
Extensions of Options Theory
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As I never learnt mathematics,

so I have had to think.

— Joan Robinson (1903–1983)
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Pricing Corporate Securitiesa

• Interpret the underlying asset as the total value of the

firm.

• The option pricing methodology can be applied to price

corporate securities.

– The result is called the structural model.

• Assumptions:

– A firm can finance payouts by the sale of assets.

– If a promised payment to an obligation other than

stock is missed, the claim holders take ownership of

the firm and the stockholders get nothing.

aBlack & Scholes (1973); Merton (1974).
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Risky Zero-Coupon Bonds and Stock

• Consider XYZ.com.

• Capital structure:

– n shares of its own common stock, S.

– Zero-coupon bonds with an aggregate par value of X .

• What is the value of the bonds, B?

• What is the value of the XYZ.com stock?
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Risky Zero-Coupon Bonds and Stock (continued)

• On the bonds’ maturity date, suppose the total value of

the firm V ∗ is less than the bondholders’ claim X .

• Then the firm declares bankruptcy, and the stock

becomes worthless.

• If V ∗ > X , then the bondholders obtain X and the

stockholders V ∗ −X .

V ∗ ≤ X V ∗ > X

Bonds V ∗ X

Stock 0 V ∗ −X
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Risky Zero-Coupon Bonds and Stock (continued)

• The stock has the same payoff as a call!

• It is a call on the total value of the firm with a strike

price of X and an expiration date equal to the bonds’.

– This call provides the limited liability for the

stockholders.

• The bonds are a covered calla on the total value of the

firm.

• Let V stand for the total value of the firm.

• Let C stand for a call on V .

aRecall p. 201.
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Risky Zero-Coupon Bonds and Stock (continued)

• Thus

nS = C (market capitalization of XYZ.com),

B = V − C.

• Knowing C amounts to knowing how the value of the

firm is divided between stockholders and bondholders.

• Whatever the value of C, the total value of the stock

and bonds at maturity remains V ∗.

• The relative size of debt and equity is irrelevant to the

firm’s current value V .
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Risky Zero-Coupon Bonds and Stock (continued)

• From Theorem 10 (p. 296) and the put-call parity,a

nS = V N(x)−Xe−rτN(x− σ
√
τ), (51)

B = V N(−x) +Xe−rτN(x− σ
√
τ). (52)

– Above,

x
Δ
=

ln(V/X) + (r + σ2/2)τ

σ
√
τ

.

• The continuously compounded yield to maturity of the

firm’s bond is
ln(X/B)

τ
.

aThis is sometimes called Merton’s (1974) structural model.
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Risky Zero-Coupon Bonds and Stock (continued)

• Define the credit spread or default premium as the yield

difference between risky and riskless bonds,

ln(X/B)

τ
− r

= −1

τ
ln

(
N(−z) +

1

ω
N(z − σ

√
τ)

)
.

– ω
Δ
= Xe−rτ/V .

– z
Δ
= (lnω)/(σ

√
τ) + (1/2)σ

√
τ = −x+ σ

√
τ .

– Note that ω is the debt-to-total-value ratio.
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Risky Zero-Coupon Bonds and Stock (concluded)

• In general, suppose the firm has a dividend yield at rate

q and the bankruptcy costs are a constant proportion α

of the remaining firm value.

• Then Eqs. (51)–(52) on p. 371 become, respectively,

nS = V e−qτN(x)−Xe−rτN(x− σ
√
τ),

B = (1− α)V e−qτN(−x) +Xe−rτN(x− σ
√
τ).

– Above,

x
Δ
=

ln(V/X) + (r − q + σ2/2)τ

σ
√
τ

.
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A Numerical Example

• XYZ.com’s assets consist of 1,000 shares of Merck as of

March 20, 1995.

– Merck’s market value per share is $44.5.

• XYZ.com’s securities consist of 1,000 shares of common

stock and 30 zero-coupon bonds maturing on July 21,

1995.

• Each bond promises to pay $1,000 at maturity.

• n = 1, 000, V = 44.5× n = 44, 500, and

X = 30× 1, 000 = 30, 000.
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—Call— —Put—

Option Strike Exp. Vol. Last Vol. Last

Merck 30 Jul 328 151/4 . . . . . .

