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The historian is a prophet in reverse.

— Friedrich von Schlegel (1772–1829)
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GARCH Option Pricinga

• Options can be priced when the underlying asset’s

return follows a GARCH process.

• Let St denote the asset price at date t.

• Let h2
t be the conditional variance of the return over

the period [ t, t+ 1) given the information at date t.

– “One day” is merely a convenient term for any

elapsed time Δt.

aARCH (autoregressive conditional heteroskedastic) is due to Engle

(1982), co-winner of the 2003 Nobel Prize in Economic Sciences. GARCH

(generalized ARCH) is due to Bollerslev (1986) and Taylor (1986). A

Bloomberg quant said to me on Feb 29, 2008, that GARCH is seldom

used in trading.
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GARCH Option Pricing (continued)

• Adopt the following risk-neutral process for the price

dynamics:a

ln
St+1

St
= r − h2

t

2
+ htεt+1, (120)

where

h2
t+1 = β0 + β1h

2
t + β2h

2
t (εt+1 − c)2, (121)

εt+1 ∼ N(0, 1) given information at date t,

r = daily riskless return,

c ≥ 0.

aDuan (1995).
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GARCH Option Pricing (continued)

• The five unknown parameters of the model are c, h0, β0,

β1, and β2.

• It is postulated that β0, β1, β2 ≥ 0 to make the

conditional variance positive.

• There are other inequalities to satisfy (see text).

• The above process is called the nonlinear asymmetric

GARCH (or NGARCH) model.
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GARCH Option Pricing (continued)

• It captures the volatility clustering in asset returns first

noted by Mandelbrot (1963).a

– When c = 0, a large εt+1 results in a large ht+1,

which in turns tends to yield a large ht+2, and so on.

• It also captures the negative correlation between the

asset return and changes in its (conditional) volatility.b

– For c > 0, a positive εt+1 (good news) tends to

decrease ht+1, whereas a negative εt+1 (bad news)

tends to do the opposite.
a“. . . large changes tend to be followed by large changes—of either

sign—and small changes tend to be followed by small changes . . . ”
bNoted by Black (1976): Volatility tends to rise in response to “bad

news” and fall in response to “good news.”
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GARCH Option Pricing (continued)

• With yt
Δ
= lnSt denoting the logarithmic price, the

model becomes

yt+1 = yt + r − h2
t

2
+ htεt+1. (122)

• The pair (yt, h
2
t ) completely describes the current state.
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GARCH Option Pricing (concluded)

• The conditional mean and variance of yt+1 are clearly

E[ yt+1 | yt, h2
t ] = yt + r − h2

t

2
, (123)

Var[ yt+1 | yt, h2
t ] = h2

t . (124)

• Finally, given (yt, h
2
t ), the correlation between yt+1 and

ht+1 equals

− 2c√
2 + 4c2

,

which is negative for c > 0.
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GARCH Model: Inferences

• Suppose the parameters c, h0, β0, β1, and β2 are given.

• Then we can recover h1, h2, . . . , hn and ε1, ε2, . . . , εn

from the prices

S0, S1, . . . , Sn

under the GARCH model (120) on p. 936.

• This property is useful in statistical inferences.
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The Ritchken-Trevor (RT) Algorithma

• The GARCH model is a continuous-state model.

• To approximate it, we turn to trees with discrete states.

• Path dependence in GARCH makes the tree for asset

prices explode exponentially (why?).

• We need to mitigate this combinatorial explosion.

aRitchken & Trevor (1999).
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The RT Algorithm (continued)

• Partition a day into n periods.

• Three states follow each state (yt, h
2
t ) after a period.

• As the trinomial model combines, each state at date t is

followed by 2n+ 1 states at date t+ 1 (recall p. 722).

• These 2n+ 1 values must approximate the distribution

of (yt+1, h
2
t+1).

• So the conditional moments (123)–(124) at date t+ 1

on p. 940 must be matched by the trinomial model to

guarantee convergence to the continuous-state model.
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The RT Algorithm (continued)

• It remains to pick the jump size and the three branching

probabilities.

