

The historian is a prophet in reverse. — Friedrich von Schlegel (1772–1829)

GARCH Option Pricing^a

- Options can be priced when the underlying asset's return follows a GARCH process.
- Let S_t denote the asset price at date t.
- Let h_t^2 be the *conditional* variance of the return over the period [t, t+1) given the information at date t.
 - "One day" is merely a convenient term for any elapsed time Δt .

^aARCH (autoregressive conditional heteroskedastic) is due to Engle (1982), co-winner of the 2003 Nobel Prize in Economic Sciences. GARCH (generalized ARCH) is due to Bollerslev (1986) and Taylor (1986). A Bloomberg quant said to me on Feb 29, 2008, that GARCH is seldom used in trading.

• Adopt the following risk-neutral process for the price dynamics:^a

$$\ln \frac{S_{t+1}}{S_t} = r - \frac{h_t^2}{2} + h_t \epsilon_{t+1}, \tag{120}$$

where

$$h_{t+1}^2 = \beta_0 + \beta_1 h_t^2 + \beta_2 h_t^2 (\epsilon_{t+1} - c)^2, \qquad (121)$$

 $\epsilon_{t+1} \sim N(0,1)$ given information at date t,

r = daily riskless return,

$$c > 0$$
.

^aDuan (1995).

- The five unknown parameters of the model are c, h_0 , β_0 , β_1 , and β_2 .
- It is postulated that $\beta_0, \beta_1, \beta_2 \geq 0$ to make the conditional variance positive.
- There are other inequalities to satisfy (see text).
- The above process is called the nonlinear asymmetric GARCH (or NGARCH) model.

- It captures the volatility clustering in asset returns first noted by Mandelbrot (1963).^a
 - When c = 0, a large ϵ_{t+1} results in a large h_{t+1} , which in turns tends to yield a large h_{t+2} , and so on.
- It also captures the negative correlation between the asset return and changes in its (conditional) volatility.^b
 - For c > 0, a positive ϵ_{t+1} (good news) tends to decrease h_{t+1} , whereas a negative ϵ_{t+1} (bad news) tends to do the opposite.

a"... large changes tend to be followed by large changes—of either sign—and small changes tend to be followed by small changes ..."

^bNoted by Black (1976): Volatility tends to rise in response to "bad news" and fall in response to "good news."

• With $y_t \stackrel{\Delta}{=} \ln S_t$ denoting the logarithmic price, the model becomes

$$y_{t+1} = y_t + r - \frac{h_t^2}{2} + h_t \epsilon_{t+1}. \tag{122}$$

• The pair (y_t, h_t^2) completely describes the current state.

• The conditional mean and variance of y_{t+1} are clearly

$$E[y_{t+1} | y_t, h_t^2] = y_t + r - \frac{h_t^2}{2}, \qquad (123)$$

$$Var[y_{t+1} | y_t, h_t^2] = h_t^2. (124)$$

• Finally, given (y_t, h_t^2) , the correlation between y_{t+1} and h_{t+1} equals

$$-\frac{2c}{\sqrt{2+4c^2}},$$

which is negative for c > 0.

GARCH Model: Inferences

- Suppose the parameters $c, h_0, \beta_0, \beta_1, \text{ and } \beta_2$ are given.
- Then we can recover h_1, h_2, \ldots, h_n and $\epsilon_1, \epsilon_2, \ldots, \epsilon_n$ from the prices

$$S_0, S_1, \ldots, S_n$$

under the GARCH model (120) on p. 936.

• This property is useful in statistical inferences.

The Ritchken-Trevor (RT) Algorithm^a

- The GARCH model is a continuous-state model.
- To approximate it, we turn to trees with discrete states.
- Path dependence in GARCH makes the tree for asset prices explode exponentially (why?).
- We need to mitigate this combinatorial explosion.

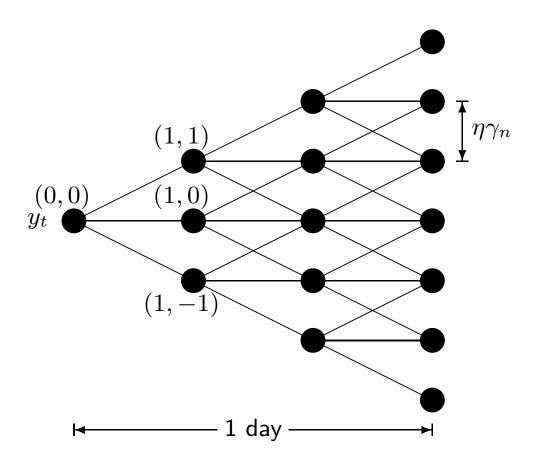
^aRitchken & Trevor (1999).

- Partition a day into *n* periods.
- Three states follow each state (y_t, h_t^2) after a period.
- As the trinomial model combines, each state at date t is followed by 2n + 1 states at date t + 1 (recall p. 722).
- These 2n + 1 values must approximate the distribution of (y_{t+1}, h_{t+1}^2) .
- So the conditional moments (123)–(124) at date t+1 on p. 940 must be matched by the trinomial model to guarantee convergence to the continuous-state model.

- It remains to pick the jump size and the three branching probabilities.
- The role of σ in the Black-Scholes option pricing model is played by h_t in the GARCH model.
- As a jump size proportional to σ/\sqrt{n} is picked in the BOPM, a comparable magnitude will be chosen here.
- Define $\gamma \stackrel{\Delta}{=} h_0$, though other multiples of h_0 are possible, and

$$\gamma_n \stackrel{\Delta}{=} \frac{\gamma}{\sqrt{n}}.$$

- The jump size will be some integer multiple η of γ_n .
- We call η the jump parameter (see next page).
- Obviously, the magnitude of η grows with h_t .
- The middle branch does not change the underlying asset's price.



The seven values on the right approximate the distribution of logarithmic price y_{t+1} .

