
Introduction to Term Structure Modeling
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The fox often ran to the hole

by which they had come in,

to find out if his body was still thin enough

to slip through it.

— Grimm’s Fairy Tales
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And the worst thing you can have

is models and spreadsheets.

— Warren Buffet, May 3, 2008
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Outline

• Use the binomial interest rate tree to model stochastic

term structure.

– Illustrates the basic ideas underlying future models.

– Applications are generic in that pricing and hedging

methodologies can be easily adapted to other models.

• Although the idea is similar to the earlier one used in

option pricing, the current task is more complicated.

– The evolution of an entire term structure, not just a

single stock price, is to be modeled.

– Interest rates of various maturities cannot evolve

arbitrarily, or arbitrage profits may occur.
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Issues

• A stochastic interest rate model performs two tasks.

– Provides a stochastic process that defines future term

structures without arbitrage profits.

– “Consistent” with the observed term structures.
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History

• The methodology was founded by Merton (1970).

• Modern interest rate modeling is often traced to 1977

when Vasicek and Cox, Ingersoll, and Ross developed

simultaneously their influential models.

• Early models have fitting problems because they may

not price today’s benchmark bonds correctly.

• An alternative approach pioneered by Ho and Lee (1986)

makes fitting the market yield curve mandatory.

• Models based on such a paradigm are called (somewhat

misleadingly) arbitrage-free or no-arbitrage models.
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Binomial Interest Rate Tree

• Goal is to construct a no-arbitrage interest rate tree

consistent with the yields and/or yield volatilities of

zero-coupon bonds of all maturities.

– This procedure is called calibration.a

• Pick a binomial tree model in which the logarithm of the

future short rate obeys the binomial distribution.

– Exactly like the CRR tree.

• The limiting distribution of the short rate at any future

time is hence lognormal.

aDerman (2004), “complexity without calibration is pointless.”
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Binomial Interest Rate Tree (continued)

• A binomial tree of future short rates is constructed.

• Every short rate is followed by two short rates in the

following period (p. 988).

• In the figure on p. 988, node A coincides with the start

of period j during which the short rate r is in effect.

• At the conclusion of period j, a new short rate goes into

effect for period j + 1.

c©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 987



r

� r�0.5

� rh0.5

A

B

C

period j − 1 period j period j + 1

time j − 1 time j
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Binomial Interest Rate Tree (continued)

• This may take one of two possible values:

– r�: the “low” short-rate outcome at node B.

– rh: the “high” short-rate outcome at node C.

• Each branch has a 50% chance of occurring in a

risk-neutral economy.

• We require that the paths combine as the binomial

process unfolds.

• This model can be traced to Salomon Brothers.a

aTuckman (2002).
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Binomial Interest Rate Tree (continued)

• The short rate r can go to rh and r� with equal

risk-neutral probability 1/2 in a period of length Δt.

• Hence the volatility of ln r after Δt time isa

σ =
1

2

1√
Δt

ln

(
rh
r�

)
. (130)

• Above, σ is annualized, whereas r� and rh are period

based.

aSee Exercise 23.2.3 in text.
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Binomial Interest Rate Tree (continued)

• Note that
rh
r�

= e2σ
√
Δt.

• Thus greater volatility, hence uncertainty, leads to larger

rh/r� and wider ranges of possible short rates.

• The ratio rh/r� may depend on time if the volatility is a

function of time.

• Note that rh/r� has nothing to do with the current

short rate r if σ is independent of r.
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Binomial Interest Rate Tree (continued)

• In general there are j possible ratesa for period j,

rj , rjvj , rjv
2
j , . . . , rjv

j−1
j ,

where

vj
Δ
= e2σj

√
Δt (131)

is the multiplicative ratio for the rates in period j (see

figure on next page).

• We shall call rj the baseline rates.

• The subscript j in σj above is meant to emphasize that

the short rate volatility may be time dependent.

aNot j + 1.
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Binomial Interest Rate Tree (concluded)

• In the limit, the short rate follows

r(t) = μ(t) eσ(t)W (t). (132)

– The (percent) short rate volatility σ(t) is a

deterministic function of time.

• The expected value of r(t) equals μ(t) eσ(t)
2(t/2).

• Hence a declining short rate volatility is usually imposed

to preclude the short rate from assuming implausibly

high values.

