Biases in Pricing Continuously Monitored Options with Monte Carlo

- We are asked to price a continuously monitored up-and-out call with barrier H.
- The Monte Carlo method samples the stock price at n discrete time points t_1, t_2, \ldots, t_n.
- A sample path

$$S(t_0), S(t_1), \ldots, S(t_n)$$

is produced.

- Here, $t_0 = 0$ is the current time, and $t_n = T$ is the expiration time of the option.
Biases in Pricing Continuously Monitored Options with Monte Carlo (continued)

• If all of the sampled prices are below the barrier, this sample path pays $\max(S(t_n) - X, 0)$.

• Repeating these steps and averaging the payoffs yield a Monte Carlo estimate.
1: \(C := 0; \)
2: \textbf{for} \(i = 1, 2, 3, \ldots, N \) \textbf{do}
3: \quad \(P := S; \) hit := 0;
4: \textbf{for} \(j = 1, 2, 3, \ldots, n \) \textbf{do}
5: \quad \quad \(P := P \times e^{(r-\sigma^2/2)(T/n)+\sigma\sqrt{T/n}} \xi; \) \{By Eq. (117) on p. 841.\}
6: \quad \quad \textbf{if} \(P \geq H \) \textbf{then}
7: \quad \quad \quad \text{hit := 1;}
8: \quad \quad \quad \text{break;}
9: \quad \quad \textbf{end if}
10: \quad \textbf{end for}
11: \quad \textbf{if} \ \text{hit = 0} \textbf{then}
12: \quad \quad \(C := C + \max(P - X, 0); \)
13: \quad \textbf{end if}
14: \textbf{end for}
15: \textbf{return} \(Ce^{-rT}/N; \)
Biases in Pricing Continuously Monitored Options with Monte Carlo (continued)

- This estimate is biased.a
 - Suppose none of the sampled prices on a sample path equals or exceeds the barrier H.
 - It remains possible for the continuous sample path that passes through them to hit the barrier *between* sampled time points (see plot on next page).
 - Hence knock-out probabilities are underestimated.

aShevchenko (2003).
Biases in Pricing Continuously Monitored Options with Monte Carlo (concluded)

- The bias can be lowered by increasing the number of observations along the sample path.
 - For trees, the knock-out probabilities may decrease as the number of time steps is increased.
- However, even daily sampling may not suffice.
- The computational cost also rises as a result.
Brownian Bridge Approach to Pricing Barrier Options

- We desire an unbiased estimate which can be calculated efficiently.

- The above-mentioned payoff should be multiplied by the probability \(p \) that a continuous sample path does not hit the barrier conditional on the sampled prices.

- This methodology is called the Brownian bridge approach.

- Formally, we have

\[
p \triangleq \text{Prob}\left[S(t) < H, 0 \leq t \leq T \mid S(t_0), S(t_1), \ldots, S(t_n) \right].
\]
Brownian Bridge Approach to Pricing Barrier Options (continued)

• As a barrier is hit over a time interval if and only if the maximum stock price over that period is at least H,

$$p = \text{Prob} \left[\max_{0 \leq t \leq T} S(t) < H \mid S(t_0), S(t_1), \ldots, S(t_n) \right].$$

• Luckily, the conditional distribution of the maximum over a time interval given the beginning and ending stock prices is known.
Brownian Bridge Approach to Pricing Barrier Options (continued)

Lemma 21 Assume S follows $dS/S = \mu dt + \sigma dW$ and define a

$$\zeta(x) \triangleq \exp \left[- \frac{2 \ln(x/S(t)) \ln(x/S(t + \Delta t))}{\sigma^2 \Delta t} \right].$$

(1) If $H > \max(S(t), S(t + \Delta t))$, then

$$\text{Prob} \left[\max_{t \leq u \leq t + \Delta t} S(u) < H \bigg| S(t), S(t + \Delta t) \right] = 1 - \zeta(H).$$

(2) If $h < \min(S(t), S(t + \Delta t))$, then

$$\text{Prob} \left[\min_{t \leq u \leq t + \Delta t} S(u) > h \bigg| S(t), S(t + \Delta t) \right] = 1 - \zeta(h).$$

aHere, Δt is an arbitrary positive real number.
Brownian Bridge Approach to Pricing Barrier Options (continued)

• Lemma 21 gives the probability that the barrier is not hit in a time interval, given the starting and ending stock prices.

• For our up-and-out call,\(^{a}\) choose \(n = 1\).

