As a Package of Cash Market Instruments

- Assume no default risk.
- Take B on p. 522 as an example.
- The swap is equivalent to a long position in a yen bond paying 11% annual interest and a short position in a dollar bond paying 11.5% annual interest.
- The pricing formula is $SP_Y - P_D$.
 - P_D is the dollar bond’s value in dollars.
 - P_Y is the yen bond’s value in yen.
 - S is the $$/yen spot exchange rate.
As a Package of Cash Market Instruments (concluded)

- The value of a currency swap depends on:
 - The term structures of interest rates in the currencies involved.
 - The spot exchange rate.
- It has zero value when

\[\text{SPY} = \text{PD}. \]
Example

• Take a 3-year swap on p. 522 with principal amounts of US$1 million and 100 million yen.

• The payments are made once a year.

• The spot exchange rate is 90 yen/$ and the term structures are flat in both nations—8% in the U.S. and 9% in Japan.

• For B, the value of the swap is (in millions of USD)

$$\frac{1}{90} \times (11 \times e^{-0.09} + 11 \times e^{-0.09 \times 2} + 111 \times e^{-0.09 \times 3})$$

$$- (0.115 \times e^{-0.08} + 0.115 \times e^{-0.08 \times 2} + 1.115 \times e^{-0.08 \times 3}) = 0.074.$$
As a Package of Forward Contracts

• From Eq. (60) on p. 489, the forward contract maturing \(i \) years from now has a dollar value of

\[
 f_i \triangleq (SY_i) e^{-qi} - D_i e^{-ri}.
\]

- \(Y_i \) is the yen inflow at year \(i \).
- \(S \) is the \$/yen spot exchange rate.
- \(q \) is the yen interest rate.
- \(D_i \) is the dollar outflow at year \(i \).
- \(r \) is the dollar interest rate.
As a Package of Forward Contracts (concluded)

- For simplicity, flat term structures were assumed.
- Generalization is straightforward.
Example

• Take the swap in the example on p. 525.
• Every year, B receives 11 million yen and pays 0.115 million dollars.
• In addition, at the end of the third year, B receives 100 million yen and pays 1 million dollars.
• Each of these transactions represents a forward contract.
• \(Y_1 = Y_2 = 11,\ Y_3 = 111,\ S = 1/90,\ D_1 = D_2 = 0.115,\ D_3 = 1.115,\ q = 0.09,\) and \(r = 0.08.\)
• Plug in these numbers to get \(f_1 + f_2 + f_3 = 0.074\) million dollars as before.
Stochastic Processes and Brownian Motion
Of all the intellectual hurdles which the human mind has confronted and has overcome in the last fifteen hundred years, the one which seems to me to have been the most amazing in character and the most stupendous in the scope of its consequences is the one relating to the problem of motion.

— Herbert Butterfield (1900–1979)
Stochastic Processes

- A stochastic process

\[X = \{ X(t) \} \]

is a time series of random variables.

- \(X(t) \) (or \(X_t \)) is a random variable for each time \(t \) and is usually called the state of the process at time \(t \).

- A realization of \(X \) is called a sample path.
Stochastic Processes (concluded)

- If the times t form a countable set, X is called a discrete-time stochastic process or a time series.

- In this case, subscripts rather than parentheses are usually employed, as in

$$X = \{ X_n \}.$$

- If the times form a continuum, X is called a continuous-time stochastic process.
Random Walks

- The binomial model is a random walk in disguise.
- Consider a particle on the integer line, 0, ±1, ±2,
- In each time step, it can make one move to the right with probability p or one move to the left with probability $1 - p$.
 - This random walk is symmetric when $p = 1/2$.
- Connection with the BOPM: The particle’s position denotes the number of up moves minus that of down moves up to that time.
Random Walk with Drift

\[X_n = \mu + X_{n-1} + \xi_n. \]

- \(\xi_n \) are independent and identically distributed with zero mean.
- Drift \(\mu \) is the expected change per period.
- Note that this process is continuous in space.
Martingales

- \(\{ X(t), t \geq 0 \} \) is a martingale if \(E[|X(t)|] < \infty \) for \(t \geq 0 \) and
 \[
 E[X(t) | X(u), 0 \leq u \leq s] = X(s), \quad s \leq t.
 \] (66)

- In the discrete-time setting, a martingale means
 \[
 E[X_{n+1} | X_1, X_2, \ldots, X_n] = X_n.
 \] (67)

- \(X_n \) can be interpreted as a gambler’s fortune after the \(n \)th gamble.