• The role of σ in the Black-Scholes option pricing model

is played by ht in the GARCH model.

• As a jump size proportional to σ/
√
n is picked in the

BOPM, a comparable magnitude will be chosen here.

• Define γ
Δ
= h0, though other multiples of h0 are

possible, and

γn
Δ
=

γ√
n
.
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The RT Algorithm (continued)

• The jump size will be some integer multiple η of γn.

• We call η the jump parameter (see next page).

• Obviously, the magnitude of η grows with ht.

• The middle branch does not change the underlying

asset’s price.
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(0, 0)
yt

(1, 1)

(1, 0)

(1,−1)

�
�
ηγn

�� 1 day

The seven values on the right approximate the distribution

of logarithmic price yt+1.
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The RT Algorithm (continued)

• The probabilities for the up, middle, and down branches

are

pu =
h2
t

2η2γ2
+

r − (h2
t/2)

2ηγ
√
n

, (125)

pm = 1− h2
t

η2γ2
, (126)

pd =
h2
t

2η2γ2
− r − (h2

t/2)

2ηγ
√
n

. (127)
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The RT Algorithm (continued)

• It can be shown that:

– The trinomial model takes on 2n+ 1 values at date

t+ 1 for yt+1 .

– These values have a matching mean for yt+1 .

– These values have an asymptotically matching

variance for yt+1 .

• The central limit theorem guarantees convergence as n

increases.a

aAssume the probabilities are valid.
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The RT Algorithm (continued)

• We can dispense with the intermediate nodes between

dates to create a (2n+ 1)-nomial tree (p. 950).

• The resulting model is multinomial with 2n+ 1

branches from any state (yt, h
2
t ).

• There are two reasons behind this manipulation.

– Interdate nodes are created merely to approximate

the continuous-state model after one day.

– Keeping the interdate nodes results in a tree that can

be n times larger.a

aContrast it with the case on p. 401.
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yt

�
�
ηγn

�� 1 day

This heptanomial tree is the outcome of the trinomial tree

on p. 946 after its intermediate nodes are removed.
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The RT Algorithm (continued)

• A node with logarithmic price yt + �ηγn at date t+ 1

follows the current node at date t with price yt, where

−n ≤ � ≤ n.

• To reach that price in n periods, the number of up

moves must exceed that of down moves by exactly �.

• The probability that this happens is

P (�)
Δ
=

∑
ju,jm,jd

n!

ju! jm! jd!
pjuu pjmm pjdd ,

with ju, jm, jd ≥ 0, n = ju + jm + jd, and � = ju − jd.
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The RT Algorithm (continued)

• A particularly simple way to calculate the P (�)s starts

by noting thata

(pux+ pm + pdx
−1)n =

n∑
�=−n

P (�)x�.

(128)

– Convince yourself that this trick does the

“accounting” correctly.

• So we expand (pux+ pm + pdx
−1)n and retrieve the

probabilities by reading off the coefficients.

• It can be computed in O(n2) time, if not less.

aC. Wu (R90723065) (2003); Lyuu & C. Wu (R90723065) (2003, 2005).
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The RT Algorithm (continued)

• The updating rule (121) on p. 936 must be modified to

account for the adoption of the discrete-state model.

• The logarithmic price yt + �ηγn at date t+ 1 following

state (yt, h
2
t ) is associated with this variance:

h2
t+1 = β0 + β1h

2
t + β2h

2
t (ε

′
t+1 − c)2, (129)

– Above, the z-score

ε′t+1 =
�ηγn − (r − h2

t /2)

ht
, � = 0,±1,±2, . . . ,±n,

is a discrete random variable with 2n+ 1 values.
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The RT Algorithm (continued)

• Different conditional variances h2
t may require different

η so that the probabilities calculated by

Eqs. (125)–(127) on p. 947 lie between 0 and 1.

• This implies varying jump sizes.

• The necessary requirement pm ≥ 0 implies η ≥ ht/γ.