• As a result,

\[
p = \begin{cases}
1 - \exp\left[-\frac{2 \ln(H/S(0)) \ln(H/S(T))}{\sigma^2 T} \right], & \text{if } H > \max(S(0), S(T)), \\
0, & \text{otherwise.}
\end{cases}
\]

\(^{a}\)So \(S(0) < H\).
Brownian Bridge Approach to Pricing Barrier Options (continued)

The following algorithm works for up-and-out and down-and-out calls.

1: \(C := 0; \)
2: \(\textbf{for} \ i = 1, 2, 3, \ldots, N \ \textbf{do} \)
3: \(P := S \times e^{(r-q-\sigma^2/2)T+\sigma\sqrt{T}\ \xi()}; \)
4: \(\textbf{if} \ (S < H \ \text{and} \ P < H) \ \text{or} \ (S > H \ \text{and} \ P > H) \ \textbf{then} \)
5: \(C := C + \max(P-X, 0) \times \left\{ 1 - \exp \left[-\frac{2\ln(H/S) \times \ln(H/P)}{\sigma^2 T} \right] \right\}; \)
6: \(\textbf{end if} \)
7: \(\textbf{end for} \)
8: \(\textbf{return} \ Ce^{-rT}/N; \)
Brownian Bridge Approach to Pricing Barrier Options (concluded)

• The idea can be generalized.

• For example, we can handle more complex barrier options.

• Consider an up-and-out call with barrier H_i for the time interval $(t_i, t_{i+1}]$, $0 \leq i < n$.

• This option thus contains n barriers.

• Multiply the probabilities for the n time intervals to obtain the desired probability adjustment term.
Pricing Barrier Options without Brownian Bridge

• Let T_h denote the amount of time for a process X_t to hit h for the first time.

• It is called the first passage time or the first hitting time.

• Suppose X_t is a (μ, σ) Brownian motion:

$$dX_t = \mu \, dt + \sigma \, dW_t, \quad t \geq 0.$$
Pricing Barrier Options without Brownian Bridge (continued)

- The first passage time T_h follows the inverse Gaussian (IG) distribution with probability density function:\(^{a}\)

$$
\frac{|h - X(0)|}{\sigma t^{3/2}\sqrt{2\pi}} e^{-(h - X(0) - \mu x)^2/(2\sigma^2 x)}.
$$

- For pricing a barrier option with barrier H by simulation, the density function becomes

$$
\frac{|\ln(H/S(0))|}{\sigma t^{3/2}\sqrt{2\pi}} e^{-[\ln(H/S(0)) - (r - \sigma^2/2) x]^2/(2\sigma^2 x)}.
$$

^{a}A. N. Borodin & Salminen (1996), with Laplace transform

$$
E[e^{-\lambda T_h}] = e^{-|h - X(0)|\sqrt{2\lambda}}, \lambda > 0.
$$
Pricing Barrier Options without Brownian Bridge (concluded)

- Draw an x from this distribution.\(^a\)

- If $x > T$, a knock-in option fails to knock in, whereas a knock-out option does not knock out.

- If $x \leq T$, the opposite is true.

- If the barrier option survives at maturity T, then draw an $S(T)$ to calculate its payoff.

- Repeat the above process many times to average the discounted payoff.

\(^a\)The IG distribution can be very efficiently sampled (Michael, Schucany, & Haas, 1976).
Brownian Bridge Approach to Pricing Lookback Options\(^a\)

- By Lemma 21(1) (p. 864),

\[
F_{\text{max}}(y) \triangleq \text{Prob} \left[\max_{0 \leq t \leq T} S(t) < y \mid S(0), S(T) \right] \\
= 1 - \exp \left[-\frac{2 \ln(y/S(0)) \ln(y/S(T))}{\sigma^2 T} \right].
\]

- So \(F_{\text{max}}\) is the conditional distribution function of the maximum stock price.

\(^a\)El Babsiri & Noel (1998).
Brownian Bridge Approach to Pricing Lookback Options (continued)

- A random variable with that distribution can be generated by $F_{\max}^{-1}(x)$, where x is uniformly distributed over $(0, 1)$.\(^a\)
- In other words,

$$x = 1 - \exp\left[-\frac{2 \ln(y/S(0)) \ln(y/S(T))}{\sigma^2 T}\right].$$

\(^a\)This is called the inverse-transform technique (see p. 259 of the textbook).
Brownian Bridge Approach to Pricing Lookback Options (continued)

• Equivalently,

\[
\ln(1 - x) = -\frac{2 \ln(y/S(0)) \ln(y/S(T))}{\sigma^2 T}
\]

\[
= -\frac{2}{\sigma^2 T} \left\{ [\ln(y) - \ln S(0)] [\ln(y) - \ln S(T)] \right\}.
\]
Brownian Bridge Approach to Pricing Lookback Options (continued)

• There are two solutions for \(\ln y \).
• But only one is consistent with \(y \geq \max(S(0), S(T)) \):

\[
\ln y = \ln(S(0) S(T)) + \sqrt{\left(\ln \frac{S(T)}{S(0)} \right)^2 - 2\sigma^2 T \ln(1 - x)}
\]
Brownian Bridge Approach to Pricing Lookback Options (concluded)

The following algorithm works for the lookback put on the maximum.