• Incidentally, this is how the binomial interest rate tree

achieves mean reversion to some long-term mean.
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Memory Issues

• Path independency: The term structure at any node is

independent of the path taken to reach it.

• So only the baseline rates ri and the multiplicative

ratios vi need to be stored in computer memory.

• This takes up only O(n) space.a

• Storing the whole tree would take up O(n2) space.

– Daily interest rate movements for 30 years require

roughly (30× 365)2/2 ≈ 6× 107 double-precision

floating-point numbers (half a gigabyte!).

aThroughout, n denotes the depth of the tree.
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Set Things in Motion

• The abstract process is now in place.

• We need the yields to maturities of the riskless bonds

that make up the benchmark yield curve and their

volatilities.

• In the U.S., for example, the on-the-run yield curve

obtained by the most recently issued Treasury securities

may be used as the benchmark curve.
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Set Things in Motion (concluded)

• The term structure of (yield) volatilitiesa can be

estimated from:

– Historical data (historical volatility).

– Or interest rate option prices such as cap prices

(implied volatility).

• The binomial tree should be found that is consistent

with both term structures.

• Here we focus on the term structure of interest rates.

aOr simply the volatility (term) structure.
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Model Term Structures

• The model price is computed by backward induction.

• Refer back to the figure on p. 988.

• Given that the values at nodes B and C are PB and PC,

respectively, the value at node A is then

PB + PC

2(1 + r)
+ cash flow at node A.

• We compute the values column by column (see next

page).

• This takes O(n2) time and O(n) space.
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Term Structure Dynamics

• An n-period zero-coupon bond’s price can be computed

by assigning $1 to every node at period n and then

applying backward induction.

• Repeating this step for n = 1, 2, . . . , one obtains the

market discount function implied by the tree.

• The tree therefore determines a term structure.

• It also contains a term structure dynamics.

– Taking any node in the tree as the current state

induces a binomial interest rate tree and, again, a

term structure.
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Sample Term Structure

• We shall construct interest rate trees consistent with the

sample term structure in the following table.

– This is calibration (the reverse of pricing).

• Assume the short rate volatility is such that

v
Δ
=

rh
r�

= 1.5,

independent of time.

Period 1 2 3

Spot rate (%) 4 4.2 4.3

One-period forward rate (%) 4 4.4 4.5

Discount factor 0.96154 0.92101 0.88135
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An Approximate Calibration Scheme

• Start with the implied one-period forward rates.

• Equate the expected short rate with the forward rate.a

• For the first period, the forward rate is today’s

one-period spot rate.

• In general, let fj denote the forward rate in period j.

• This forward rate can be derived from the market

discount function viab

fj =
d(j)

d(j + 1)
− 1.

aSee Exercise 5.6.6 in text.
bSee Exercise 5.6.3 in text.
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An Approximate Calibration Scheme (continued)

• Since the ith short rate rjv
i−1
j , 1 ≤ i ≤ j, occurs with

probability 2−(j−1)
(
j−1
i−1

)
, this means

j∑
i=1

2−(j−1)

(
j − 1

i− 1

)
rjv

i−1
j = fj .

• Thus

rj =

(
2

1 + vj

)j−1

fj . (133)

• This binomial interest rate tree is trivial to set up

(implicitly), in O(n) time.
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An Approximate Calibration Scheme (continued)

• The ensuing tree for the sample term structure appears

in figure next page.

• For example, the price of the zero-coupon bond paying
$1 at the end of the third period is

1

4
×

1

1.04
×
( 1

1.0352
×
( 1

1.0288
+

1

1.0432

)
+

1

1.0528
×
( 1

1.0432
+

1

1.0648

))

or 0.88155, which exceeds discount factor 0.88135.

• The tree is thus not calibrated.
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An Approximate Calibration Scheme (concluded)

• Indeed, this bias is inherent: The tree overprices the

bonds.a

• Suppose we replace the baseline rates rj by rjvj .

• Then the resulting tree underprices the bonds.b

• The true baseline rates are thus bounded between rj

and rjvj .

aSee Exercise 23.2.4 in text.
bLyuu & C. Wang (F95922018) (2009, 2011).
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Issues in Calibration

• The model prices generated by the binomial interest rate

tree should match the observed market prices.

