A N	umerica	l Examp	le (cont	inued)
	Casł	n flows at	year 3	
Path	Year 0	Year 1	Year 2	Year 3
1				0
2				2.5476
3				0
4				0
5				0.4685
6				5.6212
7				4.0775
8				0

- The cash flows at year 3 are the exercise value if the put is in the money.
- Only 4 paths are in the money: 2, 5, 6, 7.
- Some of the cash flows may not occur if the put is exercised earlier, which we will find out step by step.
- Incidentally, the *European* counterpart has a value of

$$0.951229^3 \times \frac{2.5476 + 0.4685 + 5.6212 + 4.0775}{8} = 1.3680.$$

- We move on to year 2.
- For each state that is in the money at year 2, we must decide whether to exercise it.
- There are 6 paths for which the put is in the money: 1, 3, 4, 5, 6, 7 (p. 895).
- Only in-the-money paths will be used in the regression because they are where early exercise is relevant.
 - If there were none, we would move on to year 1.

- Let x denote the stock prices at year 2 for those 6 paths.
- Let y denote the corresponding discounted future cash flows (at year 3) if the put is not exercised at year 2.

	Regressic	on at year 2
Path	x	Y
1	92.5815	0 imes 0.951229
2		
3	103.6010	0 imes 0.951229
4	98.7120	0 imes 0.951229
5	101.0564	0.4685×0.951229
6	93.7270	5.6212 imes 0.951229
7	102.4177	4.0775×0.951229
8		

- We regress y on 1, x, and x^2 .
- The result is

 $f(x) = 22.08 - 0.313114 \times x + 0.00106918 \times x^2.$

- f(x) estimates the continuation value conditional on the stock price at year 2.
- We next compare the immediate exercise value and the continuation value.^a

^aThe f(102.4177) entry on the next page was corrected by Mr. Tu, Yung-Szu (B79503054, R83503086) on May 25, 2017.

Optimal early exercise decision at year 2		
Continuation	Exercise	Path
f(92.5815) = 2.2558	12.4185	1
		2
f(103.6010) = 1.1168	1.3990	3
f(98.7120) = 1.5901	6.2880	4
f(101.0564) = 1.3568	3.9436	5
f(93.7270) = 2.1253	11.2730	6
f(102.4177) = 1.2266	2.5823	7
		8

- Amazingly, the put should be exercised in all 6 paths: 1, 3, 4, 5, 6, 7.
- Now, any positive cash flow at year 3 should be set to zero or overridden for these paths as the put is exercised before year 3 (p. 895).

- They are paths 5, 6, 7.

• The cash flows on p. 899 become the ones on next slide.

	Cash f	lows at ye	ears 2 & 3	
Path	Year 0	Year 1	Year 2	Year 3
1			12.4185	0
2			0	2.5476
3			1.3990	0
4			6.2880	0
5			3.9436	0
6			11.2730	0
7			2.5823	0
8			0	0

- We move on to year 1.
- For each state that is in the money at year 1, we must decide whether to exercise it.
- There are 5 paths for which the put is in the money: 1, 2, 4, 6, 8 (p. 895).
- Only in-the-money paths will be used in the regression because they are where early exercise is relevant.
 - If there were none, we would move on to year 0.

- Let x denote the stock prices at year 1 for those 5 paths.
- Let y denote the corresponding discounted future cash flows if the put is not exercised at year 1.
- From p. 907, we have the following table.

A Nu	merical Ex	ample (continued)
	Regressio	on at year 1
Path	x	y
1	97.6424	12.4185×0.951229
2	101.2103	$2.5476 imes 0.951229^2$
3		
4	96.4411	6.2880 imes 0.951229
5		
6	95.8375	11.2730×0.951229
7		
8	104.1475	0
	1011110	

- We regress y on 1, x, and x^2 .
- The result is

 $f(x) = -420.964 + 9.78113 \times x - 0.0551567 \times x^2.$

- f(x) estimates the continuation value conditional on the stock price at year 1.
- We next compare the immediate exercise value and the continuation value.

j =	5	
Continuation	Exercise	Path
f(97.6424) = 8.2230	7.3576	1
f(101.2103) = 3.9882	3.7897	2
		3
f(96.4411) = 9.3329	8.5589	4
		5
f(95.8375) = 9.83042	9.1625	6
		7
f(104.1475) = -0.551885	0.8525	8

Optimal early exercise decision at year 1

- The put should be exercised for 1 path only: 8.
 - Note that f(104.1475) < 0.
- Now, any positive future cash flow should be set to zero or overridden for this path.
 - But there is none.
- The cash flows on p. 907 become the ones on next slide.
- They also confirm the plot on p. 898.