1: \(C := 0; \)
2: \(\text{for } i = 1, 2, 3, \ldots, N \text{ do} \)
3: \(P := S \times e^{(r-q-\sigma^2/2)T + \sigma \sqrt{T} \xi(\cdot)}; \) \{By Eq. (117) on p. 841.\}
4: \(Y := \exp \left[\frac{\ln(SP) + \sqrt{(\ln \frac{P}{S})^2 - 2\sigma^2 T \ln[1-U(0,1)]}}{2} \right]; \)
5: \(C := C + (Y - P); \)
6: \(\text{end for} \)
7: \(\text{return } Ce^{-rT}/N; \)
Pricing Lookback Options without Brownian Bridge

- Suppose we do not draw $S(T)$ in simulation.
- Now, the distribution function of the maximum logarithmic stock price is\(^a\)

$$\text{Prob} \left[\max_{0 \leq t \leq T} \ln \frac{S(t)}{S(0)} < y \right]$$

$$= 1 - N \left(\frac{-y + \left(r - q - \frac{\sigma^2}{2} \right) T}{\sigma \sqrt{T}} \right) - N \left(\frac{-y - \left(r - q - \frac{\sigma^2}{2} \right) T}{\sigma \sqrt{T}} \right).$$

- The inverse of that is much harder to calculate.

\(^a\)A. N. Borodin & Salminen (1996).
Variance Reduction

- The statistical efficiency of Monte Carlo simulation can be measured by the variance of its output.
- If this variance can be lowered without changing the expected value, fewer replications are needed.
- Methods that improve efficiency in this manner are called variance-reduction techniques.
- Such techniques become practical when the added costs are outweighed by the reduction in sampling.
Variance Reduction: Antithetic Variates

- We are interested in estimating $E[g(X_1, X_2, \ldots, X_n)]$.

- Let Y_1 and Y_2 be random variables with the same distribution as $g(X_1, X_2, \ldots, X_n)$.

- Then

 $$\text{Var} \left[\frac{Y_1 + Y_2}{2} \right] = \frac{\text{Var}[Y_1]}{2} + \frac{\text{Cov}[Y_1, Y_2]}{2}.$$

 - $\text{Var}[Y_1]/2$ is the variance of the Monte Carlo method with two independent replications.

- The variance $\text{Var}[\left(\frac{Y_1 + Y_2}{2} \right)]$ is smaller than $\text{Var}[Y_1]/2$ when Y_1 and Y_2 are negatively correlated.
Variance Reduction: Antithetic Variates (continued)

- For each simulated sample path X, a second one is obtained by *reusing* the random numbers on which the first path is based.

- This yields a second sample path Y.

- Two estimates are then obtained: One based on X and the other on Y.

- If N independent sample paths are generated, the antithetic-variates estimator averages over $2N$ estimates.
Variance Reduction: Antithetic Variates (continued)

- Consider process \(dX = a_t \, dt + b_t \sqrt{dt} \, \xi \).
- Let \(g \) be a function of \(n \) samples \(X_1, X_2, \ldots, X_n \) on the sample path.
- We are interested in \(E[g(X_1, X_2, \ldots, X_n)] \).
- Suppose one simulation run has realizations \(\xi_1, \xi_2, \ldots, \xi_n \) for the normally distributed fluctuation term \(\xi \).
- This generates samples \(x_1, x_2, \ldots, x_n \).
- The estimate is then \(g(\pmb{x}) \), where \(\pmb{x} \triangleq (x_1, x_2 \ldots, x_n) \).
Variance Reduction: Antithetic Variates (concluded)

• The antithetic-variates method does not sample n more numbers from ξ for the second estimate $g(\mathbf{x}')$.

• Instead, generate the sample path $\mathbf{x}' \overset{\Delta}{=} (x'_1, x'_2, \ldots, x'_n)$ from $-\xi_1, -\xi_2, \ldots, -\xi_n$.

• Compute $g(\mathbf{x}')$.

• Output $(g(\mathbf{x}) + g(\mathbf{x}'))/2$.