• Hence we try

η = �ht/γ �, �ht/γ �+ 1, �ht/γ �+ 2, . . .

until valid probabilities are obtained or until their

nonexistence is confirmed.
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The RT Algorithm (continued)

• The sufficient and necessary condition for valid

probabilities to exist isa

| r − (h2
t /2) |

2ηγ
√
n

≤ h2
t

2η2γ2
≤ min

(
1− | r − (h2

t/2) |
2ηγ

√
n

,
1

2

)
.

• The plot on p. 956 uses n = 1 to illustrate our points

for a 3-day model.

• For example, node (1, 1) of date 1 and node (2, 3) of

date 2 pick η = 2.

aC. Wu (R90723065) (2003); Lyuu & C. Wu (R90723065) (2003, 2005).
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y0

(1, 1)

(2, 3)

(2, 0)

(2,−1)

�
�
γn = γ1

�� 3 days
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The RT Algorithm (continued)

• The topology of the tree is not a standard combining

multinomial tree.

• For example, a few nodes on p. 956 such as nodes (2, 0)

and (2,−1) have multiple jump sizes.

• The reason is path dependency of the model.

– Two paths can reach node (2, 0) from the root node,

each with a different variance for the node.

– One variance results in η = 1.

– The other results in η = 2.

c©2020 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 957



The RT Algorithm (concluded)

• The number of possible values of h2
t at a node can be

exponential.

– Because each path brings a different variance h2
t .

• To address this problem, we record only the maximum

and minimum h2
t at each node.a

• Therefore, each node on the tree contains only two

states (yt, h
2
max) and (yt, h

2
min).

• Each of (yt, h
2
max) and (yt, h

2
min) carries its own η and

set of 2n+ 1 branching probabilities.

aCakici & Topyan (2000). But see p. 993 for a potential problem.
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Negative Aspects of the Ritchken-Trevor Algorithma

• A small n may yield inaccurate option prices.

• But the tree will grow exponentially if n is large enough.

– Specifically, n > (1− β1)/β2 when r = c = 0.

• A large n has another serious problem: The tree cannot

grow beyond a certain date.

• Thus the choice of n may be quite limited in practice.

• The RT algorithm can be modified to be free of

shortened maturity and exponential complexity.b

aLyuu & C. Wu (R90723065) (2003, 2005).
bIts size is only O(n2) if n ≤ (

√
(1− β1)/β2 − c)2!
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Numerical Examples

• Assume

– S0 = 100, y0 = lnS0 = 4.60517.

– r = 0.

– n = 1.

– h2
0 = 0.0001096, γ = h0 = 0.010469.

– γn = γ/
√
n = 0.010469.

– β0 = 0.000006575, β1 = 0.9, β2 = 0.04, and c = 0.
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Numerical Examples (continued)

• A daily variance of 0.0001096 corresponds to an annual

volatility of

√
365× 0.0001096 ≈ 20%.

• Let h2(i, j) denote the variance at node (i, j).

• Initially, h2(0, 0) = h2
0 = 0.0001096.
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Numerical Examples (continued)

• Let h2
max(i, j) denote the maximum variance at node

(i, j).

• Let h2
min(i, j) denote the minimum variance at node

(i, j).

• Initially, h2
max(0, 0) = h2

min(0, 0) = h2
0.

• The resulting 3-day tree is depicted on p. 963.
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Numerical Examples (continued)

• A top number inside a gray box refers to the minimum

variance h2
min for the node.

• A bottom number inside a gray box refers to the

maximum variance h2
max for the node.

• Variances are multiplied by 100,000 for readability.

• The top number inside a white box refers to the η for

h2
min.

• The bottom number inside a white box refers to the η

for h2
max.
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Numerical Examples (continued)

• Let us see how the numbers are calculated.

• Start with the root node, node (0, 0).

• Try η = 1 in Eqs. (125)–(127) on p. 947 first to obtain

pu = 0.4974,

pm = 0,

pd = 0.5026.