- Identity (67) then says the expected fortune after the \((n + 1) \)th gamble equals the fortune after the \(n \)th gamble regardless of what may have occurred before.

\(^a\)The origin of the name is somewhat obscure.
Martingales (concluded)

• A martingale is therefore a notion of fair games.

• Apply the law of iterated conditional expectations to both sides of Eq. (67) on p. 536 to yield

\[E[X_n] = E[X_1] \tag{68} \]

for all \(n \).

• Similarly,

\[E[X(t)] = E[X(0)] \]

in the continuous-time case.
Still a Martingale?

- Suppose we replace Eq. (67) on p. 536 with
 \[E[X_{n+1} | X_n] = X_n. \]

- It also says past history cannot affect the future.

- But is it equivalent to the original definition (67) on p. 536?\(^a\)

\(^a\)Contributed by Mr. Hsieh, Chicheng (M9007304) on April 13, 2005.
Still a Martingale? (continued)

- Well, no.\(^a\)

- Consider this random walk with drift:

\[
X_i = \begin{cases}
X_{i-1} + \xi_i, & \text{if } i \text{ is even}, \\
X_{i-2}, & \text{otherwise}.
\end{cases}
\]

- Above, \(\xi_n\) are random variables with zero mean.

\(^a\)Contributed by Mr. Zhang, Ann-Sheng (B89201033) on April 13, 2005.
Still a Martingale? (concluded)

- It is not hard to see that

\[E[X_i | X_{i-1}] = \begin{cases}
X_{i-1}, & \text{if } i \text{ is even}, \\
X_{i-1}, & \text{otherwise}.
\end{cases} \]

- It is a martingale by the “new” definition.

- But

\[E[X_i | \ldots, X_{i-2}, X_{i-1}] = \begin{cases}
X_{i-1}, & \text{if } i \text{ is even}, \\
X_{i-2}, & \text{otherwise}.
\end{cases} \]

- It is not a martingale by the original definition.
Example

- Consider the stochastic process

\[
\left\{ Z_n \triangleq \sum_{i=1}^{n} X_i, n \geq 1 \right\},
\]

where \(X_i \) are independent random variables with zero mean.

- This process is a martingale because

\[
E[Z_{n+1} \mid Z_1, Z_2, \ldots, Z_n] = Z_n + E[X_{n+1} \mid Z_1, Z_2, \ldots, Z_n] = Z_n.
\]
Probability Measure

- A probability measure assigns probabilities to states of the world.\(^a\)

- A martingale is defined with respect to a probability measure, under which the expectation is taken.

- Second, a martingale is defined with respect to an information set.
 - In the characterizations (66)–(67) on p. 536, the information set contains the current and past values of \(X\) by default.
 - But it need not be so.

\(^a\)Only certain sets such as Borel sets receive probabilities (Feller, 1972).
Probability Measure (continued)

- A stochastic process \(\{ X(t), t \geq 0 \} \) is a martingale with respect to information sets \(\{ I_t \} \) if, for all \(t \geq 0 \),
 \[\mathbb{E}[|X(t)|] < \infty \]
 and
 \[\mathbb{E}[X(u) | I_t] = X(t) \]
 for all \(u > t \).

- The discrete-time version: For all \(n > 0 \),
 \[\mathbb{E}[X_{n+1} | I_n] = X_n, \]
 given the information sets \(\{ I_n \} \).
Probability Measure (concluded)

• The above implies

\[E[X_{n+m} \mid I_n] = X_n \]

for any \(m > 0 \) by Eq. (27) on p. 169.

– A typical \(I_n \) is the price information up to time \(n \).
– Then the above identity says the FVs of \(X \) will not deviate systematically from today’s value given the price history.
Example

• Consider the stochastic process \(\{ Z_n - n\mu, n \geq 1 \} \).