441/2 35 Jul 150 91/2 10 1/16

441/2 40 Apr 887 43/4 136 1/16

441/2 40 Jul 220 51/2 297 1/4

441/2 40 Oct 58 6 10 1/2

441/2 45 Apr 3050 7/8 100 11/8

441/2 45 May 462 13/8 50 13/8

441/2 45 Jul 883 115/16 147 13/4

441/2 45 Oct 367 23/4 188 21/16
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A Numerical Example (continued)

• The Merck option relevant for pricing is the July call

with a strike price of X/n = 30 dollars.

• Such a call is selling for $15.25.

• So XYZ.com’s stock is worth 15.25×n = 15, 250 dollars.

• The entire bond issue is worth

B = 44, 500− 15, 250 = 29, 250

dollars.

– Or $975 per bond.
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A Numerical Example (continued)

• The XYZ.com bonds are equivalent to a default-free

zero-coupon bond with $X par value plus n written

European puts on Merck at a strike price of $30.

– By the put-call parity.a

• The difference between B and the price of the

default-free bond is the value of these puts.

• The next table shows the total market values of the

XYZ.com stock and bonds under various debt amounts

X .

aSee p. 225.
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Promised payment Current market Current market Current total

to bondholders value of bonds value of stock value of firm

X B nS V

30,000 29,250.0 15,250.0 44,500

35,000 35,000.0 9,500.0 44,500

40,000 39,000.0 5,500.0 44,500

45,000 42,562.5 1,937.5 44,500
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A Numerical Example (continued)

• Suppose the promised payment to bondholders is

$45,000.

• Then the relevant option is the July call with a strike

price of 45, 000/n = 45 dollars.

• Since that option is selling for $115/16, the market value

of the XYZ.com stock is (1 + 15/16)× n = 1, 937.5

dollars.

• The market value of the stock decreases as the

debt-equity ratio increases.
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A Numerical Example (continued)

• There are conflicts between stockholders and

bondholders.

• An option’s terms cannot be changed after issuance.

• But a firm can change its capital structure.

• There lies one key difference between options and

corporate securities.

– Parameters such volatility,a dividend, and strike price

are under partial control of the stockholders or their

boards.

aThis is called the asset substitution problem (Myers, 1977).
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A Numerical Example (continued)

• Suppose XYZ.com issues 15 more bonds with the same

terms to buy back stock.

• The total debt is now X = 45,000 dollars.

• The table on p. 378 says the total market value of the

bonds should be $42,562.5.

• The new bondholders pay

42, 562.5× (15/45) = 14, 187.5

dollars.

• The remaining stock is worth $1,937.5.
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A Numerical Example (continued)

• The stockholders therefore gain

14, 187.5 + 1, 937.5− 15, 250 = 875

dollars.

• The original bondholders lose an equal amount,

29, 250− 30

45
× 42, 562.5 = 875.

– This is called claim dilution.a

aFama & M. H. Miller (1972).
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A Numerical Example (continued)

• Suppose the stockholders sell (1/3)× n Merck shares to

fund a $14,833.3 cash dividend.

• The stockholders now have $14,833.3 in cash plus a call

on (2/3)× n Merck shares.

• The strike price remains X = 30, 000.

• This is equivalent to owning 2/3 of a call on n Merck

shares with a strike price of $45,000.

• n such calls are worth $1,937.5 (p. 378).

• So the total market value of the XYZ.com stock is

(2/3)× 1, 937.5 = 1, 291.67 dollars.
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A Numerical Example (concluded)

• The market value of the XYZ.com bonds is hence

(2/3)× n× 44.5− 1, 291.67 = 28, 375

dollars.

• Hence the stockholders gain

14, 833.3 + 1, 291.67− 15, 250 ≈ 875

dollars.

• The bondholders watch their value drop from $29,250 to

$28,375, a loss of $875.
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Further Topics

• Other Examples:a

– Stock as compound call when company issues coupon

bonds.

– Subordinated debts as bull call spreads.

– Warrants as calls.

– Callable bonds as American calls with 2 strike prices.

– Convertible bonds.