• The probabilities for the up, middle, and down branches are

$$p_u = \frac{h_t^2}{2\eta^2 \gamma^2} + \frac{r - (h_t^2/2)}{2\eta \gamma \sqrt{n}}, \qquad (125)$$

$$p_m = 1 - \frac{h_t^2}{\eta^2 \gamma^2}, (126)$$

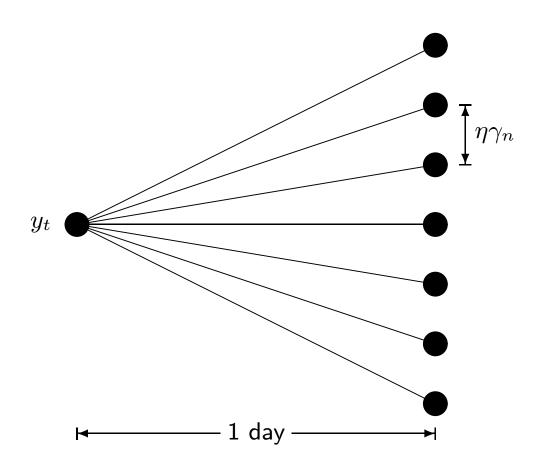
$$p_d = \frac{h_t^2}{2\eta^2 \gamma^2} - \frac{r - (h_t^2/2)}{2\eta \gamma \sqrt{n}}.$$
 (127)

- It can be shown that:
 - The trinomial model takes on 2n + 1 values at date t + 1 for y_{t+1} .
 - These values have a matching mean for y_{t+1} .
 - These values have an asymptotically matching variance for y_{t+1} .
- The central limit theorem guarantees convergence as *n* increases.^a

^aAssume the probabilities are valid.

- We can dispense with the intermediate nodes between dates to create a (2n + 1)-nomial tree (p. 950).
- The resulting model is multinomial with 2n + 1 branches from any state (y_t, h_t^2) .
- There are two reasons behind this manipulation.
 - Interdate nodes are created merely to approximate the continuous-state model after one day.
 - Keeping the interdate nodes results in a tree that can be n times larger.^a

^aContrast it with the case on p. 401.



This heptanomial tree is the outcome of the trinomial tree on p. 946 after its intermediate nodes are removed.

• A node with logarithmic price $y_t + \ell \eta \gamma_n$ at date t+1 follows the current node at date t with price y_t , where

$$-n \le \ell \le n$$
.

- To reach that price in n periods, the number of up moves must exceed that of down moves by exactly ℓ .
- The probability that this happens is

$$P(\ell) \stackrel{\Delta}{=} \sum_{j_u, j_m, j_d} \frac{n!}{j_u! \, j_m! \, j_d!} \, p_u^{j_u} \, p_m^{j_m} \, p_d^{j_d},$$

with $j_u, j_m, j_d \ge 0$, $n = j_u + j_m + j_d$, and $\ell = j_u - j_d$.

• A particularly simple way to calculate the $P(\ell)$ s starts by noting that^a

$$(p_u x + p_m + p_d x^{-1})^n = \sum_{\ell=-n}^n P(\ell) x^{\ell}.$$
 (128)

- Convince yourself that this trick does the "accounting" correctly.
- So we expand $(p_u x + p_m + p_d x^{-1})^n$ and retrieve the probabilities by reading off the coefficients.
- It can be computed in $O(n^2)$ time, if not less.

 $^{^{\}rm a}{\rm C}.$ Wu (R90723065) (2003); Lyuu & C. Wu (R90723065) (2003, 2005).

- The updating rule (121) on p. 936 must be modified to account for the adoption of the discrete-state model.
- The logarithmic price $y_t + \ell \eta \gamma_n$ at date t+1 following state (y_t, h_t^2) is associated with this variance:

$$h_{t+1}^2 = \beta_0 + \beta_1 h_t^2 + \beta_2 h_t^2 (\epsilon_{t+1}' - c)^2, \qquad (129)$$

- Above, the z-score

$$\epsilon'_{t+1} = \frac{\ell \eta \gamma_n - (r - h_t^2/2)}{h_t}, \quad \ell = 0, \pm 1, \pm 2, \dots, \pm n,$$

is a discrete random variable with 2n+1 values.

- Different conditional variances h_t^2 may require different η so that the probabilities calculated by Eqs. (125)–(127) on p. 947 lie between 0 and 1.
- This implies varying jump sizes.
- The necessary requirement $p_m \geq 0$ implies $\eta \geq h_t/\gamma$.
- Hence we try

$$\eta = \lceil h_t/\gamma \rceil, \lceil h_t/\gamma \rceil + 1, \lceil h_t/\gamma \rceil + 2, \dots$$

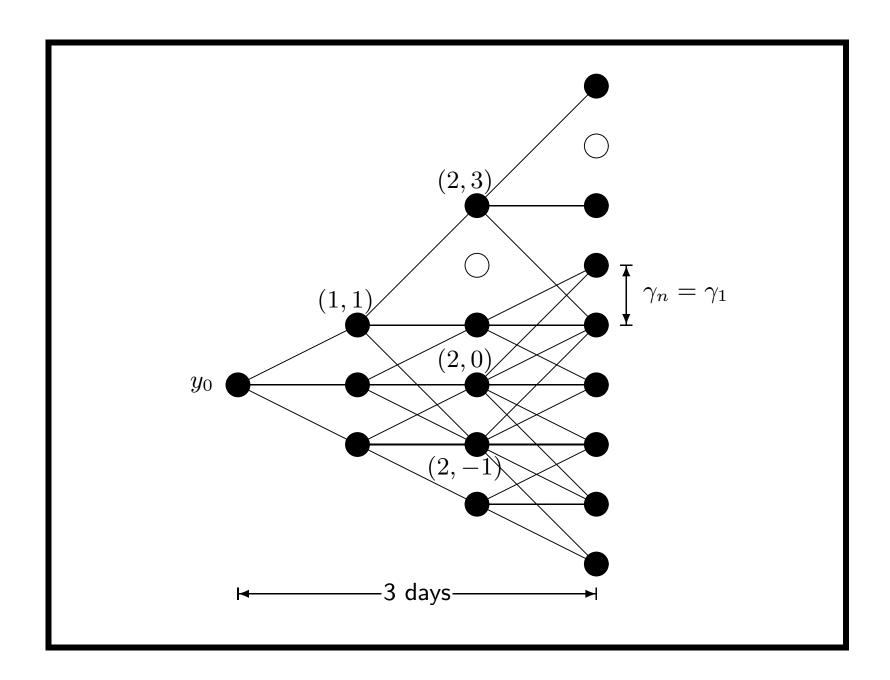
until valid probabilities are obtained or until their nonexistence is confirmed.

