

• They are found to be 9.71769%, 7.98564%, 6.25359%,

4.52154%, and 2.78949%.

• The figure on p. 1222 plots βi for i = 0, 1, . . . , 29.
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The (Whole) Yield Curve Approach

• We have seen several Markovian short rate models.

• The Markovian approach is computationally efficient.

• But it is difficult to model the behavior of yields and

bond prices of different maturities.

• The alternative yield curve approach regards the whole

term structure as the state of a process and directly

specifies how it evolves.
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The Heath-Jarrow-Morton (HJM) Modela

• This influential model is a forward rate model.

• The HJM model specifies the initial forward rate curve

and the forward rate volatility structure.

– The volatility structure describes the volatility of

each forward rate for a given maturity date.

• Like the Black-Scholes option pricing model, neither risk

preference assumptions nor the drifts of forward rates

are needed.

aHeath, Jarrow, & Morton (1992).
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The HJM Model (continued)

• Within a finite-time horizon [ 0, U ], we take as given the

time-zero forward rate curve f(0, T ) for T ∈ [ 0, U ].

• Since this curve is used as the boundary value at t = 0,

perfect fit to the observed term structure is automatic.

• The forward rates are driven by k stochastic factors.
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The HJM Model (continued)

• Specifically the forward rate movements are governed by

the stochastic process,

df(t, T ) = μ(t, T ) dt+

k∑
i=1

σi(t, T ) dWi,

(168)

where μ and σi may depend on the past history of the

independent Wiener processes W1,W2, . . . ,Wk.

• One-factor models seem to perform better than

multifactor models empirically, at least for pricing

short-dated options.a

aAmin & Morton (1994).
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The HJM Model (continued)

• But two-factor models perform better in hedging caps

and floors.a

• Kamakura (2019) has a 10-factorb (14-factorc) HJM

model for the U.S. Treasuries (German bonds,

respectively).

• A unique equivalent martingale measure π can be

established under which the prices of interest rate

derivatives do not depend on the market prices of risk.

aGupta & Subrahmanyam (2001, 2005).
bSee http://www.kamakuraco.com/KamakuraReleasesNewStochasticVolatilityModel
cSee http://www.kamakuraco.com/KamakuraReleases14FactorHeathJarrowandMorto.
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The HJM Model (continued)

Theorem 22 (1) For all 0 < t ≤ T ,

μ(t, T ) =
k∑

i=1

σi(t, T )

∫ T

t

σi(t, u) du (169)

holds under π almost surely. (2) The bond price dynamics

under π is given by

dP (t, T )

P (t, T )
= r(t) dt−

k∑
i=1

σp,i(t, T ) dWi, (170)

where σp,i(t, T ) ≡
∫ T

t
σi(t, u) du.
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The HJM Model (concluded)

• Hence choosing the volatility functions σi(t, T ) of the

forward rate dynamics under π uniquely determines the

drift parameters under π and the prices of all claims.
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The Use of the HJM Model

• Take the one-factor model,

df(t, T ) = μ(t, T ) dt+ σ(t, T ) dWt.

• To use the HJM model, we first pick σ(t, T ).

• This is the modeling part.

• The drift parameters are then determined by Eq. (169)

on p. 1228.

• Now fetch today’s forward rate curve { f(0, T ), T ≥ 0 }
and integrate it to obtain the forward rates,

f(t, T ) = f(0, T ) +

∫ t

0

μ(s, T ) ds+

∫ t

0

σ(s, T ) dWs.
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The Use of the HJM Model (concluded)

• Compute the future bond prices by

P (t, T ) = e−
∫ T
t

f(t,s) ds

if necessary.

• European-style derivatives can be priced by simulating

many paths and taking average.
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Short Rate under the HJM Model

• From Eq. (26.19) of the textbook, the short rate follows

the following SDE,

dr(t) =
∂f(0, t)

∂t
dt

+

[ ∫ t

0

(
σp(s, t)

∂σ(s, t)

∂t
+ σ(s, t)2

)
ds

]
dt

+

(∫ t

0

∂σ(s, t)

∂t
dWs

)
dt+ σ(t, t) dWt. (171)

• Since the second and the third terms on the right-hand

side depend on the history of σp and/or dW , they can

make r non-Markovian.
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Short Rate under the HJM Model (concluded)

• If σp(t, T ) = σ(T − t) for a constant σ, the short rate

process r becomes Markovian.

• Then Eq. (171) on p. 1232 is reduced to

dr =

(
∂f(0, t)

∂t
+ σ2t

)
dt+ σ dW.

• This is the continuous-time Ho-Lee model (154) on p.

1154.a

• See Carverhill (1994) and Jeffrey (1995) for conditions

for the short rate to be Markovian.

aSee p. 392 of the textbook.
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The Alternative HJM Model

• Alternatively, we can start with the bond process under

π:

dP (t, T )

P (t, T )
= r(t) dt+

k∑
i=1

σp,i(t, T ) dWi. (172)

• Thena

df(t, T ) =

k∑
i=1

σp,i(t, T )
∂σp,i(t, T )

∂T
dt

−
k∑

i=1

∂σp,i(t, T )

∂T
dWi.

aCarverhill (1995); Musiela & Rutkowski (1997); Hull (1999).
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Gaussian HJM Modelsa

• A nonstochastic volatility depends on only t and T .