• As they are valid probabilities, the three branches from

the root node use single jumps.
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Numerical Examples (continued)

• Move on to node (1, 1).

• It has one predecessor node—node (0, 0)—and it takes

an up move to reach the current node.

• So apply updating rule (129) on p. 953 with � = 1 and

h2
t = h2(0, 0).

• The result is h2(1, 1) = 0.000109645.

c©2020 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 966



Numerical Examples (continued)

• Because �h(1, 1)/γ � = 2, we try η = 2 in

Eqs. (125)–(127) on p. 947 first to obtain

pu = 0.1237,

pm = 0.7499,

pd = 0.1264.

• As they are valid probabilities, the three branches from

node (1, 1) use double jumps.
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Numerical Examples (continued)

• Carry out similar calculations for node (1, 0) with

� = 0 in updating rule (129) on p. 953.

• Carry out similar calculations for node (1,−1) with

� = −1 in updating rule (129).

• Single jump η = 1 works for both nodes.

• The resulting variances are

h2(1, 0) = 0.000105215,

h2(1,−1) = 0.000109553.
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Numerical Examples (continued)

• Node (2, 0) has 2 predecessor nodes, (1, 0) and (1,−1).

• Both have to be considered in deriving the variances.

• Let us start with node (1, 0).

• Because it takes a middle move to reach the current

node, we apply updating rule (129) on p. 953 with � = 0

and h2
t = h2(1, 0).

• The result is h2
t+1 = 0.000101269.
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Numerical Examples (continued)

• Now move on to the other predecessor node (1,−1).

• Because it takes an up move to reach the current node,

apply updating rule (129) on p. 953 with � = 1 and

h2
t = h2(1,−1).

• The result is h2
t+1 = 0.000109603.

• We hence record

h2
min(2, 0) = 0.000101269,

h2
max(2, 0) = 0.000109603.
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Numerical Examples (continued)

• Consider state h2
max(2, 0) first.

• Because �hmax(2, 0)/γ � = 2, we first try η = 2 in

Eqs. (125)–(127) on p. 947 to obtain

pu = 0.1237,

pm = 0.7500,

pd = 0.1263.

• As they are valid probabilities, the three branches from

node (2, 0) with the maximum variance use double

jumps.
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Numerical Examples (continued)

• Now consider state h2
min(2, 0).

• Because �hmin(2, 0)/γ � = 1, we first try η = 1 in

Eqs. (125)–(127) on p. 947 to obtain

pu = 0.4596,

pm = 0.0760,

pd = 0.4644.

• As they are valid probabilities, the three branches from

node (2, 0) with the minimum variance use single jumps.
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Numerical Examples (continued)

• Node (2,−1) has 3 predecessor nodes.

• Start with node (1, 1).

• Because it takes one down move to reach the current

node, we apply updating rule (129) on p. 953 with

� = −1 and h2
t = h2(1, 1).a

• The result is h2
t+1 = 0.0001227.

aNote that it is not � = −2. The reason is that h(1, 1) has η = 2 (p.

967).
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Numerical Examples (continued)

• Now move on to predecessor node (1, 0).

• Because it also takes a down move to reach the current

node, we apply updating rule (129) on p. 953 with

� = −1 and h2
t = h2(1, 0).

• The result is h2
t+1 = 0.000105609.
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Numerical Examples (continued)

• Finally, consider predecessor node (1,−1).

• Because it takes a middle move to reach the current

node, we apply updating rule (129) on p. 953 with � = 0

and h2
t = h2(1,−1).

• The result is h2
t+1 = 0.000105173.

• We hence record

h2
min(2,−1) = 0.000105173,

h2
max(2,−1) = 0.0001227.
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Numerical Examples (continued)

• Consider state h2
max(2,−1).

• Because �hmax(2,−1)/γ � = 2, we first try η = 2 in

Eqs. (125)–(127) on p. 947 to obtain

pu = 0.1385,

pm = 0.7201,

pd = 0.1414.