• Repeat the above steps for as many times as required by accuracy.
Variance Reduction: Conditioning

- We are interested in estimating $E[X]$.
- Suppose here is a random variable Z such that $E[X | Z = z]$ can be efficiently and precisely computed.
- $E[X] = E[E[X | Z]]$ by the law of iterated conditional expectations.
- Hence the random variable $E[X | Z]$ is also an unbiased estimator of $E[X]$.
Variance Reduction: Conditioning (concluded)

• As

\[\text{Var}[E[X | Z]] \leq \text{Var}[X], \]

\(E[X | Z] \) has a smaller variance than observing \(X \) directly.

• First, obtain a random observation \(z \) on \(Z \).

• Then calculate \(E[X | Z = z] \) as our estimate.

 – There is no need to resort to simulation in computing \(E[X | Z = z] \).

• The procedure can be repeated a few times to reduce the variance.
Control Variates

• Use the analytic solution of a “similar” yet “simpler” problem to improve the solution.

• Suppose we want to estimate $E[X]$ and there exists a random variable Y with a known mean $\mu \triangleq E[Y]$.

• Then $W \triangleq X + \beta(Y - \mu)$ can serve as a “controlled” estimator of $E[X]$ for any constant β.

 − However β is chosen, W remains an unbiased estimator of $E[X]$ as

 $$E[W] = E[X] + \beta E[Y - \mu] = E[X].$$
Control Variates (continued)

• Note that

$$\text{Var}[W] = \text{Var}[X] + \beta^2 \text{Var}[Y] + 2\beta \text{Cov}[X, Y],$$

(118)

• Hence W is less variable than X if and only if

$$\beta^2 \text{Var}[Y] + 2\beta \text{Cov}[X, Y] < 0.$$

(119)
Control Variates (concluded)

• The success of the scheme clearly depends on both β and the choice of Y.

 − American options can be priced by choosing Y to be the otherwise identical European option and μ the Black-Scholes formula.\(^a\)

 − Arithmetic Asian options can be priced by choosing Y to be the otherwise identical geometric Asian option’s price and $\beta = -1$.

• This approach is much more effective than the antithetic-variates method.\(^b\)

\(^a\)Hull & White (1988).
\(^b\)Boyle, Broadie, & Glasserman (1997).
Choice of Y

- In general, the choice of Y is ad hoc,\(^a\) and experiments must be performed to confirm the wisdom of the choice.

- Try to match calls with calls and puts with puts.\(^b\)

- On many occasions, Y is a discretized version of the derivative that gives μ.

 - Discretely monitored geometric Asian option vs. the continuously monitored version.\(^c\)

- The discrepancy can be large (e.g., lookback options).\(^d\)

\(^a\)But see Dai (B82506025, R86526008, D8852600), C. Chiu (B90201037, R94922072), & Lyuu (2015, 2018).

\(^b\)Contributed by Ms. Teng, Huei-Wen (R91723054) on May 25, 2004.

\(^c\)Priced by formulas (55) on p. 434.

\(^d\)Contributed by Mr. Tsai, Hwai (R92723049) on May 12, 2004.
Optimal Choice of β

- Equation (118) on p. 885 is minimized when

$$\beta = -\frac{\text{Cov}[X,Y]}{\text{Var}[Y]}.$$

It is called beta in the book.

- For this specific β,

$$\text{Var}[W] = \text{Var}[X] - \frac{\text{Cov}[X,Y]^2}{\text{Var}[Y]} = (1 - \rho_{X,Y}^2) \text{Var}[X],$$

where $\rho_{X,Y}$ is the correlation between X and Y.

Optimal Choice of β (continued)

- Note that the variance can never be increased with the optimal choice.

- Furthermore, the stronger X and Y are correlated, the greater the reduction in variance.

- For example, if this correlation is nearly perfect (± 1), we could control X almost exactly.
Optimal Choice of β (continued)

• Typically, neither $\text{Var}[Y]$ nor $\text{Cov}[X,Y]$ is known.

• Therefore, we cannot obtain the maximum reduction in variance.

• We can guess these values and hope that the resulting W does indeed have a smaller variance than X.

• A second possibility is to use the simulated data to estimate these quantities.

 – How to do it efficiently in terms of time and space?
Optimal Choice of β (concluded)

- Observe that $-\beta$ has the same sign as the correlation between X and Y.

- Hence, if X and Y are positively correlated, $\beta < 0$, then X is adjusted downward whenever $Y > \mu$ and upward otherwise.

- The opposite is true when X and Y are negatively correlated, in which case $\beta > 0$.

- Suppose a suboptimal $\beta + \epsilon$ is used instead.