 - \(Z_n \triangleq \sum_{i=1}^{n} X_i \).

 - \(X_1, X_2, \ldots \) are independent random variables with mean \(\mu \).

• Now,

\[
E[Z_{n+1} - (n + 1) \mu \mid X_1, X_2, \ldots, X_n] = E[Z_{n+1} \mid X_1, X_2, \ldots, X_n] - (n + 1) \mu
\]

\[
= E[Z_n + X_{n+1} \mid X_1, X_2, \ldots, X_n] - (n + 1) \mu
\]

\[
= Z_n + \mu - (n + 1) \mu
\]

\[
= Z_n - n\mu.
\]
Example (concluded)

- Define

\[I_n \triangleq \{ X_1, X_2, \ldots, X_n \}. \]

- Then

\[\{ Z_n - n\mu, n \geq 1 \} \]

is a martingale with respect to \(\{ I_n \} \).
Martingale Pricing

- Stock prices and zero-coupon bond prices are expected to rise, while option prices are expected to fall.
- They are not martingales.
- Why is then martingale useful?
- Recall a martingale is defined with respect to some information set and some probability measure.
- By modifying the probability measure, we can convert a price process into a martingale.
Martingale Pricing (continued)

- The price of a European option is the expected discounted payoff in a risk-neutral economy.a

- This principle can be generalized using the concept of martingale.

- Recall the recursive valuation of European option via

\[
C = \left[pC_u + (1-p)C_d \right]/R.
\]

- p is the risk-neutral probability.
- $\$1$ grows to $\$R$ in a period.

aRecall Eq. (37) on p. 262.
Martingale Pricing (continued)

- Let $C(i)$ denote the value of the option at time i.
- Consider the discount process

$$\left\{ \frac{C(i)}{R^i} , i = 0, 1, \ldots, n \right\}.$$

- Then,

$$E \left[\frac{C(i+1)}{R^{i+1}} \bigg| C(i) \right] = \frac{pC_u + (1-p)C_d}{R^{i+1}} = \frac{C(i)}{R^i}.$$
Martingale Pricing (continued)

• It is easy to show that

\[E \left[\frac{C(k)}{R^k} \bigg| C(i) \right] = \frac{C(i)}{R^i}, \quad i \leq k. \] (69)

• This formulation assumes:\(^a\)

1. The model is Markovian: The distribution of the future is determined by the present (time \(i\)) and not the past.

2. The payoff depends only on the terminal price of the underlying asset (Asian options do not qualify).

\(^a\)Contributed by Mr. Wang, Liang-Kai (Ph.D. student, ECE, University of Wisconsin-Madison) and Mr. Hsiao, Huan-Wen (B90902081) on May 3, 2006.
Martingale Pricing (continued)

• In general, the discount process is a martingale in that

\[E_i^\pi \left[\frac{C(k)}{R_k} \right] = \frac{C(i)}{R_i}, \quad i \leq k. \] \hspace{1cm} (70)

– \(E_i^\pi \) is taken under the risk-neutral probability
 conditional on the price information up to time \(i \).

• This risk-neutral probability is also called the EMM, or
 the equivalent martingale (probability) measure.

\(^{a}\)In this general formulation, Asian options do qualify.
Martingale Pricing (continued)

• Equation (70) holds for all assets, not just options.

• When interest rates are stochastic, the equation becomes

\[
\frac{C(i)}{M(i)} = E_i^\pi \left[\frac{C(k)}{M(k)} \right], \quad i \leq k. \tag{71}
\]

– \(M(j) \) is the balance in the money market account at time \(j \) using the rollover strategy with an initial investment of $1.

– It is called the bank account process.

• It says the discount process is a martingale under \(\pi \).
Martingale Pricing (continued)

- If interest rates are stochastic, then $M(j)$ is a random variable.
 - $M(0) = 1$.
 - $M(j)$ is known at time $j - 1$.

- Identity (71) on p. 552 is the general formulation of risk-neutral valuation.

\(^a\)Because the interest rate for the next period has been revealed then.
Martingale Pricing (concluded)

Theorem 16 A discrete-time model is arbitrage-free if and only if there exists a probability measure\(^a\) such that the discount process is a martingale.