• Perhaps the most crucial aspect of model building.

• Treat the backward induction for the model price of the

m-period zero-coupon bond as computing some function

f(rm) of the unknown baseline rate rm for period m.

• A root-finding method is applied to solve f(rm) = P for

rm given the zero’s price P and r1, r2, . . . , rm−1.

• This procedure is carried out for m = 1, 2, . . . , n.

• It runs in O(n3) time.
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Binomial Interest Rate Tree Calibration

• Calibration can be accomplished in O(n2) time by the

use of forward induction.a

• The scheme records how much $1 at a node contributes

to the model price.

• This number is called the state price (p. 206), the

Arrow-Debreu price, or Green’s function.

– It is the price of a state contingent claim that pays

$1 at that particular node (state) and 0 elsewhere.

• The column of state prices will be established by moving

forward from time 0 to time n.

aJamshidian (1991).
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Binomial Interest Rate Tree Calibration (continued)

• Suppose we are at time j and there are j + 1 nodes.

– The unknown baseline rate for period j is r
Δ
= rj .

– The multiplicative ratio is v
Δ
= vj .

– P1, P2, . . . , Pj are the known state prices at earlier

time j − 1.

– They have rates r, rv, . . . , rvj−1 for period j.a

• By definition,
∑j

i=1 Pi is the price of the (j − 1)-period

zero-coupon bond.

• We want to find r based on P1, P2, . . . , Pj and the price

of the j-period zero-coupon bond.

aRecall p. 993.
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Binomial Interest Rate Tree Calibration (continued)

• One dollar at time j has a known market value of

1/[ 1 + S(j) ]j, where S(j) is the j-period spot rate.

• Alternatively, this dollar has a present value of

g(r)
Δ
=

P1

(1 + r)
+

P2

(1 + rv)
+

P3

(1 + rv2)
+ · · ·+ Pj

(1 + rvj−1)

(see next plot).

• So we solve

g(r) =
1

[ 1 + S(j) ]j
(134)

for r.
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Binomial Interest Rate Tree Calibration (continued)

• Given a decreasing market discount function, a unique

positive solution for r is guaranteed.

• The state prices at time j can now be calculated (see

panel (a) next page).

• We call a tree with these state prices a binomial state

price tree (see panel (b) next page).

• The calibrated tree is depicted on p. 1014.
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Binomial Interest Rate Tree Calibration (concluded)

• The Newton-Raphson method can be used to solve for

the r in Eq. (134) on p. 1010 as g′(r) is easy to

evaluate.

• The monotonicity and the convexity of g(r) also

facilitate root finding.

• The total running time is O(n2), as each root-finding

routine consumes O(j) time.

• With a good initial guess,a the Newton-Raphson method

converges in only a few steps.b

aSuch as the rj = ( 2
1+vj

)j−1 fj on p. 1003.
bLyuu (1999).
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A Numerical Example

• One dollar at the end of the second period should have a

present value of 0.92101 by the sample term structure.

• The baseline rate for the second period, r2, satisfies

0.480769

1 + r2
+

0.480769

1 + 1.5× r2
= 0.92101.

• The result is r2 = 3.526%.

• This is used to derive the next column of state prices

shown in panel (b) on p. 1013 as 0.232197, 0.460505,

and 0.228308.

• Their sum gives the correct market discount factor

0.92101.
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A Numerical Example (concluded)

• The baseline rate for the third period, r3, satisfies

0.232197

1 + r3
+

0.460505

1 + 1.5× r3
+

0.228308

1 + (1.5)2 × r3
= 0.88135.

• The result is r3 = 2.895%.

• Now, redo the calculation on p. 1004 using the new rates:

1

4
×

1

1.04
× [

1

1.03526
× (

1

1.02895
+

1

1.04343
) +

1

1.05289
× (

1

1.04343
+

1

1.06514
)],

which equals 0.88135, an exact match.

• The tree on p. 1014 prices without bias the benchmark

securities.
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Spread of Nonbenchmark Bonds

• Model prices calculated by the calibrated tree as a rule

do not match market prices of nonbenchmark bonds.

• The incremental return over the benchmark bonds is

called spread.

• If we add the spread uniformly over the short rates in

the tree, the model price will equal the market price.