– Bonds with safety covenants as barrier options.

aCox & Rubinstein (1985); Geske (1977).
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Further Topics (concluded)

• Securities issued by firms with a complex capital

structure must be solved by trees.a

aDai (B82506025, R86526008, D8852600), Lyuu, & C. Wang

(F95922018) (2010).
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Distance to Default (DTD)a

• Let μ be the total value V ’s rate of expected return.

• From Eq. (51), on p. 371, the probability of default τ

years from now equals

N(−DTD),

where

DTD
Δ
=

ln(V/X) + (μ− σ2/2)τ

σ
√
τ

.

• V/X is called the leverage ratio.

aMerton (1974).
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Barrier Optionsa

• Their payoff depends on whether the underlying asset’s

price reaches a certain price level H throughout its life.

• A knock-out (KO) option is an ordinary European

option which ceases to exist if the barrier H is reached

by the price of its underlying asset.

• A call knock-out option is sometimes called a

down-and-out option if H < S.

• A put knock-out option is sometimes called an

up-and-out option when H > S.
aA former MBA student in finance told me on March 26, 2004, that

she did not understand why I covered barrier options until she started

working in a bank. She was working for Lehman Brothers in Hong Kong

as of April, 2006.
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H

Time

Price

S Barrier hit
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Barrier Options (continued)

• A knock-in (KI) option comes into existence if a certain

barrier is reached.

• A down-and-in option is a call knock-in option that

comes into existence only when the barrier is reached

and H < S.

• An up-and-in is a put knock-in option that comes into

existence only when the barrier is reached and H > S.

• Formulas exist for all the possible barrier options

mentioned above.a

aHaug (2006).
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Barrier Options (concluded)

• Knock-out options were issued in the U.S. in 1967.a

• Knock-in puts are the most popular barrier options.b

• Knock-out puts are the second most popular barrier

options.c

• Knock-out calls are the most popular among barrier call

options.d

aCox & Rubinstein (1985).
bBennett (2014).
cBennett (2014).
dBennett (2014).
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A Formula for Down-and-In Callsa

• Assume X ≥ H.

• The value of a European down-and-in call on a stock
paying a dividend yield of q is

Se−qτ

(
H

S

)2λ

N(x)−Xe−rτ

(
H

S

)2λ−2

N(x− σ
√
τ),

(53)

– x
Δ
= ln(H2/(SX))+(r−q+σ2/2) τ

σ
√
τ

.

– λ
Δ
= (r − q + σ2/2)/σ2.

• A European down-and-out call can be priced via the

in-out parity (see text).

aMerton (1973). See Exercise 17.1.6 of the textbook for a proof.
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A Formula for Up-and-In Putsa

• Assume X ≤ H.

• The value of a European up-and-in put is

Xe−rτ

(
H

S

)2λ−2

N(−x+ σ
√
τ)− Se−qτ

(
H

S

)2λ

N(−x).

• Again, a European up-and-out put can be priced via the

in-out parity.

aMerton (1973).
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Are American Options Barrier Options?a

• American options are barrier options with the exercise

boundary as the barrier and the payoff as the rebate?

• One salient difference is that the exercise boundary must

be found by backward induction.

• It cannot be specified in an arbitrary way.

• In conrast, the barrier in a barrier option is given by a

contract.b

aContributed by Mr. Yang, Jui-Chung (D97723002) on March 25,

2009.
bCox & Rubinstein (1985).
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Interesting Observations

• Assume H < X .

• Replace S in the Merton pricing formula Eq. (43) on p.

326 for the call with H2/S.

– Equation (53) on p. 392 for the down-and-in call

becomes Eq. (43) when r − q = σ2/2.

– Equation (53) becomes S/H times Eq. (43) when

r − q = 0.
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Interesting Observations (concluded)

• Replace S in the pricing formula for the down-and-in

call, Eq. (53), with H2/S.

– Equation (53) becomes Eq. (43) when r − q = σ2/2.

– Equation (53) becomes H/S times Eq. (43) when

r − q = 0.a

• Why?b

aContributed by Mr. Chou, Ming-Hsin (R02723073) on April 24, 2014.
bApply the reflection principle (p. 700), Eq. (42) on p. 289, and

Lemma 9 (p. 294).
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Binomial Tree Algorithms

• Barrier options can be priced by binomial tree

algorithms.

• Below is for the down-and-out option.