\(^a\)This measure is called the risk-neutral probability measure.
Futures Price under the BOPM

- Futures prices form a martingale under the risk-neutral probability.
 - The expected futures price in the next period is
 \[p_f F u + (1 - p_f) F d = F \left(\frac{1 - d}{u - d} u + \frac{u - 1}{u - d} d \right) = F. \]

- Can be generalized to
 \[F_i = E_i^\pi [F_k], \quad i \leq k, \]

 where \(F_i \) is the futures price at time \(i \).

- This equation holds under stochastic interest rates, too.\(^b\)

\(^a\)Recall p. 509.
\(^b\)See Exercise 13.2.11 of the textbook.
Martingale Pricing and Numeraire

- The martingale pricing formula (71) on p. 552 uses the money market account as numeraire.\(^b\)
 - It expresses the price of any asset *relative to* the money market account.

- The money market account is not the only choice for numeraire.

- Suppose asset \(S \)'s value is positive at all times.

\(^a\)John Law (1671–1729), “Money to be qualified for exchanging goods and for payments need not be certain in its value.”

\(^b\)Leon Walras (1834–1910).
Martingale Pricing and Numeraire (concluded)

• Choose S as numeraire.

• Martingale pricing says there exists a risk-neutral probability π under which the relative price of any asset C is a martingale:

$$\frac{C(i)}{S(i)} = E^\pi_i \left[\frac{C(k)}{S(k)} \right], \quad i \leq k.$$

– $S(j)$ denotes the price of S at time j.

• So the discount process remains a martingale.a

aThis result is related to Girsanov’s theorem (1960).
Example

• Take the binomial model with two assets.

• In a period, asset one’s price can go from S to S_1 or S_2.

• In a period, asset two’s price can go from P to P_1 or P_2.

• Both assets must move up or down at the same time.

• Assume

\[
\frac{S_1}{P_1} < \frac{S}{P} < \frac{S_2}{P_2} \quad (72)
\]

to rule out arbitrage opportunities.
Example (continued)

- For any derivative security, let C_1 be its price at time one if asset one’s price moves to S_1.
- Let C_2 be its price at time one if asset one’s price moves to S_2.
- Replicate the derivative by solving

\[
\alpha S_1 + \beta P_1 = C_1, \\
\alpha S_2 + \beta P_2 = C_2,
\]

using α units of asset one and β units of asset two.
Example (continued)

• By Eqs. (72) on p. 558, \(\alpha \) and \(\beta \) have unique solutions.

• In fact,

\[
\alpha = \frac{P_2C_1 - P_1C_2}{P_2S_1 - P_1S_2}\quad \text{and} \quad \beta = \frac{S_2C_1 - S_1C_2}{S_2P_1 - S_1P_2}.
\]

• The derivative costs

\[
C = \alpha S + \beta P = \frac{P_2S - PS_2}{P_2S_1 - P_1S_2}C_1 + \frac{PS_1 - P_1S}{P_2S_1 - P_1S_2}C_2.
\]
Example (continued)

- It is easy to verify that

\[
\frac{C}{P} = p \frac{C_1}{P_1} + (1 - p) \frac{C_2}{P_2}.
\]

- Above,

\[
p \triangleq \frac{(S/P) - (S_2/P_2)}{(S_1/P_1) - (S_2/P_2)}.
\]

- By Eqs. (72) on p. 558, \(0 < p < 1\).

- \(C\)'s price using asset two as numeraire (i.e., \(C/P\)) is a martingale under the risk-neutral probability \(p\).

- The expected returns of the two assets are irrelevant.
Example (concluded)

- In the BOPM, S is the stock and P is the bond.
- Furthermore, p assumes the bond is the numeraire.
- In the binomial option pricing formula (39) on p. 266, the $S \sum b(j; n, pu/R)$ term uses the stock as the numeraire.
 - It results in a different probability measure pu/R.
- In the limit, $SN(x)$ for the call and $SN(-x)$ for the put in the Black-Scholes formula (p. 296) use the stock as the numeraire.\(^a\)

\(^a\)See Exercise 13.2.12 of the textbook.
Brownian Motion\(^{a}\)

- Brownian motion is a stochastic process \(\{ X(t), t \geq 0 \}\) with the following properties.