• The sufficient and necessary condition for valid probabilities to exist is^a

$$\frac{|r-(h_t^2/2)|}{2\eta\gamma\sqrt{n}} \le \frac{h_t^2}{2\eta^2\gamma^2} \le \min\left(1 - \frac{|r-(h_t^2/2)|}{2\eta\gamma\sqrt{n}}, \frac{1}{2}\right).$$

- The plot on p. 956 uses n = 1 to illustrate our points for a 3-day model.
- For example, node (1,1) of date 1 and node (2,3) of date 2 pick $\eta = 2$.

^aC. Wu (R90723065) (2003); Lyuu & C. Wu (R90723065) (2003, 2005).



- The topology of the tree is not a standard combining multinomial tree.
- For example, a few nodes on p. 956 such as nodes (2,0) and (2,-1) have multiple jump sizes.
- The reason is path dependency of the model.
 - Two paths can reach node (2,0) from the root node, each with a different variance for the node.
 - One variance results in $\eta = 1$.
 - The other results in $\eta = 2$.

The RT Algorithm (concluded)

- The number of possible values of h_t^2 at a node can be exponential.
 - Because each path brings a different variance h_t^2 .
- To address this problem, we record only the maximum and minimum h_t^2 at each node.^a
- Therefore, each node on the tree contains only two states (y_t, h_{max}^2) and (y_t, h_{min}^2) .
- Each of (y_t, h_{max}^2) and (y_t, h_{min}^2) carries its own η and set of 2n + 1 branching probabilities.

^aCakici & Topyan (2000). But see p. 993 for a potential problem.

Negative Aspects of the Ritchken-Trevor Algorithm^a

- A small n may yield inaccurate option prices.
- But the tree will grow exponentially if n is large enough.
 - Specifically, $n > (1 \beta_1)/\beta_2$ when r = c = 0.
- A large n has another serious problem: The tree cannot grow beyond a certain date.
- \bullet Thus the choice of n may be quite limited in practice.
- The RT algorithm can be modified to be free of shortened maturity and exponential complexity.^b

^aLyuu & C. Wu (R90723065) (2003, 2005).

^bIts size is only $O(n^2)$ if $n \leq (\sqrt{(1-\beta_1)/\beta_2} - c)^2!$

Numerical Examples

• Assume

$$-S_0 = 100, y_0 = \ln S_0 = 4.60517.$$

$$- r = 0.$$

$$-n=1.$$

$$-h_0^2 = 0.0001096, \ \gamma = h_0 = 0.010469.$$

$$- \gamma_n = \gamma / \sqrt{n} = 0.010469.$$

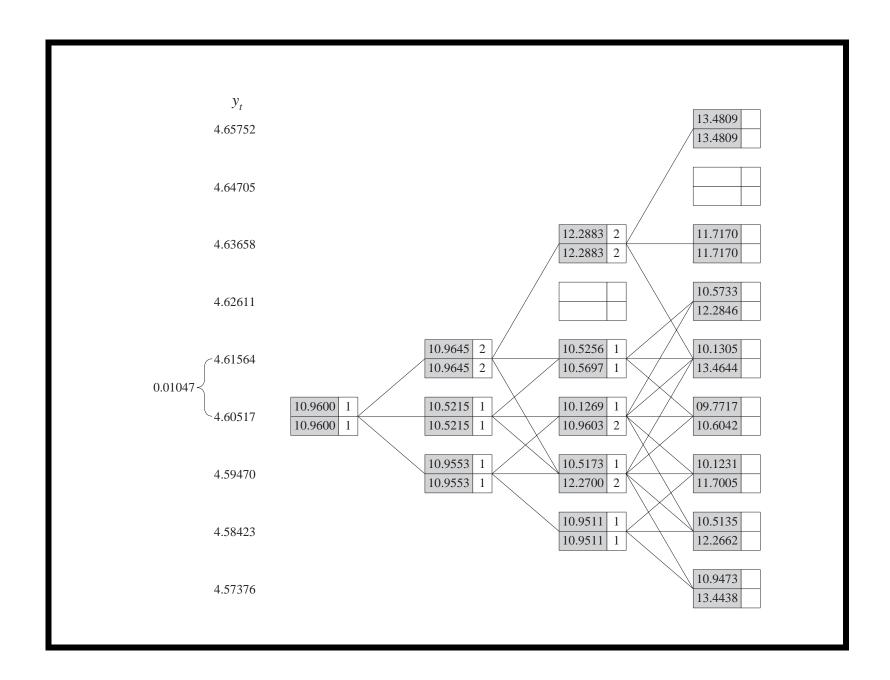
$$-\beta_0 = 0.000006575$$
, $\beta_1 = 0.9$, $\beta_2 = 0.04$, and $c = 0$.

• A daily variance of 0.0001096 corresponds to an annual volatility of

$$\sqrt{365 \times 0.0001096} \approx 20\%$$
.

- Let $h^2(i,j)$ denote the variance at node (i,j).
- Initially, $h^2(0,0) = h_0^2 = 0.0001096$.

- Let $h_{\text{max}}^2(i,j)$ denote the maximum variance at node (i,j).
- Let $h_{\min}^2(i,j)$ denote the minimum variance at node (i,j).
- Initially, $h_{\text{max}}^2(0,0) = h_{\text{min}}^2(0,0) = h_0^2$.
- The resulting 3-day tree is depicted on p. 963.



- A top number inside a gray box refers to the minimum variance h_{\min}^2 for the node.
- A bottom number inside a gray box refers to the maximum variance h_{max}^2 for the node.
- Variances are multiplied by 100,000 for readability.
- The top number inside a white box refers to the η for h_{\min}^2 .
- The bottom number inside a white box refers to the η for h_{max}^2 .