0 H

• Pricing down-and-in options is subtler.
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16

4

32

8

2

64

16

4

1

4.992

12.48

1.6

27.2

4.0

0

58

10

0

0

0.0

S = 8, X = 6, H = 4, R = 1.25, u = 2, and d = 0.5.

Backward-induction: C = (0.5× Cu + 0.5× Cd)/1.25.

c©2020 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 398



Binomial Tree Algorithms (continued)

• But convergence is erratic because H is not at a price

level on the tree (see plot on next page).a

– The barrier H is moved lower (or higher) to a

close-by node price.

– This “effective barrier” thus changes as n increases.

• In fact, the binomial tree is O(1/
√
n) convergent.b

• Solutions will be presented later.

aBoyle & Lau (1994).
bTavella & Randall (2000); J. Lin (R95221010) (2008).
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Binomial Tree Algorithms (concluded)a

100 150 200 250 300 350 400
#Periods

3

3.5

4

4.5

5

5.5

Down-and-in call value

aLyuu (1998).
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Daily Monitoring

• Many barrier options monitor the barrier only for daily

closing prices.

• If so, only nodes at the end of a day need to check for

the barrier condition.

• We can even remove intraday nodes to create a

multinomial tree.

– A node is then followed by d+ 1 nodes if each day is

partitioned into d periods.

• Does this save time or space?a

aContributed by Ms. Chen, Tzu-Chun (R94922003) and others on

April 12, 2006.
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A Heptanomial Tree (6 Periods Per Day)

�� 1 day
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Discrete Monitoring vs. Continuous Monitoring

• Discrete barriers are more expensive for knock-out

options than continuous ones.

• But discrete barriers are less expensive for knock-in

options than continuous ones.

• Discrete barriers are far less popular than continuous

ones for individual stocks.a

• They are equally popular for indices.b

aBennett (2014).
bBennett (2014).
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Data! data! data!

— Arthur Conan Doyle (1892),

The Adventures of Sherlock Holmes
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Foreign Currencies

• S denotes the spot exchange rate in domestic/foreign

terms.

– By that we mean the number of domestic currencies

per unit of foreign currency.a

• σ denotes the volatility of the exchange rate.

• r denotes the domestic interest rate.

• r̂ denotes the foreign interest rate.

aThe market convention is the opposite: A/B = x means one unit of

currency A (the reference currency or base currency) is equal to x units

of currency B (the counter-value currency).
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Foreign Currencies (concluded)

• A foreign currency is analogous to a stock paying a

known dividend yield.

– Foreign currencies pay a “continuous dividend yield”

equal to r̂ in the foreign currency.
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Time Series of the Daily Euro–USD Exchange Rate
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Distribution of the Daily Euro–USD Exchange Rate
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Time Series of the Minutely Euro–USD Exchange Rate
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Distribution of the Minutely Euro–USD Exchange Rate
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Time Series of the Daily GBP–USD Exchange Rate
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Distribution of the Daily GBP–USD Exchange Rate
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Distribution of the Minutely GBP–USD Exchange Rate
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Distribution of the Daily JPY–USD Exchange Rate
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Foreign Exchange Options

• In 2000 the total notional volume of foreign exchange

options was US$13 trillion.a

– 38.5% were vanilla calls and puts with a maturity

less than one month.

– 52.5% were vanilla calls and puts with a maturity

between one and 18 months.

– 4% were barrier options.

– 1.5% were vanilla calls and puts with a maturity

more than 18 months.

– 1% were digital options (see p. 849).

– 0.7% were Asian options (see p. 426).
aLipton (2002).
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Foreign Exchange Options (continued)

• Foreign exchange options are settled via delivery of the

underlying currency.

• A primary use of foreign exchange (or forex) options is

to hedge currency risk.

• Consider a U.S. company expecting to receive 100

million Japanese yen in March 2000.

• Those 100 million Japanese yen will be exchanged for

U.S. dollars.
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Foreign Exchange Options (continued)

• The contract size for the Japanese yen option is

JPY6,250,000.

• The company purchases

100,000,000

6,250,000
= 16

puts on the Japanese yen with a strike price of $.0088

and an exercise month in March 2000.

• This gives the company the right to sell 100,000,000

Japanese yen for

100,000,000× .0088 = 880,000

U.S. dollars.
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Foreign Exchange Options (concluded)

• Assume the exchange rate S is lognormally distributed.