- The variance increases by only $\epsilon^2 \text{Var}[Y]$.\(^a\)

\(^a\)Han & Y. Lai (2010).
A Pitfall

• A potential pitfall is to sample X and Y independently.
• In this case, $\text{Cov}[X, Y] = 0$.
• Equation (118) on p. 885 becomes

$$\text{Var}[W] = \text{Var}[X] + \beta^2 \text{Var}[Y].$$

• So whatever Y is, the variance is *increased*!
• Lesson: X and Y must be correlated.
Problems with the Monte Carlo Method

- The error bound is only probabilistic.
- The probabilistic error bound of $O(1/\sqrt{N})$ does not benefit from regularity of the integrand function.
- The requirement that the points be independent random samples are wasteful because of clustering.
- In reality, pseudorandom numbers generated by completely deterministic means are used.
- Monte Carlo simulation exhibits a great sensitivity on the seed of the pseudorandom-number generator.
Matrix Computation
To set up a philosophy against physics is rash; philosophers who have done so have always ended in disaster.

— Bertrand Russell
Definitions and Basic Results

• Let $A \triangleq [a_{ij}]_{1 \leq i \leq m, 1 \leq j \leq n}$, or simply $A \in \mathbb{R}^{m \times n}$, denote an $m \times n$ matrix.

• It can also be represented as $[a_1, a_2, \ldots, a_n]$ where $a_i \in \mathbb{R}^m$ are vectors.
 – Vectors are column vectors unless stated otherwise.

• A is a square matrix when $m = n$.

• The rank of a matrix is the largest number of linearly independent columns.
Definitions and Basic Results (continued)

- A square matrix A is said to be symmetric if $A^T = A$.
- A real $n \times n$ matrix
 \[
 A \triangleq [a_{ij}]_{i,j}
 \]
 is diagonally dominant if $|a_{ii}| > \sum_{j\neq i} |a_{ij}|$ for $1 \leq i \leq n$.
 - Such matrices are nonsingular.
- The identity matrix is the square matrix
 \[
 I \triangleq \text{diag}[1, 1, \ldots, 1].
 \]
Definitions and Basic Results (concluded)

- A matrix has full column rank if its columns are linearly independent.

- A real symmetric matrix A is positive definite if

$$x^T Ax = \sum_{i,j} a_{ij}x_i x_j > 0$$

for any nonzero vector x.

- A matrix A is positive definite if and only if there exists a matrix W such that $A = W^T W$ and W has full column rank.
Cholesky Decomposition

• Positive definite matrices can be factored as

\[A = LL^T, \]

called the Cholesky decomposition.

– Above, \(L \) is a lower triangular matrix.
Generation of Multivariate Distribution

• Let \(\mathbf{x} \triangleq [x_1, x_2, \ldots, x_n]^T \) be a vector random variable with a positive definite covariance matrix \(C \).

• As usual, assume \(E[\mathbf{x}] = 0 \).

• This covariance structure can be matched by \(P\mathbf{y} \).

 – \(\mathbf{y} \triangleq [y_1, y_2, \ldots, y_n]^T \) is a vector random variable with a covariance matrix equal to the identity matrix.

 – \(C = PP^T \) is the Cholesky decomposition of \(C \).\(^a\)

\(^a\)What if \(C \) is not positive definite? See Y. Y. Lai (R93942114) & Lyuu (2007).
Generation of Multivariate Distribution (concluded)

- For example, suppose
 \[
 C = \begin{bmatrix}
 1 & \rho \\
 \rho & 1
 \end{bmatrix}
 \]

- Then
 \[
 P = \begin{bmatrix}
 1 & 0 \\
 \rho & \sqrt{1 - \rho^2}
 \end{bmatrix}
 \]
 as \(PP^T = C \).\(^{a}\)

\(^{a}\)Recall Eq. (29) on p. 178.
Generation of Multivariate Normal Distribution

- Suppose we want to generate the multivariate normal distribution with a covariance matrix $C = PP^T$.
 - First, generate independent standard normal distributions y_1, y_2, \ldots, y_n.
 - Then
 $$P[y_1, y_2, \ldots, y_n]^T$$
 has the desired distribution.
 - These steps can then be repeated.
Multivariate Derivatives Pricing

- Generating the multivariate normal distribution is essential for the Monte Carlo pricing of multivariate derivatives (pp. 797ff).

- For example, the rainbow option on k assets has payoff

 $$\max(\max(S_1, S_2, \ldots, S_k) - X, 0)$$

 at maturity.

- The closed-form formula is a multi-dimensional integral.\(^a\)

\(^a\)Johnson (1987); C. Y. Chen (D95723006) & Lyuu (2009).
Multivariate Derivatives Pricing (concluded)

• Suppose \(\frac{dS_j}{S_j} = r \, dt + \sigma_j \, dW_j \), \(1 \leq j \leq k \), where \(C \) is the correlation matrix for \(dW_1, dW_2, \ldots, dW_k \).