- Let us see how the numbers are calculated.
- Start with the root node, node (0,0).
- Try $\eta = 1$ in Eqs. (125)–(127) on p. 947 first to obtain

$$p_u = 0.4974,$$
 $p_m = 0,$
 $p_d = 0.5026.$

• As they are valid probabilities, the three branches from the root node use single jumps.

- Move on to node (1,1).
- It has one predecessor node—node (0,0)—and it takes an up move to reach the current node.
- So apply updating rule (129) on p. 953 with $\ell = 1$ and $h_t^2 = h^2(0,0)$.
- The result is $h^2(1,1) = 0.000109645$.

• Because $\lceil h(1,1)/\gamma \rceil = 2$, we try $\eta = 2$ in Eqs. (125)–(127) on p. 947 first to obtain

$$p_u = 0.1237,$$
 $p_m = 0.7499,$
 $p_d = 0.1264.$

• As they are valid probabilities, the three branches from node (1,1) use double jumps.

- Carry out similar calculations for node (1,0) with $\ell = 0$ in updating rule (129) on p. 953.
- Carry out similar calculations for node (1, -1) with $\ell = -1$ in updating rule (129).
- Single jump $\eta = 1$ works for both nodes.
- The resulting variances are

$$h^2(1,0) = 0.000105215,$$

 $h^2(1,-1) = 0.000109553.$

- Node (2,0) has 2 predecessor nodes, (1,0) and (1,-1).
- Both have to be considered in deriving the variances.
- Let us start with node (1,0).
- Because it takes a middle move to reach the current node, we apply updating rule (129) on p. 953 with $\ell = 0$ and $h_t^2 = h^2(1,0)$.
- The result is $h_{t+1}^2 = 0.000101269$.

- Now move on to the other predecessor node (1,-1).
- Because it takes an up move to reach the current node, apply updating rule (129) on p. 953 with $\ell = 1$ and $h_t^2 = h^2(1, -1)$.
- The result is $h_{t+1}^2 = 0.000109603$.
- We hence record

$$h_{\min}^2(2,0) = 0.000101269,$$

 $h_{\max}^2(2,0) = 0.000109603.$

- Consider state $h_{\text{max}}^2(2,0)$ first.
- Because $\lceil h_{\text{max}}(2,0)/\gamma \rceil = 2$, we first try $\eta = 2$ in Eqs. (125)–(127) on p. 947 to obtain

$$p_u = 0.1237,$$
 $p_m = 0.7500,$
 $p_d = 0.1263.$

• As they are valid probabilities, the three branches from node (2,0) with the maximum variance use double jumps.

- Now consider state $h_{\min}^2(2,0)$.
- Because $\lceil h_{\min}(2,0)/\gamma \rceil = 1$, we first try $\eta = 1$ in Eqs. (125)–(127) on p. 947 to obtain

$$p_u = 0.4596,$$
 $p_m = 0.0760,$
 $p_d = 0.4644.$

• As they are valid probabilities, the three branches from node (2,0) with the minimum variance use single jumps.

- Node (2,-1) has 3 predecessor nodes.
- Start with node (1,1).
- Because it takes *one* down move to reach the current node, we apply updating rule (129) on p. 953 with $\ell = -1$ and $h_t^2 = h^2(1,1)$.^a
- The result is $h_{t+1}^2 = 0.0001227$.

^aNote that it is *not* $\ell = -2$. The reason is that h(1,1) has $\eta = 2$ (p. 967).

- Now move on to predecessor node (1,0).
- Because it also takes a down move to reach the current node, we apply updating rule (129) on p. 953 with $\ell = -1$ and $h_t^2 = h^2(1,0)$.
- The result is $h_{t+1}^2 = 0.000105609$.

- Finally, consider predecessor node (1, -1).
- Because it takes a middle move to reach the current node, we apply updating rule (129) on p. 953 with $\ell = 0$ and $h_t^2 = h^2(1, -1)$.
- The result is $h_{t+1}^2 = 0.000105173$.
- We hence record

$$h_{\min}^2(2,-1) = 0.000105173,$$

 $h_{\max}^2(2,-1) = 0.0001227.$

- Consider state $h_{\text{max}}^2(2,-1)$.
- Because $\lceil h_{\text{max}}(2,-1)/\gamma \rceil = 2$, we first try $\eta = 2$ in Eqs. (125)–(127) on p. 947 to obtain

$$p_u = 0.1385,$$
 $p_m = 0.7201,$
 $p_d = 0.1414.$

• As they are valid probabilities, the three branches from node (2,-1) with the maximum variance use double jumps.

- Next, consider state $h_{\min}^2(2,-1)$.
- Because $\lceil h_{\min}(2,-1)/\gamma \rceil = 1$, we first try $\eta = 1$ in Eqs. (125)–(127) on p. 947 to obtain

$$p_u = 0.4773,$$
 $p_m = 0.0404,$
 $p_d = 0.4823.$

• As they are valid probabilities, the three branches from node (2,-1) with the minimum variance use single jumps.

Numerical Examples (concluded)

- Other nodes at dates 2 and 3 can be handled similarly.
- In general, if a node has k predecessor nodes, then up to 2k variances will be calculated using the updating rule.
 - This is because each predecessor node keeps two variance numbers.
- But only the maximum and minimum variances will be kept.