nued)	ole (conti	l Examp	lumerica	ΑΝ
3	rs 1, 2, & 3	ws at yea	Cash flo	
Year 3	Year 2	Year 1	Year 0	Path
0	12.4185	0		1
2.5476	0	0		2
0	1.3990	0		3
0	6.2880	0		4
0	3.9436	0		5
0	11.2730	0		6
0	2.5823	0		7
0	0	0.8525		8

- We move on to year 0.
- The continuation value is, from p 914,

 $(12.4185 \times 0.951229^{2} + 2.5476 \times 0.951229^{3} + 1.3990 \times 0.951229^{2} + 6.2880 \times 0.951229^{2} + 3.9436 \times 0.951229^{2} + 11.2730 \times 0.951229^{2} + 2.5823 \times 0.951229^{2} + 0.8525 \times 0.951229)/8$

= 4.66263.

• As this is larger than the immediate exercise value of

105 - 101 = 4,

the put should not be exercised at year 0.

- Hence the put's value is estimated to be 4.66263.
- Compare this with the European put's value of 1.3680 (p. 900).

Time Series Analysis

The historian is a prophet in reverse. — Friedrich von Schlegel (1772–1829)

$\mathsf{GARCH}\ \mathsf{Option}\ \mathsf{Pricing}^{\mathrm{a}}$

- Options can be priced when the underlying asset's return follows a GARCH process.
- Let S_t denote the asset price at date t.
- Let h_t^2 be the *conditional* variance of the return over the period [t, t+1] given the information at date t.
 - "One day" is merely a convenient term for any elapsed time Δt .

^aARCH (autoregressive conditional heteroskedastic) is due to Engle (1982), co-winner of the 2003 Nobel Prize in Economic Sciences. GARCH (generalized ARCH) is due to Bollerslev (1986) and Taylor (1986). A Bloomberg quant said to me on Feb 29, 2008, that GARCH is seldom used in trading.

GARCH Option Pricing (continued)

• Adopt the following risk-neutral process for the price dynamics:^a

$$\ln \frac{S_{t+1}}{S_t} = r - \frac{h_t^2}{2} + h_t \epsilon_{t+1}, \qquad (120)$$

where

$$h_{t+1}^{2} = \beta_{0} + \beta_{1}h_{t}^{2} + \beta_{2}h_{t}^{2}(\epsilon_{t+1} - c)^{2}, \qquad (121)$$

$$\epsilon_{t+1} \sim N(0, 1) \text{ given information at date } t,$$

$$r = \text{ daily riskless return,}$$

$$c \geq 0.$$

^aDuan (1995).

GARCH Option Pricing (continued)

- The five unknown parameters of the model are c, h_0, β_0, β_1 , and β_2 .
- It is postulated that $\beta_0, \beta_1, \beta_2 \ge 0$ to make the conditional variance positive.
- There are other inequalities to satisfy (see text).
- The above process is called the nonlinear asymmetric GARCH (or NGARCH) model.

GARCH Option Pricing (continued)

- It captures the volatility clustering in asset returns first noted by Mandelbrot (1963).^a
 - When c = 0, a large ϵ_{t+1} results in a large h_{t+1} , which in turns tends to yield a large h_{t+2} , and so on.
- It also captures the negative correlation between the asset return and changes in its (conditional) volatility.^b
 - For c > 0, a positive ϵ_{t+1} (good news) tends to decrease h_{t+1} , whereas a negative ϵ_{t+1} (bad news) tends to do the opposite.

^a"... large changes tend to be followed by large changes—of either sign—and small changes tend to be followed by small changes"

^bNoted by Black (1976): Volatility tends to rise in response to "bad news" and fall in response to "good news."

GARCH Option Pricing (concluded)

• With $y_t \stackrel{\Delta}{=} \ln S_t$ denoting the logarithmic price, the model becomes

$$y_{t+1} = y_t + r - \frac{h_t^2}{2} + h_t \epsilon_{t+1}.$$
 (122)

- The pair (y_t, h_t^2) completely describes the current state.
- The conditional mean and variance of y_{t+1} are clearly

$$E[y_{t+1} | y_t, h_t^2] = y_t + r - \frac{h_t^2}{2}, \qquad (123)$$

$$Var[y_{t+1} | y_t, h_t^2] = h_t^2. \qquad (124)$$

GARCH Model: Inferences

- Suppose the parameters c, h_0, β_0, β_1 , and β_2 are given.
- Then we can recover h_1, h_2, \ldots, h_n and $\epsilon_1, \epsilon_2, \ldots, \epsilon_n$ from the prices

$$S_0, S_1, \ldots, S_n$$

under the GARCH model (120) on p. 920.