• Let \(C = PP^T \).

• Let \(\xi \) consist of \(k \) independent random variables from \(N(0, 1) \).

• Let \(\xi' = P\xi \).

• Similar to Eq. (117) on p. 841, for each asset \(1 \leq j \leq k \),

\[
S_{i+1} = S_i e^{(r - \sigma_j^2/2) \Delta t + \sigma_j \sqrt{\Delta t} \, \xi'_j}
\]

by Eq. (117) on p. 841.
Least-Squares Problems

• The least-squares (LS) problem is concerned with

\[
\min_{x \in \mathbb{R}^n} \| Ax - b \|,
\]

where \(A \in \mathbb{R}^{m \times n} \), \(b \in \mathbb{R}^m \), and \(m \geq n \).

• The LS problem is called regression analysis in statistics and is equivalent to minimizing the mean-square error.

• Often written as

\[Ax = b. \]
Polynomial Regression

• In polynomial regression, \(x_0 + x_1 x + \cdots + x_n x^n \) is used to fit the data \{ \((a_1, b_1), (a_2, b_2), \ldots, (a_m, b_m)\) \}.

• This leads to the LS problem,

\[
\begin{bmatrix}
1 & a_1 & a_1^2 & \cdots & a_1^n \\
1 & a_2 & a_2^2 & \cdots & a_2^n \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & a_m & a_m^2 & \cdots & a_m^n \\
\end{bmatrix}
\begin{bmatrix}
x_0 \\
x_1 \\
\vdots \\
x_n \\
\end{bmatrix}
=
\begin{bmatrix}
b_1 \\
b_2 \\
\vdots \\
b_m \\
\end{bmatrix}.
\]

• Consult p. 273 of the textbook for solutions.
American Option Pricing by Simulation

- The continuation value of an American option is the conditional expectation of the payoff from keeping the option alive now.

- The option holder must compare the immediate exercise value and the continuation value.

- In standard Monte Carlo simulation, each path is treated independently of other paths.

- But the decision to exercise the option cannot be reached by looking at one path alone.
The Least-Squares Monte Carlo Approach

- The continuation value can be estimated from the cross-sectional information in the simulation by using least squares.\(^a\)

- The result is a function (of the state) for estimating the continuation values.

- Use the function to estimate the continuation value for each path to determine its cash flow.

- This is called the least-squares Monte Carlo (LSM) approach.

\(^a\)Longstaff & Schwartz (2001).
The Least-Squares Monte Carlo Approach (concluded)

- The LSM is provably convergent.a
- The LSM can be easily parallelized.b
 - Partition the paths into subproblems and perform LSM on each of them independently.
 - The speedup is close to linear (i.e., proportional to the number of cores).
- Surprisingly, accuracy is not affected.

aClément, Lamberton, & Protter (2002); Stentoft (2004).
bK. Huang (B96902079, R00922018) (2013); C. W. Chen (B97902046, R01922005) (2014); C. W. Chen (B97902046, R01922005), K. Huang (B96902079, R00922018) & Lyuu (2015).
A Numerical Example

- Consider a 3-year American put on a non-dividend-paying stock.
- The put is exercisable at years 0, 1, 2, and 3.
- The strike price $X = 105$.
- The annualized riskless rate is $r = 5\%$.
 - The annual discount factor hence equals 0.951229.
- The current stock price is 101.
- We use only 8 price paths to illustrate the algorithm.
A Numerical Example (continued)

<table>
<thead>
<tr>
<th>Path</th>
<th>Year 0</th>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>101</td>
<td>97.6424</td>
<td>92.5815</td>
<td>107.5178</td>
</tr>
<tr>
<td>2</td>
<td>101</td>
<td>101.2103</td>
<td>105.1763</td>
<td>102.4524</td>
</tr>
<tr>
<td>3</td>
<td>101</td>
<td>105.7802</td>
<td>103.6010</td>
<td>124.5115</td>
</tr>
<tr>
<td>4</td>
<td>101</td>
<td>96.4411</td>
<td>98.7120</td>
<td>108.3600</td>
</tr>
<tr>
<td>5</td>
<td>101</td>
<td>124.2345</td>
<td>101.0564</td>
<td>104.5315</td>
</tr>
<tr>
<td>6</td>
<td>101</td>
<td>95.8375</td>
<td>93.7270</td>
<td>99.3788</td>
</tr>
<tr>
<td>7</td>
<td>101</td>
<td>108.9554</td>
<td>102.4177</td>
<td>100.9225</td>
</tr>
<tr>
<td>8</td>
<td>101</td>
<td>104.1475</td>
<td>113.2516</td>
<td>115.0994</td>
</tr>
</tbody>
</table>
A Numerical Example (continued)

• We use the basis functions $1, x, x^2$.
 – Other basis functions are possible.\(^a\)

• The plot next page shows the final estimated optimal exercise strategy given by LSM.