• When the forward rate volatilities σi(t, T ) are

nonstochastic, we have a Gaussian HJM model.

• For Gaussian HJM models, the bond price volatilities

σp,i(t, T ) must also be nonstochastic.

• The forward rates have a normal distribution, whereas

the bond prices have a lognormal distribution.

aMusiela & Rutkowski (1997).
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Gaussian HJM Models (concluded)

• σ(t, T ) = σ: The Ho-Lee model (154) on p. 1154 obtains.

• σ(t, T ) = σe−a(T−t): The Hull-White model (158) on p.

1182 obtains.

• σ(t, T ) = σ0 + σ1(T − t): The linear absolute model.a

• σ(t, T ) = σ [ γ(T − t) + 1 ] e−(λ/2)(T−t): The

Mercurio-Moraleda (2000) model.

aGupta & Subrahmanyam (2001, 2005).
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Local-Volatility HJM Modelsa

• If the forward rate volatilities σi(t, T, f(t, T )) depend on

t, T , and f(t, T ) only, we have a local-volatility HJM

model.

• The same term may also apply to HJM models whose

bond price volatilities σp,i(t, T, P (t, T )) depend on t, T ,

and P (t, T ) only.

aBrigo & Mercurio (2006).
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Local-Volatility HJM Models (continued)

• The (nearly) proportional volatility model:a

σ(t, T, f(t, T )) = σ0 min(κ, f(t, T )), σ0, κ > 0.

• The proportional volatility model:b

σ(t, T, f(t, T )) = σ0f(t, T ). (173)

• The linear proportional model:c

σ(t, T, f(t, T )) = [σ0 + σ1(T − t) ] f(t, T ).

aHeath, Jarrow, & Morton (1992); Jarrow (1996). The large positive

constant κ prevents explosion in finite time.
bGupta & Subrahmanyam (2001, 2005).
cGupta & Subrahmanyam (2001, 2005).
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Local-Volatility HJM Models (continued)

• Exponentially dampened volatility proportional to the

short rate:a

σ(t, T ) = σf(t, t) e−a(T−t).

• The Ritchken-Sankarasubramanian (1995) model:b

σ(t, T ) = σ(t, t) e−
∫ T
t

κ(x) dx.

– For example,c

σ(t, t) = σr(t)γ .

aGrant & Vora (1999).
bThe short rate volatility σ(t, t) may depend on the short rate r(t).
cRitchken & Sankarasubramanian (1995); Li, Ritchken, & Sankara-

subramanian (1995).
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Local-Volatility HJM Models (concluded)

• A model attributed to Ian Cooper (1993):a

σp(t, T, P (t, T )) = ψ(t) lnP (t, T )

in Eq. (172) on p. 1234:

aRebonato (1996). It is equivalent to the proportional volatility model

(173) when ψ(t) is a constant.
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Trees for HJM Models

• Obtain today’s forward rate curve:

f(0, 0), f(0,Δt), f(0, 2Δt), f(0, 3Δt), . . . , f(0, T ).

• For binomial trees, generate the two forward rate curves

at time Δt:

fu(Δt,Δt), fu(Δt, 2Δt), fu(Δt, 3Δt), . . . , fu(Δt, T ),

fd(Δt,Δt), fd(Δt, 2Δt), fd(Δt, 3Δt), . . . , fd(Δt, T ).

by Eq. (168) on p. 1226 with μ(t, T ) from Eq. (169) on

p. 1228.
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Trees for HJM Models (continued)

• Iterate until the maturity t ≤ T of the derivative.

• A straightforward implementation of the HJM model

results in noncombining trees.

– For a binomial tree with n time steps, O(2n) nodes

for one-factor HJM models; O(3n) or O(4n) for

two-factor models.a

aClewlow & Strickland (1998); Hull (1999); Nawalkha, Beliaeva, &

Soto (2007).
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Trees for HJM Models (continued)

• Jarrow (1996): “a large number of time steps is not

always essential for obtaining good approximations.”

• Rebonato (1996): “it is difficult to see how a five-year

cap with quarterly resets (let alone an option thereon)

could be priced using [10 or 12 time steps].”

• Some trees are not analyzed.a

aBrace (1996); Ga̧tarek & Ko�lakowski (2003); Ferris (2012).
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Trees for HJM Models (concluded)

• Nawalkha & J. Zhang (2004) has a combining tree for

the proportional volatility model with a positive lower

bound.

– It is described in Nawalkha, Beliaeva, & Soto (2007)

but not published.

• For Gaussian HJM models, O(n2) nodes may suffice.a

aLok (D99922028), Lu (D00922011), & Lyuu (2020); Lyuu (2019).
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Finis
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