• This property is useful in statistical inferences.

The Ritchken-Trevor (RT) Algorithm $^{\rm a}$

- The GARCH model is a continuous-state model.
- To approximate it, we turn to trees with *discrete* states.
- Path dependence in GARCH makes the tree for asset prices explode exponentially (why?).
- We need to mitigate this combinatorial explosion.

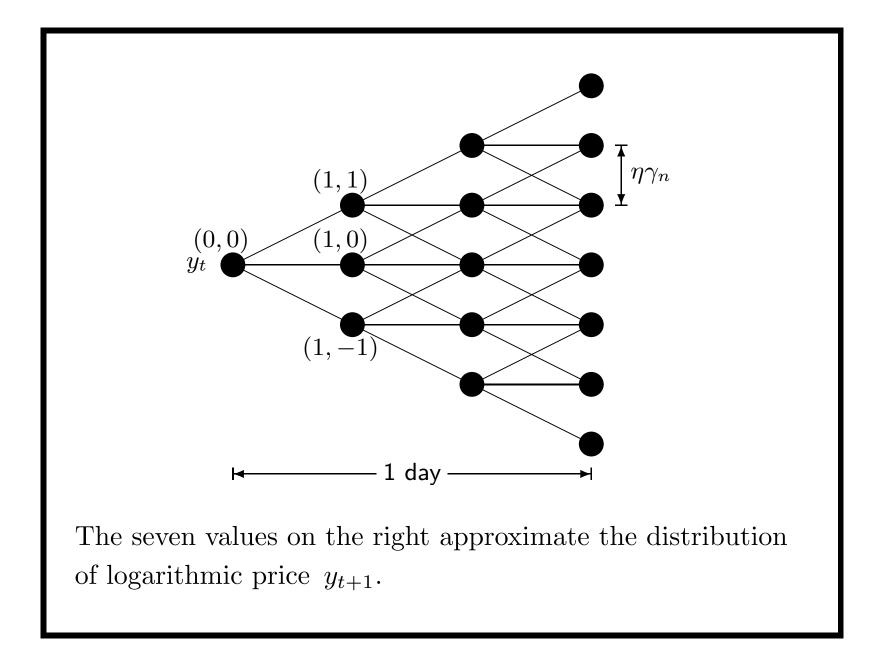
^aRitchken & Trevor (1999).

- Partition a day into n periods.
- Three states follow each state (y_t, h_t^2) after a period.
- As the trinomial model combines, each state at date t is followed by 2n + 1 states at date t + 1 (recall p. 712).
- These 2n + 1 values must approximate the distribution of (y_{t+1}, h_{t+1}^2) .
- So the conditional moments (123)–(124) at date t + 1 on p. 923 must be matched by the trinomial model to guarantee convergence to the continuous-state model.

- It remains to pick the jump size and the three branching probabilities.
- The role of σ in the Black-Scholes option pricing model is played by h_t in the GARCH model.
- As a jump size proportional to σ/\sqrt{n} is picked in the BOPM, a comparable magnitude will be chosen here.
- Define $\gamma \stackrel{\Delta}{=} h_0$, though other multiples of h_0 are possible, and

$$\gamma_n \stackrel{\Delta}{=} \frac{\gamma}{\sqrt{n}}$$

- The jump size will be some integer multiple η of γ_n .
- We call η the jump parameter (see next page).
- Obviously, the magnitude of η grows with h_t .
- The middle branch does not change the underlying asset's price.



• The probabilities for the up, middle, and down branches are

$$p_u = \frac{h_t^2}{2\eta^2 \gamma^2} + \frac{r - (h_t^2/2)}{2\eta\gamma\sqrt{n}},$$
 (125)

$$p_m = 1 - \frac{h_t^2}{\eta^2 \gamma^2},$$
 (126)