• We now proceed to tackle our problem.

• The idea is to calculate the cash flow along each path, using information from \textit{all} paths.

\(^a\)Laguerre polynomials, Hermite polynomials, Legendre polynomials, Chebyshev polynomials, Gedenbauer polynomials, and Jacobi polynomials.
A Numerical Example (continued)

Cash flows at year 3

<table>
<thead>
<tr>
<th>Path</th>
<th>Year 0</th>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>2.5476</td>
</tr>
<tr>
<td>3</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>0.4685</td>
</tr>
<tr>
<td>6</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>5.6212</td>
</tr>
<tr>
<td>7</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>4.0775</td>
</tr>
<tr>
<td>8</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>0</td>
</tr>
</tbody>
</table>
A Numerical Example (continued)

- The cash flows at year 3 are the exercise value if the put is in the money.
- Only 4 paths are in the money: 2, 5, 6, 7.
- Some of the cash flows may not occur if the put is exercised earlier, which we will find out step by step.
- Incidentally, the *European* counterpart has a value of

\[
0.951229^3 \times \frac{2.5476 + 0.4685 + 5.6212 + 4.0775}{8} = 1.3680.
\]
A Numerical Example (continued)

• We move on to year 2.

• For each state that is in the money at year 2, we must decide whether to exercise it.

• There are 6 paths for which the put is in the money: 1, 3, 4, 5, 6, 7 (p. 911).

• Only in-the-money paths will be used in the regression because they are where early exercise is relevant.
 – If there were none, we would move on to year 1.
A Numerical Example (continued)

- Let x denote the stock prices at year 2 for those 6 paths.
- Let y denote the corresponding discounted future cash flows (at year 3) if the put is not exercised at year 2.
A Numerical Example (continued)

Regression at year 2

<table>
<thead>
<tr>
<th>Path</th>
<th>(x)</th>
<th>(y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>92.5815</td>
<td>0 \times 0.951229</td>
</tr>
<tr>
<td>2</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>3</td>
<td>103.6010</td>
<td>0 \times 0.951229</td>
</tr>
<tr>
<td>4</td>
<td>98.7120</td>
<td>0 \times 0.951229</td>
</tr>
<tr>
<td>5</td>
<td>101.0564</td>
<td>0.4685 \times 0.951229</td>
</tr>
<tr>
<td>6</td>
<td>93.7270</td>
<td>5.6212 \times 0.951229</td>
</tr>
<tr>
<td>7</td>
<td>102.4177</td>
<td>4.0775 \times 0.951229</td>
</tr>
<tr>
<td>8</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>
A Numerical Example (continued)

- We regress \(y \) on 1, \(x \), and \(x^2 \).
- The result is

\[
f(x) = 22.08 - 0.313114 \times x + 0.00106918 \times x^2.
\]

- \(f(x) \) estimates the continuation value conditional on the stock price at year 2.
- We next compare the immediate exercise value and the continuation value.\(^{a}\)

\(^{a}\)The \(f(102.4177) \) entry on the next page was corrected by Mr. Tu, Yung-Szu (B79503054, R83503086) on May 25, 2017.
A Numerical Example (continued)

Optimal early exercise decision at year 2

<table>
<thead>
<tr>
<th>Path</th>
<th>Exercise</th>
<th>Continuation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12.4185</td>
<td>$f(92.5815) = 2.2558$</td>
</tr>
<tr>
<td>2</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>3</td>
<td>1.3990</td>
<td>$f(103.6010) = 1.1168$</td>
</tr>
<tr>
<td>4</td>
<td>6.2880</td>
<td>$f(98.7120) = 1.5901$</td>
</tr>
<tr>
<td>5</td>
<td>3.9436</td>
<td>$f(101.0564) = 1.3568$</td>
</tr>
<tr>
<td>6</td>
<td>11.2730</td>
<td>$f(93.7270) = 2.1253$</td>
</tr>
<tr>
<td>7</td>
<td>2.5823</td>
<td>$f(102.4177) = 1.2266$</td>
</tr>
<tr>
<td>8</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>
A Numerical Example (continued)

- Amazingly, the put should be exercised in all 6 paths: 1, 3, 4, 5, 6, 7.

- Now, any positive cash flow at year 3 should be set to zero or overridden for these paths as the put is exercised before year 3 (p. 911).
 - They are paths 5, 6, 7.