• We will apply the spread concept to option-free bonds

next.
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Spread of Nonbenchmark Bonds (continued)

• We illustrate the idea with an example.

• Start with the tree on p. 1020.

• Consider a security with cash flow Ci at time i for

i = 1, 2, 3.

• Its model price is p(s), which is equal to

1

1.04 + s
×
[
C1 +

1

2
×

1

1.03526 + s
×
(
C2 +

1

2

(
C3

1.02895 + s
+

C3

1.04343 + s

))
+

1

2
×

1

1.05289 + s
×
(
C2 +

1

2

(
C3

1.04343 + s
+

C3

1.06514 + s

))]
.

• Given a market price of P , the spread is the s that

solves P = p(s).
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Spread of Nonbenchmark Bonds (continued)

• The model price p(s) is a monotonically decreasing,

convex function of s.

• We will employ the Newton-Raphson root-finding

method to solve

p(s)− P = 0

for s.

• But a quick look at the equation for p(s) reveals that

evaluating p′(s) directly is infeasible.

• Fortunately, the tree can be used to evaluate both p(s)

and p′(s) during backward induction.
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Spread of Nonbenchmark Bonds (continued)

• Consider an arbitrary node A in the tree associated with

the short rate r.

• In the process of computing the model price p(s), a

price pA(s) is computed at A.

• Prices computed at A’s two successor nodes B and C are

discounted by r + s to obtain pA(s) as follows,

pA(s) = c+
pB(s) + pC(s)

2(1 + r + s)
,

where c denotes the cash flow at A.
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Spread of Nonbenchmark Bonds (continued)

• To compute p′A(s) as well, node A calculates

p′A(s) =
p′B(s) + p′C(s)
2(1 + r + s)

− pB(s) + pC(s)

2(1 + r + s)2
.

(135)

• This is easy if p′B(s) and p′C(s) are also computed at

nodes B and C.

• When A is a terminal node, simply use the payoff

function for pA(s).
a

aContributed by Mr. Chou, Ming-Hsin (R02723073) on May 28, 2014.
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Spread of Nonbenchmark Bonds (continued)

• Apply the above procedure inductively to yield p(s) and

p′(s) at the root (p. 1024).

• This is called the differential tree method.a

– Similar ideas can be found in automatic

differentiation (AD)b and backpropagationc in

artificial neural networks.

• The total running time is O(n2).

• The memory requirement is O(n).

aLyuu (1999).
bRall (1981).
cWerbos (1974); Rumelhart, Hinton, & Williams (1986).
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Spread of Nonbenchmark Bonds (continued)

Number of Running Number of Number of Running Number of

partitions n time (s) iterations partitions time (s) iterations

500 7.850 5 10500 3503.410 5

1500 71.650 5 11500 4169.570 5

2500 198.770 5 12500 4912.680 5

3500 387.460 5 13500 5714.440 5

4500 641.400 5 14500 6589.360 5

5500 951.800 5 15500 7548.760 5

6500 1327.900 5 16500 8502.950 5

7500 1761.110 5 17500 9523.900 5

8500 2269.750 5 18500 10617.370 5

9500 2834.170 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

75MHz Sun SPARCstation 20.
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Spread of Nonbenchmark Bonds (concluded)

• Consider a three-year, 5% bond with a market price of

100.569.

• Assume the bond pays annual interest.

• The spread can be shown to be 50 basis points over the

tree (p. 1028).

• Note that the idea of spread does not assume parallel

shifts in the term structure.

• It also differs from the yield spread (p. 130) and static

spread (p. 131) of the nonbenchmark bond over an

otherwise identical benchmark bond.
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More Applications of the Differential Tree: Calculating
Implied Volatility (in seconds)a

American call American put

Number of Running Number of Number of Running Number of

partitions time iterations partitions time iterations

100 0.008210 2 100 0.013845 3

200 0.033310 2 200 0.036335 3

300 0.072940 2 300 0.120455 3

400 0.129180 2 400 0.214100 3

500 0.201850 2 500 0.333950 3

600 0.290480 2 600 0.323260 2

700 0.394090 2 700 0.435720 2

800 0.522040 2 800 0.569605 2

Intel 166MHz Pentium, running on Microsoft Windows 95.

aLyuu (1999).
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Fixed-Income Options

• Consider a 2-year 99 European call on the 3-year, 5%

Treasury.