• The formulas derived for stock index options in Eqs. (43)

on p. 326 apply with the dividend yield equal to r̂:

C = Se−r̂τN(x)−Xe−rτN(x− σ
√
τ), (54)

P = Xe−rτN(−x+ σ
√
τ)− Se−r̂τN(−x).

(54′)

– Above,

x
Δ
=

ln(S/X) + (r − r̂ + σ2/2) τ

σ
√
τ

.
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Distribution of the Logarithmic Euro–USD Exchange Rate
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Distribution of the Logarithmic GBP–USD Exchange Rate
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Distribution of the Logarithmic GBP–USD Exchange Rate

(after the Collapse of Lehman Brothers and before Brexit)
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Distribution of the Logarithmic JPY–USD Exchange Rate
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Bar the roads!

Bar the paths!

Wert thou to flee from here, wert thou

to find all the roads of the world,

the way thou seekst

the path to that thou’dst find not[.]

— Richard Wagner (1813–1883), Parsifal
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Path-Dependent Derivatives

• Let S0, S1, . . . , Sn denote the prices of the underlying

asset over the life of the option.

• S0 is the known price at time zero.

• Sn is the price at expiration.

• The standard European call has a terminal value

depending only on the last price, max(Sn −X, 0).

• Its value thus depends only on the underlying asset’s

terminal price regardless of how it gets there.
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Path-Dependent Derivatives (continued)

• Some derivatives are path-dependent in that their

terminal payoff depends critically on the path.

• The (arithmetic) average-rate call has this terminal

value:

max

(
1

n+ 1

n∑
i=0

Si −X, 0

)
.

• The average-rate put’s terminal value is given by

max

(
X − 1

n+ 1

n∑
i=0

Si, 0

)
.
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Path-Dependent Derivatives (continued)

• Average-rate options are also called Asian options.

• They are very popular.a

• They are useful hedging tools for firms that will make a

stream of purchases over a time period because the costs

are likely to be linked to the average price.

• They are mostly European.

• The averaging clause is also common in convertible

bonds and structured notes.

aAs of the late 1990s, the outstanding volume was in the range of

5–10 billion U.S. dollars (Nielsen & Sandmann, 2003).
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Path-Dependent Derivatives (continued)

• A lookback call option on the minimum has a terminal

payoff of

Sn − min
0≤i≤n

Si.

• A lookback put on the maximum has a terminal payoff of

max
0≤i≤n

Si − Sn.
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Path-Dependent Derivatives (concluded)

• The fixed-strike lookback option provides a payoff of

– max(max0≤i≤n Si −X, 0) for the call.

– max(X −min0≤i≤n Si, 0) for the put.

• Lookback calls and puts on the average (instead of a

constant X) are called average-strike options.
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Average-Rate Options

• Average-rate options are notoriously hard to price.

• The binomial tree for the averages does not combine (see

next page).

• A naive algorithm enumerates the 2n paths for an

n-period binomial tree and then averages the payoffs.

• But the complexity is exponential.a

• The Monte Carlo methodb and approximation

algorithms are some of the alternatives left.

aDai (B82506025, R86526008, D8852600) & Lyuu (2007) reduce it to

2O(
√
n ).

bSee pp. 836ff.
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States and Their Transitions

• The tuple

(i, S, P )

captures the statea for the Asian option.

– i: the time.

– S: the prevailing stock price.

– P : the running sum.b

aA “sufficient statistic,” if you will.
bWhen the average is a moving average, a different technique is needed

(C. Kao (R89723057) & Lyuu, 2003).
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States and Their Transitions (concluded)

• For the binomial model, the state transition is:

(i+ 1, Su, P + Su), for the up move

↗
(i, S, P )

↘
(i+ 1, Sd, P + Sd), for the down move

• This leads to an exponential-time algorithm.
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Pricing Some Path-Dependent Options

• Not all path-dependent derivatives are hard to price.

– Barrier options are easy to price.