Negative Aspects of the RT Algorithm Revisited^a

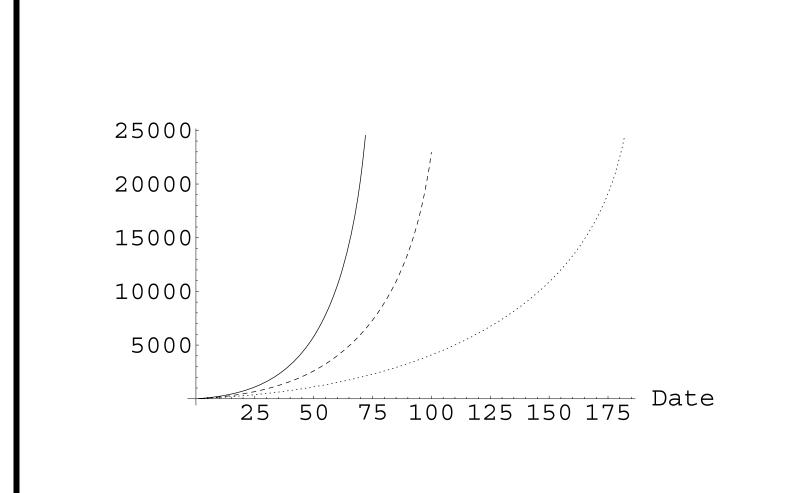
- Recall the problems mentioned on p. 959.
- In our case, combinatorial explosion occurs when

$$n > \frac{1 - \beta_1}{\beta_2} = \frac{1 - 0.9}{0.04} = 2.5$$

(see the next plot).

- Suppose we are willing to accept the exponential running time and pick n = 100 to seek accuracy.
- But the problem of shortened maturity forces the tree to stop at date 9!

^aLyuu & C. Wu (R90723065) (2003, 2005).



Dotted line: n = 3; dashed line: n = 4; solid line: n = 5.

Backward Induction on the RT Tree

- After the RT tree is constructed, it can be used to price options by backward induction.
- Recall that each node keeps two variances h_{max}^2 and h_{min}^2 .
- We now increase that number to K equally spaced variances between h_{max}^2 and h_{min}^2 at each node.
- Besides the minimum and maximum variances, the other K-2 variances in between are linearly interpolated.^a

^aIn practice, log-linear interpolation works better (Lyuu & C. Wu (R90723065), 2005). Log-cubic interpolation works even better (C. Liu (R92922123), 2005).

Backward Induction on the RT Tree (continued)

• For example, if K = 3, then a variance of

$$10.5436 \times 10^{-6}$$

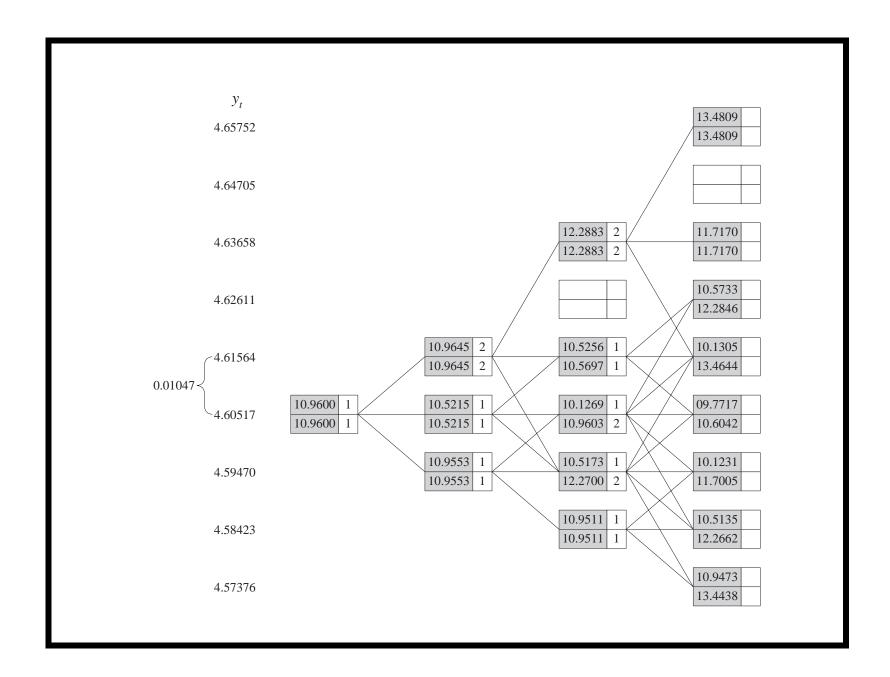
will be added between the maximum and minimum variances at node (2,0) on p. 963.^a

• In general, the kth variance at node (i, j) is

$$h_{\min}^2(i,j) + k \frac{h_{\max}^2(i,j) - h_{\min}^2(i,j)}{K-1}, \quad k = 0, 1, \dots, K-1.$$

• Each interpolated variance's jump parameter and branching probabilities can be computed as before.

^aRepeated on p. 983.