• Assume the Treasury pays annual interest.

• From p. 1031 the 3-year Treasury’s price minus the $5

interest at year 2 could be $102.046, $100.630, or

$98.579 two years from now.

– The accrued interest is not included as it belongs to

the original bondholder.

• Now compare the strike price against the bond prices.

• The call is in the money in the first two scenarios out of

the money in the third.
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Fixed-Income Options (continued)

• The option value is calculated to be $1.458 on

p. 1031(a).

• European interest rate puts can be valued similarly.

• Consider a two-year 99 European put on the same

security.

• At expiration, the put is in the money only when the

Treasury is worth $98.579 without the accrued interest.

• The option value is computed to be $0.096 on p. 1031(b).
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Fixed-Income Options (concluded)

• The present value of the strike price is

PV(X) = 99× 0.92101 = 91.18.

• The Treasury is worth B = 101.955.

• The present value of the interest payments during the

life of the options isa

PV(I) = 5× 0.96154 + 5× 0.92101 = 9.41275.

• The call and the put are worth C = 1.458 and

P = 0.096, respectively.

• Hence the put-call parity is preserved:

C = P +B − PV(I)− PV(X).
aThere is no coupon today.
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Delta or Hedge Ratio

• How much does the option price change in response to

changes in the price of the underlying bond?

• This relation is called delta (or hedge ratio) defined as

Oh −O�

Ph − P�
.

• In the above Ph and P� denote the bond prices if the

short rate moves up and down, respectively.

• Similarly, Oh and O� denote the option values if the

short rate moves up and down, respectively.
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Delta or Hedge Ratio (concluded)

• Delta measures the sensitivity of the option value to

changes in the underlying bond price.

• So it shows how to hedge one with the other.

• Take the call and put on p. 1031 as examples.

• Their deltas are

0.774− 2.258

99.350− 102.716
= 0.441,

0.200− 0.000

99.350− 102.716
= −0.059,

respectively.
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Volatility Term Structures

• The binomial interest rate tree can be used to calculate

the yield volatility of zero-coupon bonds.

• Consider an n-period zero-coupon bond.

• First find its yield to maturity yh (y�, respectively) at

the end of the initial period if the short rate rises

(declines, respectively).

• The yield volatility for our model is defined as

1

2
ln

(
yh
y�

)
. (136)
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Volatility Term Structures (continued)

• For example, based on the tree on p. 1014, the two-year

zero’s yield at the end of the first period is 5.289% if the

rate rises and 3.526% if the rate declines.

• Its yield volatility is therefore

1

2
ln

(
0.05289

0.03526

)
= 20.273%.
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Volatility Term Structures (continued)

• Consider the three-year zero-coupon bond.

• If the short rate rises, the price of the zero one year from

now will be

1

2
× 1

1.05289
×
(

1

1.04343
+

1

1.06514

)
= 0.90096.

• Thus its yield is
√

1
0.90096 − 1 = 0.053531.

• If the short rate declines, the price of the zero one year

from now will be

1

2
× 1

1.03526
×
(

1

1.02895
+

1

1.04343

)
= 0.93225.
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Volatility Term Structures (continued)

• Thus its yield is
√

1
0.93225 − 1 = 0.0357.

• The yield volatility is hence

1

2
ln

(
0.053531

0.0357

)
= 20.256%,

slightly less than the one-year yield volatility.

• This is consistent with the reality that longer-term

bonds typically have lower yield volatilities than

shorter-term bonds.a

• The procedure can be repeated for longer-term zeros to

obtain their yield volatilities.

aThe relation is reversed for price volatilities (duration).
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Volatility Term Structures (concluded)

• We started with vi and then derived the volatility term

structure.

• In practice, the steps are reversed.

• The volatility term structure is supplied by the user

along with the term structure.

• The vi—hence the short rate volatilities via Eq. (131) on

p. 992—and the ri are then simultaneously determined.

• The result is the Black-Derman-Toy model of Goldman

Sachs.a

aBlack, Derman, & Toy (1990).
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Foundations of Term Structure Modeling

c©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 1042



[Meriwether] scoring especially high marks

in mathematics — an indispensable subject

for a bond trader.