• As they are valid probabilities, the three branches from

node (2,−1) with the maximum variance use double

jumps.
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Numerical Examples (continued)

• Next, consider state h2
min(2,−1).

• Because �hmin(2,−1)/γ � = 1, we first try η = 1 in

Eqs. (125)–(127) on p. 947 to obtain

pu = 0.4773,

pm = 0.0404,

pd = 0.4823.

• As they are valid probabilities, the three branches from

node (2,−1) with the minimum variance use single

jumps.
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Numerical Examples (concluded)

• Other nodes at dates 2 and 3 can be handled similarly.

• In general, if a node has k predecessor nodes, then up to

2k variances will be calculated using the updating rule.

– This is because each predecessor node keeps two

variance numbers.

• But only the maximum and minimum variances will be

kept.
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Negative Aspects of the RT Algorithm Revisiteda

• Recall the problems mentioned on p. 959.

• In our case, combinatorial explosion occurs when

n >
1− β1

β2
=

1− 0.9

0.04
= 2.5

(see the next plot).

• Suppose we are willing to accept the exponential

running time and pick n = 100 to seek accuracy.

• But the problem of shortened maturity forces the tree to

stop at date 9!

aLyuu & C. Wu (R90723065) (2003, 2005).
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Dotted line: n = 3; dashed line: n = 4; solid line: n = 5.
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Backward Induction on the RT Tree

• After the RT tree is constructed, it can be used to price

options by backward induction.

• Recall that each node keeps two variances h2
max and

h2
min.

• We now increase that number to K equally spaced

variances between h2
max and h2

min at each node.

• Besides the minimum and maximum variances, the other

K − 2 variances in between are linearly interpolated.a

aIn practice, log-linear interpolation works better (Lyuu & C. Wu

(R90723065), 2005). Log-cubic interpolation works even better (C. Liu

(R92922123), 2005).
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Backward Induction on the RT Tree (continued)

• For example, if K = 3, then a variance of

10.5436× 10−6

will be added between the maximum and minimum

variances at node (2, 0) on p. 963.a

• In general, the kth variance at node (i, j) is

h2
min(i, j)+k

h2
max(i, j)− h2

min(i, j)

K − 1
, k = 0, 1, . . . , K−1.

• Each interpolated variance’s jump parameter and

branching probabilities can be computed as before.

aRepeated on p. 983.
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Backward Induction on the RT Tree (concluded)

• Suppose a variance falls between two of the K variances

during backward induction.

• Linear interpolation of the option prices corresponding

to the two bracketing variances will be used as the

approximate option price.

• The above ideas are reminiscent of the ones on p. 441,

where we dealt with Asian options.
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Numerical Examples

• We next use the tree on p. 983 to price a European call

option with a strike price of 100 and expiring at date 3.

• Recall that the riskless interest rate is zero.

• Assume K = 2; hence there are no interpolated

variances.

• The pricing tree is shown on p. 986 with a call price of

0.66346.

– The branching probabilities needed in backward

induction can be found on p. 987.
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Numerical Examples (continued)

• Let us derive some of the numbers on p. 986.

• A gray line means the updated variance falls strictly

between h2
max and h2

min.

• The option price for a terminal node at date 3 equals

max(S3 − 100, 0), independent of the variance level.

• Now move on to nodes at date 2.

• The option price at node (2, 3) depends on those at

nodes (3, 5), (3, 3), and (3, 1).

• It therefore equals

0.1387× 5.37392 + 0.7197 × 3.19054 + 0.1416× 1.05240 = 3.19054.
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Numerical Examples (continued)

• Option prices for other nodes at date 2 can be computed

similarly.

• For node (1, 1), the option price for both variances is

0.1237× 3.19054 + 0.7499 × 1.05240 + 0.1264× 0.14573 = 1.20241.

• Node (1, 0) is most interesting.

• We knew that a down move from it gives a variance of

0.000105609.