1. \(X(0) = 0\), unless stated otherwise.
2. for any \(0 \leq t_0 < t_1 < \cdots < t_n\), the random variables
\[
X(t_k) - X(t_{k-1})
\]
for \(1 \leq k \leq n\) are independent.\(^{b}\)
3. for \(0 \leq s < t\), \(X(t) - X(s)\) is normally distributed with mean \(\mu(t - s)\) and variance \(\sigma^2(t - s)\), where \(\mu\) and \(\sigma \neq 0\) are real numbers.

\(^{a}\)Robert Brown (1773–1858).

\(^{b}\)So \(X(t) - X(s)\) is independent of \(X(r)\) for \(r \leq s < t\).
Brownian Motion (concluded)

- The existence and uniqueness of such a process is guaranteed by Wiener’s theorem.a

- This process will be called a (μ, σ) Brownian motion with drift μ and variance σ^2.

- Although Brownian motion is a continuous function of t with probability one, it is almost nowhere differentiable.

- The $(0, 1)$ Brownian motion is called the Wiener process.

- If condition 3 is replaced by “$X(t) - X(s)$ depends only on $t - s$,” we have the more general Levy process.b

aNorbert Wiener (1894–1964). He received his Ph.D. from Harvard in 1912.

bPaul Levy (1886–1971).
Example

• If \(\{ X(t), t \geq 0 \} \) is the Wiener process, then

\[
X(t) - X(s) \sim N(0, t - s).
\]

• A \((\mu, \sigma)\) Brownian motion \(Y = \{ Y(t), t \geq 0 \} \) can be expressed in terms of the Wiener process:

\[
Y(t) = \mu t + \sigma X(t). \quad (73)
\]

• Note that

\[
Y(t + s) - Y(t) \sim N(\mu s, \sigma^2 s).
\]
Brownian Motion as Limit of Random Walk

Claim 1 A $(μ, σ)$ Brownian motion is the limiting case of random walk.

- A particle moves $Δx$ to the right with probability p after $Δt$ time.
- It moves $Δx$ to the left with probability $1 − p$.
- Define
 \[X_i \triangleq \begin{cases}
 +1 & \text{if the } i\text{th move is to the right}, \\
 -1 & \text{if the } i\text{th move is to the left}.
 \end{cases} \]
 - X_i are independent with
 \[
 \text{Prob}[X_i = 1] = p = 1 − \text{Prob}[X_i = -1].
 \]
Brownian Motion as Limit of Random Walk (continued)

- Assume \(n \overset{\Delta}{=} t/\Delta t \) is an integer.
- Its position at time \(t \) is
 \[
 Y(t) \overset{\Delta}{=} \Delta x (X_1 + X_2 + \cdots + X_n).
 \]
- Recall
 \[
 E[X_i] = 2p - 1, \\
 \text{Var}[X_i] = 1 - (2p - 1)^2.
 \]
Brownian Motion as Limit of Random Walk (continued)

- Therefore,

\[
E[Y(t)] = n(\Delta x)(2p - 1),
\]
\[
\text{Var}[Y(t)] = n(\Delta x)^2 \left[1 - (2p - 1)^2 \right].
\]

- With \(\Delta x \triangleq \sigma \sqrt{\Delta t} \) and \(p \triangleq \frac{1 + (\mu/\sigma)\sqrt{\Delta t}}{2} \),

\[
E[Y(t)] = n\sigma \sqrt{\Delta t} (\mu/\sigma) \sqrt{\Delta t} = \mu t,
\]
\[
\text{Var}[Y(t)] = n\sigma^2 \Delta t \left[1 - (\mu/\sigma)^2 \Delta t \right] \to \sigma^2 t,
\]

as \(\Delta t \to 0 \).

\(^a\)Identical to Eq. (42) on p. 289!
Brownian Motion as Limit of Random Walk (concluded)

• Thus, \(\{ Y(t), t \geq 0 \} \) converges to a \((\mu, \sigma)\) Brownian motion by the central limit theorem.