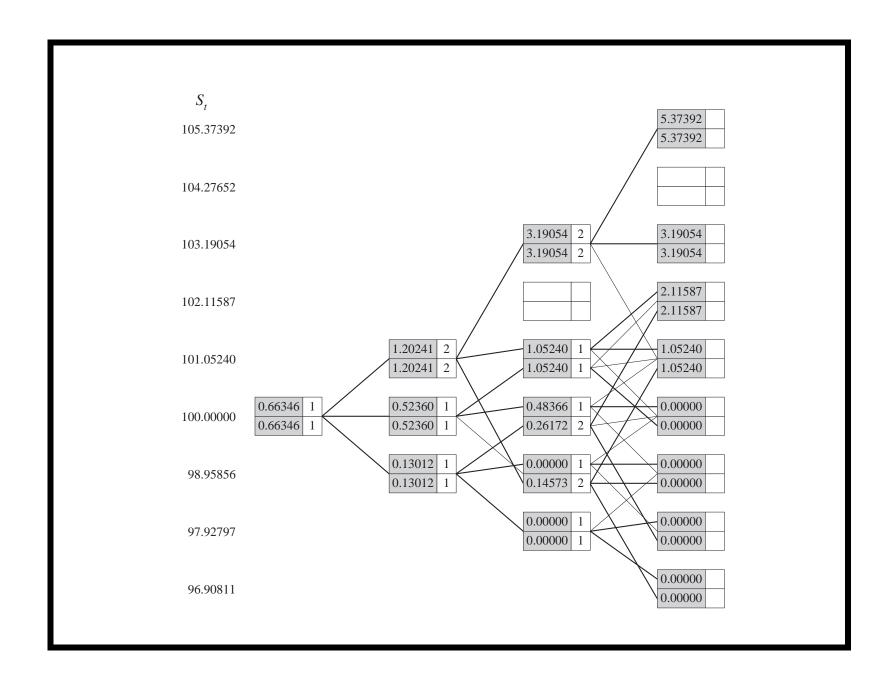


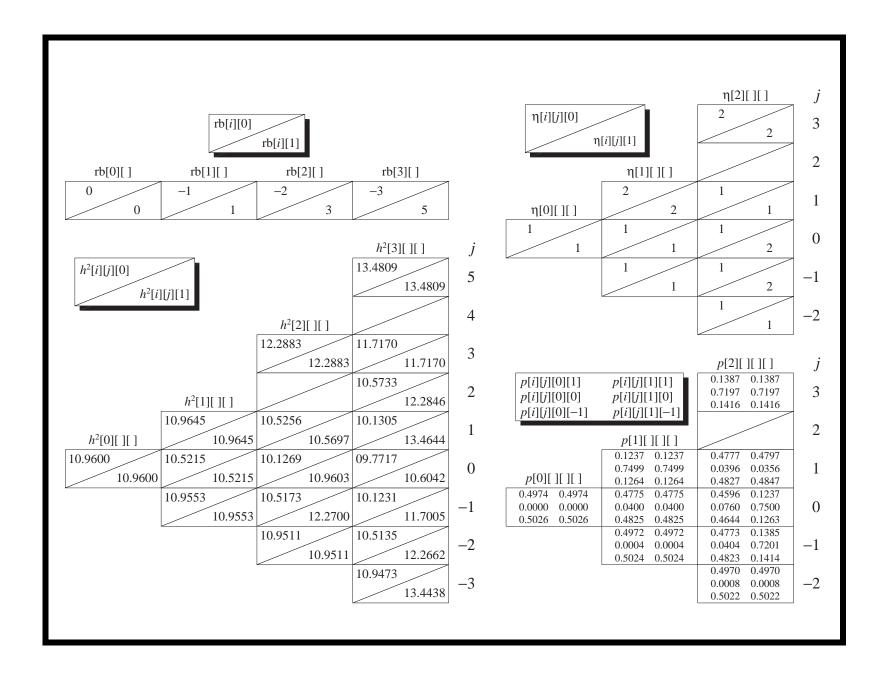
Backward Induction on the RT Tree (concluded)

- Suppose a variance falls between two of the K variances during backward induction.
- Linear interpolation of the option prices corresponding to the two bracketing variances will be used as the approximate option price.
- The above ideas are reminiscent of the ones on p. 441, where we dealt with Asian options.

Numerical Examples

- We next use the tree on p. 983 to price a European call option with a strike price of 100 and expiring at date 3.
- Recall that the riskless interest rate is zero.
- Assume K = 2; hence there are no interpolated variances.
- The pricing tree is shown on p. 986 with a call price of 0.66346.
 - The branching probabilities needed in backward induction can be found on p. 987.





- Let us derive some of the numbers on p. 986.
- A gray line means the updated variance falls strictly between h_{max}^2 and h_{min}^2 .
- The option price for a terminal node at date 3 equals $\max(S_3 100, 0)$, independent of the variance level.
- Now move on to nodes at date 2.
- The option price at node (2,3) depends on those at nodes (3,5), (3,3), and (3,1).
- It therefore equals

 $0.1387 \times 5.37392 + 0.7197 \times 3.19054 + 0.1416 \times 1.05240 = 3.19054.$

- Option prices for other nodes at date 2 can be computed similarly.
- For node (1,1), the option price for both variances is $0.1237 \times 3.19054 + 0.7499 \times 1.05240 + 0.1264 \times 0.14573 = 1.20241$.
- Node (1,0) is most interesting.
- We knew that a down move from it gives a variance of 0.000105609.
- This number falls between the minimum variance 0.000105173 and the maximum variance 0.0001227 at node (2, -1) on p. 987.

- The option price corresponding to the minimum variance is 0 (p. 987).
- The option price corresponding to the maximum variance is 0.14573.
- The equation

$$x \times 0.000105173 + (1 - x) \times 0.0001227 = 0.000105609$$
 is satisfied by $x = 0.9751$.

• So the option for the down state is approximated by

$$x \times 0 + (1 - x) \times 0.14573 = 0.00362.$$

- The up move leads to the state with option price 1.05240.
- The middle move leads to the state with option price 0.48366.
- The option price at node (1,0) is finally calculated as $0.4775 \times 1.05240 + 0.0400 \times 0.48366 + 0.4825 \times 0.00362 = 0.52360$.

- A variance following an interpolated variance may exceed the maximum variance or be exceeded by the minimum variance.
- When this happens, the option price corresponding to the maximum or minimum variance will be used during backward induction.^a
- This act tends to reduce the dynamic range of the variance.

^aCakici & Topyan (2000).

Numerical Examples (concluded)

- Worse, an interpolated variance may choose a branch that goes into a node that is *not* reached in forward induction.^a
- In this case, the algorithm fails.
- The RT algorithm does not have this problem.
 - This is because all interpolated variances are involved in the forward-induction phase.
- It may be hard to calculate the implied β_1 and β_2 from option prices.^b

^aLyuu & C. Wu (R90723065) (2005).

^bY. Chang (B89704039, R93922034) (2006).

Complexities of GARCH Models^a

- The RT algorithm explodes exponentially if n is big enough (p. 959).
- The mean-tracking tree of Lyuu and Wu (2005) makes sure explosion does not happen if n is not too large.^b
- The next page summarizes the situations for many GARCH option pricing models.
 - Our earlier treatment is for NGARCH only.