• This number falls between the minimum variance

0.000105173 and the maximum variance 0.0001227 at

node (2,−1) on p. 987.
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Numerical Examples (continued)

• The option price corresponding to the minimum

variance is 0 (p. 987).

• The option price corresponding to the maximum

variance is 0.14573.

• The equation

x× 0.000105173 + (1− x)× 0.0001227 = 0.000105609

is satisfied by x = 0.9751.

• So the option for the down state is approximated by

x× 0 + (1− x)× 0.14573 = 0.00362.

c©2020 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 990



Numerical Examples (continued)

• The up move leads to the state with option price

1.05240.

• The middle move leads to the state with option price

0.48366.

• The option price at node (1, 0) is finally calculated as

0.4775× 1.05240 + 0.0400 × 0.48366 + 0.4825× 0.00362 = 0.52360.
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Numerical Examples (continued)

• A variance following an interpolated variance may

exceed the maximum variance or be exceeded by the

minimum variance.

• When this happens, the option price corresponding to

the maximum or minimum variance will be used during

backward induction.a

• This act tends to reduce the dynamic range of the

variance.

aCakici & Topyan (2000).
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Numerical Examples (concluded)

• Worse, an interpolated variance may choose a branch

that goes into a node that is not reached in forward

induction.a

• In this case, the algorithm fails.

• The RT algorithm does not have this problem.

– This is because all interpolated variances are involved

in the forward-induction phase.

• It may be hard to calculate the implied β1 and β2 from

option prices.b

aLyuu & C. Wu (R90723065) (2005).
bY. Chang (B89704039, R93922034) (2006).
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Complexities of GARCH Modelsa

• The RT algorithm explodes exponentially if n is big

enough (p. 959).

• The mean-tracking tree of Lyuu and Wu (2005) makes

sure explosion does not happen if n is not too large.b

• The next page summarizes the situations for many

GARCH option pricing models.

– Our earlier treatment is for NGARCH only.

aLyuu & C. Wu (R90723065) (2003, 2005).
bSimilar to, but earlier than, the binomial-trinomial tree on pp. 745ff.

c©2020 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 994



Complexities of GARCH Models (concluded)a

Model Explosion Non-explosion

NGARCH β1 + β2n > 1 β1 + β2(
√
n+ λ+ c)2 ≤ 1

LGARCH β1 + β2n > 1 β1 + β2(
√
n+ λ)2 ≤ 1

AGARCH β1 + β2n > 1 β1 + β2(
√
n+ λ)2 ≤ 1

GJR-GARCH β1 + β2n > 1 β1 + (β2 + β3)(
√
n+ λ)2 ≤ 1

TS-GARCH β1 + β2
√
n > 1 β1 + β2(λ+

√
n) ≤ 1

TGARCH β1 + β2
√
n > 1 β1 + (β2 + β3)(λ+

√
n) ≤ 1

Heston-Nandi β1 + β2(c− 1
2
)2 > 1 β1 + β2c2 ≤ 1

& c ≤ 1
2

VGARCH β1 + (β2/4) > 1 β1 ≤ 1

aY. C. Chen (R95723051) (2008); Y. C. Chen (R95723051), Lyuu, &

Wen (D94922003) (2012).
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Introduction to Term Structure Modeling
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The fox often ran to the hole

by which they had come in,

to find out if his body was still thin enough

to slip through it.

— Grimm’s Fairy Tales
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And the worst thing you can have

is models and spreadsheets.

— Warren Buffet, May 3, 2008
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Outline

• Use the binomial interest rate tree to model stochastic

term structure.

– Illustrates the basic ideas underlying future models.

– Applications are generic in that pricing and hedging

methodologies can be easily adapted to other models.

• Although the idea is similar to the earlier one used in

option pricing, the current task is more complicated.

– The evolution of an entire term structure, not just a

single stock price, is to be modeled.

– Interest rates of various maturities cannot evolve

arbitrarily, or arbitrage profits may occur.
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Issues

• A stochastic interest rate model performs two tasks.

– Provides a stochastic process that defines future term

structures without arbitrage profits.