• Brownian motion with zero drift is the limiting case of symmetric random walk by choosing \(\mu = 0 \).

• Similarity to the the BOPM: The \(p \) is identical to the probability in Eq. (42) on p. 289 and \(\Delta x = \ln u \).

• Note that

\[
\text{Var}[Y(t + \Delta t) - Y(t)] = \text{Var} [\Delta x X_{n+1}] = (\Delta x)^2 \times \text{Var}[X_{n+1}] \rightarrow \sigma^2 \Delta t.
\]
Geometric Brownian Motion

- Let $X \overset{\Delta}{=} \{ X(t), t \geq 0 \}$ be a Brownian motion process.
- The process
 \[
 \{ Y(t) \overset{\Delta}{=} e^{X(t)}, t \geq 0 \},
 \]
 is called geometric Brownian motion.
- Suppose further that X is a (μ, σ) Brownian motion.
- $X(t) \sim N(\mu t, \sigma^2 t)$ with moment generating function
 \[
 E \left[e^{sX(t)} \right] = E \left[Y(t)^s \right] = e^{\mu ts + (\sigma^2 ts^2 / 2)}
 \]
 from Eq. (28) on p 171.
Geometric Brownian Motion (concluded)

• In particular, \(a \)

\[
E[Y(t)] = e^{\mu t + (\sigma^2 t/2)},
\]
\[
\text{Var}[Y(t)] = E[Y(t)^2] - E[Y(t)]^2
\]
\[
= e^{2\mu t + \sigma^2 t} \left(e^{\sigma^2 t} - 1 \right).
\]

\(a \)Recall Eqs. (30) on p. 179.
A Case for Long-Term Investmenta

- Suppose the stock follows the geometric Brownian motion

\[
S(t) = S(0) e^{N(\mu t, \sigma^2 t)} = S(0) e^{tN(\mu, \sigma^2 / t)}, \quad t \geq 0,
\]

where $\mu > 0$.

- The annual rate of return has a normal distribution:

\[
N \left(\mu, \frac{\sigma^2}{t} \right).
\]

- The larger the t, the likelier the return is positive.

- The smaller the t, the likelier the return is negative.

Continuous-Time Financial Mathematics
A proof is that which convinces a reasonable man;
a rigorous proof is that which convinces an unreasonable man.
— Mark Kac (1914–1984)

The pursuit of mathematics is a divine madness of the human spirit.
— Alfred North Whitehead (1861–1947),

Science and the Modern World
Stochastic Integrals

- Use $W \triangleq \{ W(t), t \geq 0 \}$ to denote the Wiener process.

- The goal is to develop integrals of X from a class of stochastic processes,\(^a\)

$$I_t(X) \triangleq \int_0^t X \, dW, \quad t \geq 0.$$

- $I_t(X)$ is a random variable called the stochastic integral of X with respect to W.

- The stochastic process $\{I_t(X), t \geq 0\}$ will be denoted by $\int X \, dW$.

\(^a\)Kiyoshi Ito (1915–2008).
Stochastic Integrals (concluded)

• Typical requirements for X in financial applications are:
 - $\text{Prob}[\int_0^t X^2(s) \, ds < \infty] = 1$ for all $t \geq 0$ or the stronger $\int_0^t E[X^2(s)] \, ds < \infty$.
 - The information set at time t includes the history of X and W up to that point in time.
 - But it contains nothing about the evolution of X or W after t (nonanticipating, so to speak).
 - The future cannot influence the present.
Ito Integral

- A theory of stochastic integration.
- As with calculus, it starts with step functions.
- A stochastic process \(\{ X(t) \} \) is simple if there exist

\[
0 = t_0 < t_1 < \cdots
\]

such that

\[
X(t) = X(t_{k-1}) \quad \text{for} \quad t \in [t_{k-1}, t_k), \ k = 1, 2, \ldots
\]

for any realization (see figure on next page).
The diagram shows a function $X(t)$ plotted over time t. The function appears to have discrete points at $t_0, t_1, t_2, t_3, t_4, t_5$, with each point indicating a change in the value of $X(t)$.
Ito Integral (continued)

- The Ito integral of a simple process is defined as

 \[I_t(X) \triangleq \sum_{k=0}^{n-1} X(t_k)[W(t_{k+1}) - W(t_k)], \tag{74} \]

 where \(t_n = t \).