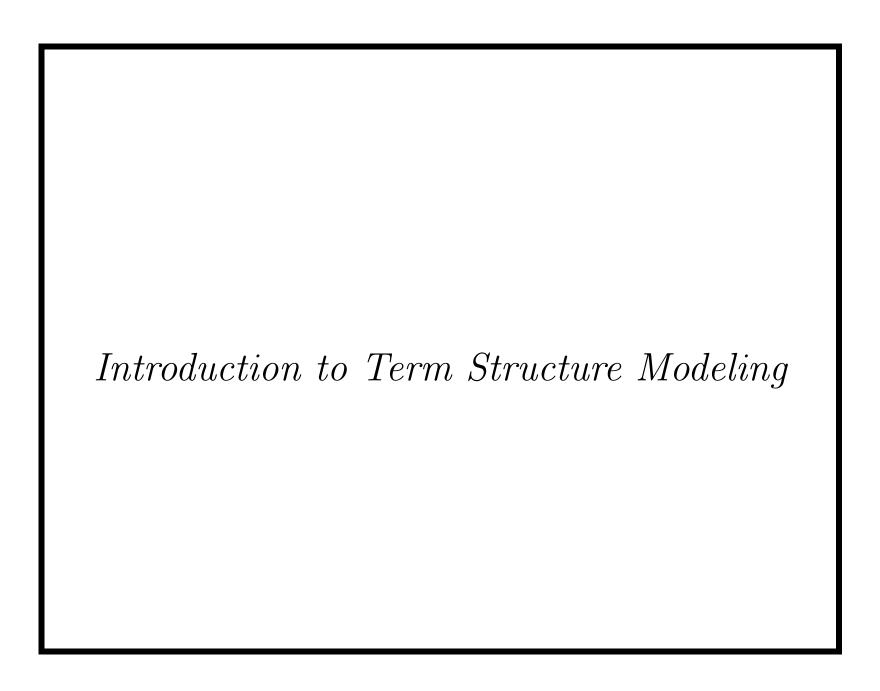
^aLyuu & C. Wu (R90723065) (2003, 2005).

^bSimilar to, but earlier than, the binomial-trinomial tree on pp. 745ff.

Complexities of GARCH Models (concluded)^a

Model	Explosion	Non-explosion
NGARCH	$\beta_1 + \beta_2 n > 1$	$\beta_1 + \beta_2(\sqrt{n} + \lambda + c)^2 \le 1$
LGARCH	$\beta_1 + \beta_2 n > 1$	$\beta_1 + \beta_2(\sqrt{n} + \lambda)^2 \le 1$
AGARCH	$\beta_1 + \beta_2 n > 1$	$\beta_1 + \beta_2(\sqrt{n} + \lambda)^2 \le 1$
GJR-GARCH	$\beta_1 + \beta_2 n > 1$	$\beta_1 + (\beta_2 + \beta_3)(\sqrt{n} + \lambda)^2 \le 1$
TS-GARCH	$\beta_1 + \beta_2 \sqrt{n} > 1$	$\beta_1 + \beta_2(\lambda + \sqrt{n}) \le 1$
TGARCH	$\beta_1 + \beta_2 \sqrt{n} > 1$	$\beta_1 + (\beta_2 + \beta_3)(\lambda + \sqrt{n}) \le 1$
Heston-Nandi	$\beta_1 + \beta_2 (c - \frac{1}{2})^2 > 1$	$\beta_1 + \beta_2 c^2 \le 1$
	$\& \ c \le \frac{1}{2}$	
VGARCH	$\beta_1 + (\beta_2/4) > 1$	$\beta_1 \le 1$

 $^{^{\}rm a}{\rm Y.~C.~Chen}$ (R95723051) (2008); Y. C. Chen (R95723051), Lyuu, & Wen (D94922003) (2012).



The fox often ran to the hole by which they had come in, to find out if his body was still thin enough to slip through it. — Grimm's Fairy Tales

And the worst thing you can have is models and spreadsheets. — Warren Buffet, May 3, 2008

Outline

- Use the binomial interest rate tree to model stochastic term structure.
 - Illustrates the basic ideas underlying future models.
 - Applications are generic in that pricing and hedging methodologies can be easily adapted to other models.
- Although the idea is similar to the earlier one used in option pricing, the current task is more complicated.
 - The evolution of an entire term structure, not just a single stock price, is to be modeled.
 - Interest rates of various maturities cannot evolve arbitrarily, or arbitrage profits may occur.

Issues

- A stochastic interest rate model performs two tasks.
 - Provides a stochastic process that defines future term structures without arbitrage profits.
 - "Consistent" with the observed term structures.

History

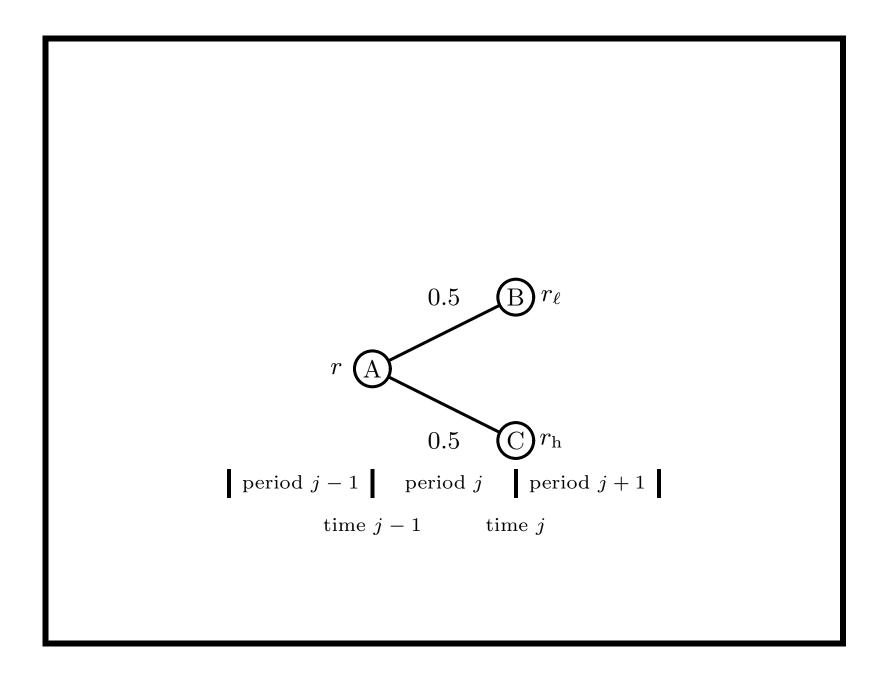
- The methodology was founded by Merton (1970).
- Modern interest rate modeling is often traced to 1977 when Vasicek and Cox, Ingersoll, and Ross developed simultaneously their influential models.
- Early models have fitting problems because they may not price today's benchmark bonds correctly.
- An alternative approach pioneered by Ho and Lee (1986) makes fitting the market yield curve mandatory.
- Models based on such a paradigm are called (somewhat misleadingly) arbitrage-free or no-arbitrage models.