– “Consistent” with the observed term structures.
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History

• The methodology was founded by Merton (1970).

• Modern interest rate modeling is often traced to 1977

when Vasicek and Cox, Ingersoll, and Ross developed

simultaneously their influential models.

• Early models have fitting problems because they may

not price today’s benchmark bonds correctly.

• An alternative approach pioneered by Ho and Lee (1986)

makes fitting the market yield curve mandatory.

• Models based on such a paradigm are called (somewhat

misleadingly) arbitrage-free or no-arbitrage models.
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Binomial Interest Rate Tree

• Goal is to construct a no-arbitrage interest rate tree

consistent with the yields and/or yield volatilities of

zero-coupon bonds of all maturities.

– This procedure is called calibration.a

• Pick a binomial tree model in which the logarithm of the

future short rate obeys the binomial distribution.

– Like the CRR tree for pricing options.

• The limiting distribution of the short rate at any future

time is hence lognormal.

aDerman (2004), “complexity without calibration is pointless.”
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Binomial Interest Rate Tree (continued)

• A binomial tree of future short rates is constructed.

• Every short rate is followed by two short rates in the

following period (p. 1004).

• In the figure on p. 1004, node A coincides with the start

of period j during which the short rate r is in effect.

• At the conclusion of period j, a new short rate goes into

effect for period j + 1.
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� r�0.5

� rh0.5

A

B

C

period j − 1 period j period j + 1

time j − 1 time j
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Binomial Interest Rate Tree (continued)

• This may take one of two possible values:

– r�: the “low” short-rate outcome at node B.

– rh: the “high” short-rate outcome at node C.

• Each branch has a 50% chance of occurring in a

risk-neutral economy.

• We require that the paths combine as the binomial

process unfolds.

• This model is attributed to Salomon Brothers.a

aTuckman (2002).
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Binomial Interest Rate Tree (continued)

• The short rate r can go to rh and r� with equal

risk-neutral probability 1/2 in a period of length Δt.

• Hence the volatility of ln r after Δt time isa

σ =
1

2

1√
Δt

ln

(
rh
r�

)
. (130)

• Above, σ is annualized, whereas r� and rh are period

based.

aSee Exercise 23.2.3 in text.
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Binomial Interest Rate Tree (continued)

• Note that
rh
r�

= e2σ
√
Δt.

• Thus greater volatility, hence uncertainty, leads to larger

rh/r� and wider ranges of possible short rates.

• The ratio rh/r� may depend on time if the volatility is a

function of time.

• Note that rh/r� has nothing to do with the current

short rate r if σ is independent of r.
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Binomial Interest Rate Tree (continued)

• In general there are j possible ratesa for period j,

rj , rjvj , rjv
2
j , . . . , rjv

j−1
j ,

where

vj
Δ
= e2σj

√
Δt (131)

is the multiplicative ratio for the rates in period j (see

figure on next page).

• We shall call rj the baseline rates.

• The subscript j in σj above is meant to emphasize that

the short rate volatility may be time dependent.

aNot j + 1.
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Binomial Interest Rate Tree (concluded)

• In the limit, the short rate follows

r(t) = μ(t) eσ(t)W (t). (132)

– The (percent) short rate volatility σ(t) is a

deterministic function of time.

• The expected value of r(t) equals μ(t) eσ(t)
2(t/2).

• Hence a declining short rate volatility is usually imposed

to preclude the short rate from assuming implausibly

high values.

• Incidentally, this is how the binomial interest rate tree

achieves mean reversion to some long-term mean.
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Memory Issues

• Path independency: The term structure at any node is

independent of the path taken to reach it.

• So only the baseline rates ri and the multiplicative

ratios vi need to be stored in computer memory.

• This takes up only O(n) space.a

• Storing the whole tree would take up O(n2) space.

– Daily interest rate movements for 30 years require

roughly (30× 365)2/2 ≈ 6× 107 double-precision

floating-point numbers (half a gigabyte!).

aThroughout, n denotes the depth of the tree.
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