— Roger Lowenstein,

When Genius Failed (2000)
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[The] fixed-income traders I knew

seemed smarter than the equity trader [· · · ]
there’s no competitive edge to

being smart in the equities business[.]

— Emanuel Derman,

My Life as a Quant (2004)

Bond market terminology was designed less

to convey meaning than to bewilder outsiders.

— Michael Lewis, The Big Short (2011)
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Terminology

• A period denotes a unit of elapsed time.

– Viewed at time t, the next time instant refers to time

t+ dt in the continuous-time model and time t+ 1

in the discrete-time case.

• Bonds will be assumed to have a par value of one —

unless stated otherwise.

• The time unit for continuous-time models will usually be

measured by the year.
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Standard Notations

The following notation will be used throughout.

t: a point in time.

r(t): the one-period riskless rate prevailing at time t for

repayment one period later.a

P (t, T ): the present value at time t of one dollar at time T .

aAlternatively, the instantaneous spot rate, or short rate, at time t.
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Standard Notations (continued)

r(t, T ): the (T − t)-period interest rate prevailing at time t

stated on a per-period basis and compounded once per

period.a

F (t, T,M): the forward price at time t of a forward

contract that delivers at time T a zero-coupon bond

maturing at time M ≥ T .

aIn other words, the (T − t)-period spot rate at time t.

c©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 1047



Standard Notations (concluded)

f(t, T, L): the L-period forward rate at time T implied at

time t stated on a per-period basis and compounded

once per period.

f(t, T ): the one-period or instantaneous forward rate at

time T as seen at time t stated on a per period basis

and compounded once per period.

• It is f(t, T, 1) in the discrete-time model and

f(t, T, dt) in the continuous-time model.

• Note that f(t, t) equals the short rate r(t).
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Fundamental Relations

• The price of a zero-coupon bond equals

P (t, T ) =

⎧⎨
⎩

(1 + r(t, T ))−(T−t), in discrete time,

e−r(t,T )(T−t), in continuous time. (137)

• r(t, T ) as a function of T defines the spot rate curve at

time t.

• By definition,

f(t, t) =

⎧⎨
⎩

r(t, t+ 1), in discrete time,

r(t, t), in continuous time.
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Fundamental Relations (continued)

• Forward prices and zero-coupon bond prices are related:

F (t, T,M) =
P (t,M)

P (t, T )
, T ≤ M. (138)

– The forward price equals the future value at time T

of the underlying asset.a

• Equation (138) holds whether the model is discrete-time

or continuous-time.

aSee Exercise 24.2.1 of the textbook for proof.
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Fundamental Relations (continued)

• Forward rates and forward prices are related
definitionally by

f(t, T, L) =

(
1

F (t, T, T + L)

)1/L

− 1 =

(
P (t, T )

P (t, T + L)

)1/L

− 1

(139)

in discrete time.

• The analog to Eq. (139) under simple compounding is

f(t, T, L) =
1

L

(
P (t, T )

P (t, T + L)
− 1

)
.
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Fundamental Relations (continued)

• In continuous time,

f(t, T, L) = − lnF (t, T, T + L)

L
=

ln(P (t, T )/P (t, T + L))

L
(140)

by Eq. (138) on p. 1050.

• Furthermore,

f(t, T,Δt) =
ln(P (t, T )/P (t, T +Δt))

Δt
→ −∂ lnP (t, T )

∂T

= −∂P (t, T )/∂T

P (t, T )
.
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Fundamental Relations (continued)

• So

f(t, T )
Δ
= −∂ lnP (t, T )

∂T
= −∂P (t, T )/∂T

P (t, T )
, t ≤ T.

(141)

• Because Eq. (141) is equivalent to

P (t, T ) = e−
∫ T
t

f(t,s) ds, (142)

the spot rate curve is

r(t, T ) =

∫ T

t
f(t, s) ds

T − t
.
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Fundamental Relations (concluded)

• The discrete analog to Eq. (142) is

P (t, T ) =
1

(1 + r(t))(1 + f(t, t+ 1)) · · · (1 + f(t, T − 1))
.

• The short rate and the market discount function are

related by

r(t) = − ∂P (t, T )

∂T

∣∣∣∣
T=t

.
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