Binomial Interest Rate Tree

- Goal is to construct a no-arbitrage interest rate tree consistent with the yields and/or yield volatilities of zero-coupon bonds of all maturities.
 - This procedure is called calibration.^a
- Pick a binomial tree model in which the logarithm of the future short rate obeys the binomial distribution.
 - Like the CRR tree for pricing options.
- The limiting distribution of the short rate at any future time is hence lognormal.

^aDerman (2004), "complexity without calibration is pointless."

- A binomial tree of future short rates is constructed.
- Every short rate is followed by two short rates in the following period (p. 1004).
- In the figure on p. 1004, node A coincides with the start of period j during which the short rate r is in effect.
- At the conclusion of period j, a new short rate goes into effect for period j + 1.



- This may take one of two possible values:
 - $-r_{\ell}$: the "low" short-rate outcome at node B.
 - $-r_{\rm h}$: the "high" short-rate outcome at node C.
- Each branch has a 50% chance of occurring in a risk-neutral economy.
- We require that the paths combine as the binomial process unfolds.
- This model is attributed to Salomon Brothers.^a

^aTuckman (2002).

- The short rate r can go to r_h and r_ℓ with equal risk-neutral probability 1/2 in a period of length Δt .
- Hence the volatility of $\ln r$ after Δt time is^a

$$\sigma = \frac{1}{2} \frac{1}{\sqrt{\Delta t}} \ln \left(\frac{r_{\rm h}}{r_{\ell}} \right). \tag{130}$$

• Above, σ is annualized, whereas r_{ℓ} and $r_{\rm h}$ are period based.

^aSee Exercise 23.2.3 in text.

• Note that

$$\frac{r_{\rm h}}{r_{\ell}} = e^{2\sigma\sqrt{\Delta t}}.$$

- Thus greater volatility, hence uncertainty, leads to larger $r_{\rm h}/r_{\ell}$ and wider ranges of possible short rates.
- The ratio r_h/r_ℓ may depend on time if the volatility is a function of time.
- Note that r_h/r_ℓ has nothing to do with the current short rate r if σ is independent of r.

• In general there are j possible rates for period j,

$$r_j, r_j v_j, r_j v_j^2, \ldots, r_j v_j^{j-1},$$

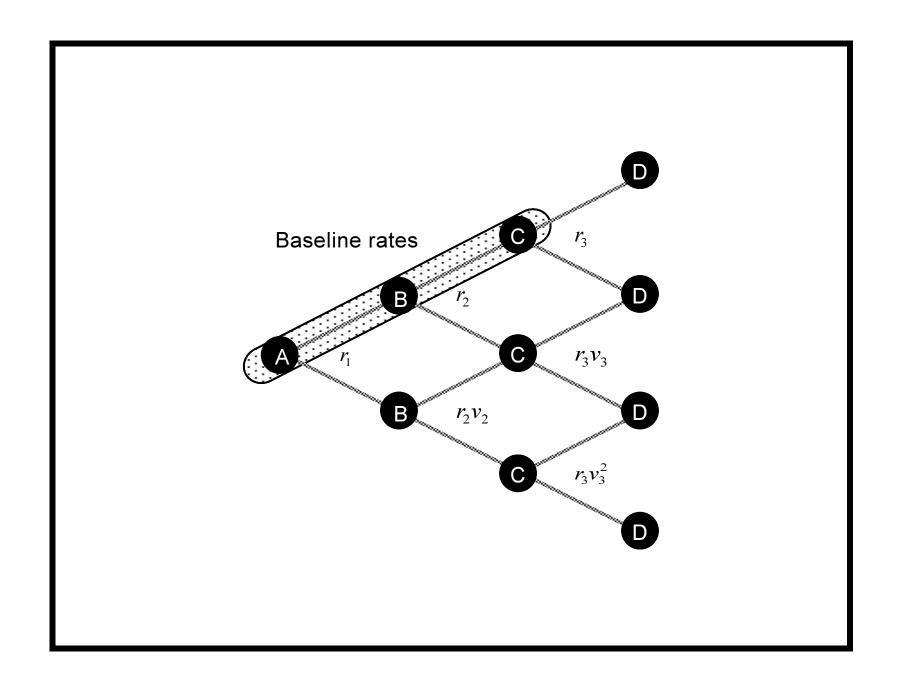
where

$$v_j \stackrel{\Delta}{=} e^{2\sigma_j \sqrt{\Delta t}} \tag{131}$$

is the multiplicative ratio for the rates in period j (see figure on next page).

- We shall call r_j the baseline rates.
- The subscript j in σ_j above is meant to emphasize that the short rate volatility may be time dependent.

^aNot j + 1.



• In the limit, the short rate follows

$$r(t) = \mu(t) e^{\sigma(t) W(t)}$$
. (132)

- The (percent) short rate volatility $\sigma(t)$ is a deterministic function of time.
- The expected value of r(t) equals $\mu(t) e^{\sigma(t)^2(t/2)}$.
- Hence a *declining* short rate volatility is usually imposed to preclude the short rate from assuming implausibly high values.
- Incidentally, this is how the binomial interest rate tree achieves mean reversion to some long-term mean.

Memory Issues

- Path independency: The term structure at any node is independent of the path taken to reach it.
- So only the baseline rates r_i and the multiplicative ratios v_i need to be stored in computer memory.
- This takes up only O(n) space.^a
- Storing the whole tree would take up $O(n^2)$ space.
 - Daily interest rate movements for 30 years require roughly $(30 \times 365)^2/2 \approx 6 \times 10^7$ double-precision floating-point numbers (half a gigabyte!).

^aThroughout, n denotes the depth of the tree.