• When averaging is done geometrically, the option payoffs

are

max
(
(S0S1 · · ·Sn)

1/(n+1) −X, 0
)
,

max
(
X − (S0S1 · · ·Sn)

1/(n+1), 0
)
.
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Pricing Some Path-Dependent Options (concluded)

• The limiting analytical solutions are the Black-Scholes

formulas:a

C = Se−qaτN(x)−Xe−rτN(x− σa

√
τ), (55)

P = Xe−rτN(−x+ σa

√
τ)− Se−qaτN(−x),

(55′)

– With the volatility set to σa
Δ
= σ/

√
3 .

– With the dividend yield set to qa
Δ
= (r + q + σ2/6)/2.

– x
Δ
=

ln(S/X)+(r−qa+σ2
a/2)τ

σa
√
τ

.

aSee Angus (1999), for example.
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An Approximate Formula for Asian Callsa

C = e−rτ

[
S

τ

∫ τ

0

eμt+σ2t/2N

(
−γ + (σt/τ)(τ − t/2)√

τ/3

)
dt

−XN

(
−γ√
τ/3

)]
,

where

• μ
Δ
= r − σ2/2.

• γ is the unique value that satisfies

S

τ

∫ τ

0

e3γσt(τ−t/2)/τ2+μt+σ2[ t−(3t2/τ3)(τ−t/2)2 ]/2 dt = X.

aRogers & Shi (1995); Thompson (1999); K. Chen (R92723061)

(2005); K. Chen (R92723061) & Lyuu (2006).
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Approximation Algorithm for Asian Options

• Based on the BOPM.

• Consider a node at time j with the underlying asset

price equal to S0u
j−idi.

• Name such a node N(j, i).

• The running sum
∑j

m=0 Sm at this node has a

maximum value of

S0(1 +

j︷ ︸︸ ︷
u+ u2 + · · ·+ uj−i + uj−id+ · · ·+ uj−idi)

= S0
1− uj−i+1

1− u
+ S0u

j−id
1− di

1− d
.
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Approximation Algorithm for Asian Options
(continued)

• Divide this value by j + 1 and call it Amax(j, i).

• Similarly, the running sum has a minimum value of

S0(1 +

j︷ ︸︸ ︷
d+ d2 + · · ·+ di + diu+ · · ·+ diuj−i)

= S0
1− di+1

1− d
+ S0d

iu
1− uj−i

1− u
.

• Divide this value by j + 1 and call it Amin(j, i).

• Amin and Amax are running averages.
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Approximation Algorithm for Asian Options
(continued)

• The number of paths to N(j, i) are far too many:
(
j
i

)
.

– For example, (
j

j/2

)
∼ 2j

√
2/(πj) .

• The number of distinct running averages for the nodes

at any given time step n seems to be bimodal for n big

enough.a

– In the plot on the next page, u = 5/4 and d = 4/5.

aContributed by Mr. Liu, Jun (R99944027) on April 15, 2014.
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Approximation Algorithm for Asian Options
(continued)

• But all averages must lie between Amin(j, i) and

Amax(j, i).

• Pick k + 1 equally spaced values in this range and treat

them as the true and only running averages:

Am(j, i)
Δ
=

(
k −m

k

)
Amin(j, i) +

(m
k

)
Amax(j, i)

for m = 0, 1, . . . , k.
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Am(j,i)

c©2020 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 442



Approximation Algorithm for Asian Options
(continued)

• Such “bucketing” introduces errors, but it works

reasonably well in practice.a

• A better alternative picks values whose logarithms are

equally spaced.b

• Still other alternatives are possible (considering the

distribution of averages on p. 440).

aHull &White (1993); Ritchken, Sankarasubramanian, & Vijh (1993).
bCalled log-linear interpolation.
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Approximation Algorithm for Asian Options
(continued)

• Backward induction calculates the option values at each

node for the k + 1 running averages.

• Suppose the current node is N(j, i) and the running

average is a.

• Assume the next node is N(j + 1, i), after an up move.

• As the asset price there is S0u
j+1−idi, we seek the

option value corresponding to the new running average

Au
Δ
=

(j + 1) a+ S0u
j+1−idi

j + 2
.
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Approximation Algorithm for Asian Options
(continued)

• But Au is not likely to be one of the k + 1 running

averages at N(j + 1, i)!

• Find the 2 running averages that bracket it:

A�(j + 1, i) ≤ Au < A�+1(j + 1, i).