 - The integrand \(X \) is evaluated at \(t_k \), not \(t_{k+1} \).

- Define the Ito integral of more general processes as a limiting random variable of the Ito integral of simple stochastic processes.
Ito Integral (continued)

- Let $X = \{ X(t), t \geq 0 \}$ be a general stochastic process.

- Then there exists a random variable $I_t(X)$, unique almost certainly, such that $I_t(X_n)$ converges in probability to $I_t(X)$ for each sequence of simple stochastic processes X_1, X_2, \ldots such that X_n converges in probability to X.

- If X is continuous with probability one, then $I_t(X_n)$ converges in probability to $I_t(X)$ as

$$
\delta_n \triangleq \max_{1 \leq k \leq n} (t_k - t_{k-1})
$$

goes to zero.
Ito Integral (concluded)

- It is a fundamental fact that $\int X \, dW$ is continuous almost surely.

- The following theorem says the Ito integral is a martingale.a

Theorem 17 The Ito integral $\int X \, dW$ is a martingale.

- A corollary is the mean value formula

$$E \left[\int_a^b X \, dW \right] = 0.$$

aSee Exercise 14.1.1 for simple stochastic processes.
Discrete Approximation

- Recall Eq. (74) on p. 580.

- The following simple stochastic process \{ \hat{X}(t) \} can be used in place of \(X \) to approximate \(\int_0^t X \, dW \),

\[
\hat{X}(s) \triangleq X(t_{k-1}) \quad \text{for} \quad s \in [t_{k-1}, t_k), \quad k = 1, 2, \ldots, n.
\]

- Note the nonanticipating feature of \(\hat{X} \).
 - The information up to time \(s \),

\[
\{ \hat{X}(t), W(t), 0 \leq t \leq s \},
\]

cannot determine the future evolution of \(X \) or \(W \).
Discrete Approximation (concluded)

• Suppose, unlike Eq. (74) on p. 580, we defined the stochastic integral from

\[
\sum_{k=0}^{n-1} X(t_{k+1})[W(t_{k+1}) - W(t_k)].
\]

• Then we would be using the following different simple stochastic process in the approximation,

\[
\hat{Y}(s) \overset{\Delta}{=} X(t_k) \text{ for } s \in [t_{k-1}, t_k), k = 1, 2, \ldots, n.
\]

• This clearly anticipates the future evolution of \(X \).\(^a\)

\(^a\)See Exercise 14.1.2 of the textbook for an example where it matters.
Ito Process

- The stochastic process \(X = \{ X_t, t \geq 0 \} \) that solves

\[
X_t = X_0 + \int_0^t a(X_s, s) \, ds + \int_0^t b(X_s, s) \, dW_s, \quad t \geq 0
\]

is called an Ito process.

- \(X_0 \) is a scalar starting point.

- \(\{ a(X_t, t) : t \geq 0 \} \) and \(\{ b(X_t, t) : t \geq 0 \} \) are stochastic processes satisfying certain regularity conditions.

- \(a(X_t, t) \): the drift.

- \(b(X_t, t) \): the diffusion.
Ito Process (continued)

- Typical regularity conditions are:a
- For all $T > 0$, $x \in \mathbb{R}^n$, and $0 \leq t \leq T$,
 $$\left| a(x, t) \right| + \left| b(x, t) \right| \leq C(1 + |x|)$$
 for some constant C.b
- (Lipschitz continuity) For all $T > 0$, $x \in \mathbb{R}^n$, and $0 \leq t \leq T$,
 $$\left| a(x, t) - a(y, t) \right| + \left| b(x, t) - b(y, t) \right| \leq D |x - y|$$
 for some constant D.

aØksendal (2007).
bThis condition is not needed in time-homogeneous cases, where a and b do not depend on t.