- The cash flows on p. 915 become the ones on next slide.
A Numerical Example (continued)

Cash flows at years 2 & 3

<table>
<thead>
<tr>
<th>Path</th>
<th>Year 0</th>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>—</td>
<td>—</td>
<td>12.4185</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>—</td>
<td>—</td>
<td>0</td>
<td>2.5476</td>
</tr>
<tr>
<td>3</td>
<td>—</td>
<td>—</td>
<td>1.3990</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>—</td>
<td>—</td>
<td>6.2880</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>—</td>
<td>—</td>
<td>3.9436</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>—</td>
<td>—</td>
<td>11.2730</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>—</td>
<td>—</td>
<td>2.5823</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>—</td>
<td>—</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
A Numerical Example (continued)

- We move on to year 1.

- For each state that is in the money at year 1, we must decide whether to exercise it.

- There are 5 paths for which the put is in the money: 1, 2, 4, 6, 8 (p. 911).

- Only in-the-money paths will be used in the regression because they are where early exercise is relevant.
 - If there were none, we would move on to year 0.
A Numerical Example (continued)

• Let x denote the stock prices at year 1 for those 5 paths.
• Let y denote the corresponding discounted future cash flows if the put is not exercised at year 1.
• From p. 923, we have the following table.
A Numerical Example (continued)

Regression at year 1

<table>
<thead>
<tr>
<th>Path</th>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>97.6424</td>
<td>12.4185×0.951229</td>
</tr>
<tr>
<td>2</td>
<td>101.2103</td>
<td>2.5476×0.951229^2</td>
</tr>
<tr>
<td>3</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>4</td>
<td>96.4411</td>
<td>6.2880×0.951229</td>
</tr>
<tr>
<td>5</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>6</td>
<td>95.8375</td>
<td>11.2730×0.951229</td>
</tr>
<tr>
<td>7</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>8</td>
<td>104.1475</td>
<td>0</td>
</tr>
</tbody>
</table>
A Numerical Example (continued)

- We regress y on 1, x, and x^2.
- The result is

 $$f(x) = -420.964 + 9.78113 \times x - 0.0551567 \times x^2.$$

- $f(x)$ estimates the continuation value conditional on the stock price at year 1.
- We next compare the immediate exercise value and the continuation value.
A Numerical Example (continued)

Optimal early exercise decision at year 1

<table>
<thead>
<tr>
<th>Path</th>
<th>Exercise</th>
<th>Continuation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7.3576</td>
<td>$f(97.6424) = 8.2230$</td>
</tr>
<tr>
<td>2</td>
<td>3.7897</td>
<td>$f(101.2103) = 3.9882$</td>
</tr>
<tr>
<td>3</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>4</td>
<td>8.5589</td>
<td>$f(96.4411) = 9.3329$</td>
</tr>
<tr>
<td>5</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>6</td>
<td>9.1625</td>
<td>$f(95.8375) = 9.83042$</td>
</tr>
<tr>
<td>7</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>8</td>
<td>0.8525</td>
<td>$f(104.1475) = -0.551885$</td>
</tr>
</tbody>
</table>
A Numerical Example (continued)

- The put should be exercised for 1 path only: 8.
 - Note that $f(104.1475) < 0$.

- Now, any positive future cash flow should be set to zero or overridden for this path.
 - But there is none.

- The cash flows on p. 923 become the ones on next slide.

- They also confirm the plot on p. 914.
A Numerical Example (continued)

Cash flows at years 1, 2, & 3

<table>
<thead>
<tr>
<th>Path</th>
<th>Year 0</th>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>—</td>
<td>0</td>
<td>12.4185</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>—</td>
<td>0</td>
<td>0</td>
<td>2.5476</td>
</tr>
<tr>
<td>3</td>
<td>—</td>
<td>0</td>
<td>1.3990</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>—</td>
<td>0</td>
<td>6.2880</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>—</td>
<td>0</td>
<td>3.9436</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>—</td>
<td>0</td>
<td>11.2730</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>—</td>
<td>0</td>
<td>2.5823</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>0.8525</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
A Numerical Example (continued)

• We move on to year 0.

• The continuation value is, from p 930,

\[
(12.4185 \times 0.951229^2 + 2.5476 \times 0.951229^3 \\
+1.3990 \times 0.951229^2 + 6.2880 \times 0.951229^2 \\
+3.9436 \times 0.951229^2 + 11.2730 \times 0.951229^2 \\
+2.5823 \times 0.951229^2 + 0.8525 \times 0.951229)/8
= 4.66263.
\]
A Numerical Example (concluded)

• As this is larger than the immediate exercise value of $105 - 101 = 4$,
 the put should not be exercised at year 0.

• Hence the put’s value is estimated to be 4.66263.

• Compare this with the European put’s value of 1.3680 (p. 916).