• In “most” cases, the fastest way to nail 	 is via

	 =

⌊
Au −Amin(j + 1, i)

[Amax(j + 1, i)−Amin(j + 1, i) ]/k

⌋
.
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Approximation Algorithm for Asian Options
(continued)

• But watch out for the rare case where

Au = A�(j + 1, i)

for some 	.

• Also watch out for the case where

Au = Amax(j, i).

• Finally, watch out for the degenerate case where

A0(j + 1, i) = · · · = Ak(j + 1, i).

– It will happen along extreme paths!
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Approximation Algorithm for Asian Options
(continued)

• Express Au as a linearly interpolated value of the two

running averages,

Au = xA�(j + 1, i) + (1− x)A�+1(j + 1, i), 0 < x ≤ 1.

• Obtain the approximate option value given the running

average Au via

Cu
Δ
= xC�(j + 1, i) + (1− x)C�+1(j + 1, i).

– C�(t, s) denotes the option value at node N(t, s)

with running average A�(t, s).

• This interpolation introduces the second source of error.
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Approximation Algorithm for Asian Options
(continued)

• The same steps are repeated for the down node

N(j + 1, i+ 1) to obtain another approximate option

value Cd.

• Finally obtain the option value as

[ pCu + (1− p)Cd ] e
−rΔt.

• The running time is O(kn2).

– There are O(n2) nodes.

– Each node has O(k) buckets.
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Approximation Algorithm for Asian Options
(continued)

• For the calculations at time step n− 1, no interpolation

is needed.a

– The option values are simply (for calls):

Cu = max(Au −X, 0),

Cd = max(Ad −X, 0).

– That saves O(nk) calculations.

aContributed by Mr. Chen, Shih-Hang (R02723031) on April 9, 2014.
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Approximation Algorithm for Asian Options
(concluded)

• Arithmetic average-rate options were assumed to be

newly issued: no historical average to deal with.

• This problem can be easily addressed.a

• How about the Greeks?b

aSee Exercise 11.7.4 of the textbook.
bThanks to lively class discussions on March 31, 2004, and April 9,

2014.
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A Numerical Example

• Consider a European arithmetic average-rate call with

strike price 50.

• Assume zero interest rate in order to dispense with

discounting.

• The minimum running average at node A in the figure

on p. 453 is 48.925.

• The maximum running average at node A in the same

figure is 51.149.
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A Numerical Example (continued)

• Each node picks k = 3 for 4 equally spaced running

averages.

• The same calculations are done for node A’s successor

nodes B and C.

• Suppose node A is 2 periods from the root node.

• Consider the up move from node A with running

average 49.666.
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A Numerical Example (continued)

• Because the stock price at node B is 53.447, the new

running average will be

3× 49.666 + 53.447

4
≈ 50.612.

• With 50.612 lying between 50.056 and 51.206 at node B,

we solve

50.612 = x× 50.056 + (1− x)× 51.206

to obtain x ≈ 0.517.

c©2020 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 455



A Numerical Example (continued)

• The option value corresponding to running average

50.056 at node B is 0.056.

• The option values corresponding to running average

51.206 at node B is 1.206.

• Their contribution to the option value corresponding to

running average 49.666 at node A is weighted linearly as

x× 0.056 + (1− x)× 1.206 ≈ 0.611.
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A Numerical Example (continued)

• Now consider the down move from node A with running

average 49.666.

• Because the stock price at node C is 46.775, the new

running average will be

3× 49.666 + 46.775

4
≈ 48.944.

• With 48.944 lying between 47.903 and 48.979 at node C,

we solve

48.944 = x× 47.903 + (1− x)× 48.979

to obtain x ≈ 0.033.
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A Numerical Example (concluded)

• The option values corresponding to running averages

47.903 and 48.979 at node C are both 0.0.

• Their contribution to the option value corresponding to

running average 49.666 at node A is 0.0.

• Finally, the option value corresponding to running

average 49.666 at node A equals

p× 0.611 + (1− p)× 0.0 ≈ 0.2956,

where p = 0.483.

• The remaining three option values at node A can be

computed similarly.
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Convergence Behavior of the Approximation
Algorithm with k = 50000a
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n

0.325
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Asian option value

aDai (B82506025, R86526008, D8852600) & Lyuu (2002).
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