©2020 Prof. Yuh-Dauh Lyuu, National Taiwan University
Ito Process (continued)

• A shorthand\(^a\) is the following stochastic differential equation\(^b\) (SDE) for the Ito differential \(dX_t\),

\[
dX_t = a(X_t, t) \, dt + b(X_t, t) \, dW_t. \tag{75}
\]

– Or simply

\[
dX_t = a_t \, dt + b_t \, dW_t.
\]

– This is Brownian motion with an \textit{instantaneous} drift \(a_t\) and an \textit{instantaneous} variance \(b_t^2\).

• \(X\) is a martingale if \(a_t = 0\).\(^c\)

\(^a\)Paul Langevin (1872–1946) in 1904.
\(^b\)Like any equation, an SDE contains an unknown, the process \(X_t\).
\(^c\)Recall Theorem 17 (p. 582).
Ito Process (concluded)

- From calculus, we would expect \(\int_0^t W \, dW = W(t)^2 / 2 \).
- But \(W(t)^2 / 2 \) is not a martingale, hence wrong!
- The correct answer is \([W(t)^2 - t] / 2 \).
- An equivalent form of Eq. (75) is

 \[
 dX_t = a_t \, dt + b_t \sqrt{dt} \, \xi,
 \]

 where \(\xi \sim N(0, 1) \).
Euler Approximation

- Define $t_n \equiv n\Delta t$.
- The following approximation follows from Eq. (76),

\[
\hat{X}(t_{n+1}) = \hat{X}(t_n) + a(\hat{X}(t_n), t_n) \Delta t + b(\hat{X}(t_n), t_n) \Delta W(t_n).
\] (77)

- It is called the Euler or Euler-Maruyama method.
- Recall that $\Delta W(t_n)$ should be interpreted as

\[
W(t_{n+1}) - W(t_n),
\]

not $W(t_n) - W(t_{n-1})$!
Euler Approximation (concluded)

• With the Euler method, one can obtain a sample path
 \[\hat{X}(t_1), \hat{X}(t_2), \hat{X}(t_3), \ldots \]
 from a sample path
 \[W(t_0), W(t_1), W(t_2), \ldots \]

• Under mild conditions, \(\hat{X}(t_n) \) converges to \(X(t_n) \).
More Discrete Approximations

- Under fairly loose regularity conditions, Eq. (77) on p. 590 can be replaced by

\[
\hat{X}(t_{n+1}) = \hat{X}(t_n) + a(\hat{X}(t_n), t_n) \Delta t + b(\hat{X}(t_n), t_n) \sqrt{\Delta t} Y(t_n).
\]

- \(Y(t_0), Y(t_1), \ldots \) are independent and identically distributed with zero mean and unit variance.
More Discrete Approximations (concluded)

- An even simpler discrete approximation scheme:
 \[
 \hat{X}(t_{n+1}) = \hat{X}(t_n) + a(\hat{X}(t_n), t_n) \Delta t + b(\hat{X}(t_n), t_n) \sqrt{\Delta t} \xi.
 \]
 - Prob[\(\xi = 1\)] = Prob[\(\xi = -1\)] = 1/2.
 - Note that \(E[\xi] = 0\) and \(Var[\xi] = 1\).

- This is a binomial model.

- As \(\Delta t\) goes to zero, \(\hat{X}\) converges to \(X\).\(^a\)

\(^a\)He (1990).
Trading and the Ito Integral

• Consider an Ito process

\[dS_t = \mu_t \, dt + \sigma_t \, dW_t. \]

– \(S_t \) is the vector of security prices at time \(t \).

• Let \(\phi_t \) be a trading strategy denoting the quantity of each type of security held at time \(t \).

– Hence the stochastic process \(\phi_t S_t \) is the value of the portfolio \(\phi_t \) at time \(t \).

• \(\phi_t dS_t \stackrel{\Delta}{=} \phi_t (\mu_t \, dt + \sigma_t \, dW_t) \) represents the change in the value from security price changes occurring at time \(t \).
Trading and the Ito Integral (concluded)

• The equivalent Ito integral,

\[G_T(\phi) \triangleq \int_0^T \phi_t \, dS_t = \int_0^T \phi_t \mu_t \, dt + \int_0^T \phi_t \sigma_t \, dW_t, \]

measures the gains realized by the trading strategy over the period \([0, T]\).