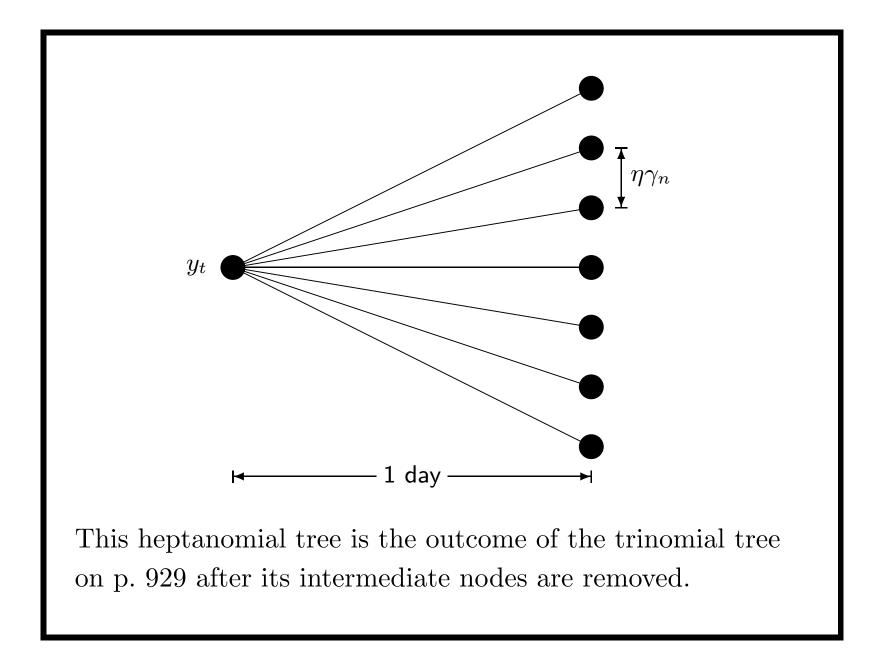
$$p_d = \frac{h_t^2}{2\eta^2 \gamma^2} - \frac{r - (h_t^2/2)}{2\eta\gamma\sqrt{n}}.$$
 (127)

- It can be shown that:
 - The trinomial model takes on 2n + 1 values at date t + 1 for y_{t+1} .
 - These values have a matching mean for y_{t+1} .
 - These values have an asymptotically matching variance for y_{t+1} .
- The central limit theorem guarantees convergence as n increases.^a

^aAssume the probabilities are valid.

- We can dispense with the intermediate nodes *between* dates to create a (2n + 1)-nomial tree (p. 933).
- The resulting model is multinomial with 2n + 1branches from any state (y_t, h_t^2) .
- There are two reasons behind this manipulation.
 - Interdate nodes are created merely to approximate the continuous-state model after one day.
 - Keeping the interdate nodes results in a tree that can be n times larger.^a

^aContrast it with the case on p. 396.



• A node with logarithmic price $y_t + \ell \eta \gamma_n$ at date t + 1follows the current node at date t with price y_t , where

$$-n \le \ell \le n.$$

- To reach that price in n periods, the number of up moves must exceed that of down moves by exactly ℓ .
- The probability that this happens is

$$P(\ell) \stackrel{\Delta}{=} \sum_{j_u, j_m, j_d} \frac{n!}{j_u! j_m! j_d!} p_u^{j_u} p_m^{j_m} p_d^{j_d},$$

with
$$j_u, j_m, j_d \ge 0, \ n = j_u + j_m + j_d$$
, and $\ell = j_u - j_d$.

• A particularly simple way to calculate the $P(\ell)$ s starts by noting that^a

$$(p_u x + p_m + p_d x^{-1})^n = \sum_{\ell=-n}^n P(\ell) x^{\ell}.$$
(128)

- Convince yourself that this trick does the "accounting" correctly.
- So we expand $(p_u x + p_m + p_d x^{-1})^n$ and retrieve the probabilities by reading off the coefficients.
- It can be computed in $O(n^2)$ time, if not less.

^aC. Wu (R90723065) (2003); Lyuu & C. Wu (R90723065) (2003, 2005).

- The updating rule (121) on p. 920 must be modified to account for the adoption of the discrete-state model.
- The logarithmic price $y_t + \ell \eta \gamma_n$ at date t + 1 following state (y_t, h_t^2) is associated with this variance:

$$h_{t+1}^2 = \beta_0 + \beta_1 h_t^2 + \beta_2 h_t^2 (\epsilon_{t+1}' - c)^2, \qquad (129)$$

– Above, the z-score

$$\epsilon'_{t+1} = \frac{\ell \eta \gamma_n - (r - h_t^2/2)}{h_t}, \quad \ell = 0, \pm 1, \pm 2, \dots, \pm n,$$

is a discrete random variable with 2n + 1 values.

- Different conditional variances h_t^2 may require different η so that the probabilities calculated by Eqs. (125)–(127) on p. 930 lie between 0 and 1.
- This implies varying jump sizes.
- The necessary requirement $p_m \ge 0$ implies $\eta \ge h_t/\gamma$.
- Hence we try

$$\eta = \lceil h_t / \gamma \rceil, \lceil h_t / \gamma \rceil + 1, \lceil h_t / \gamma \rceil + 2, \dots$$

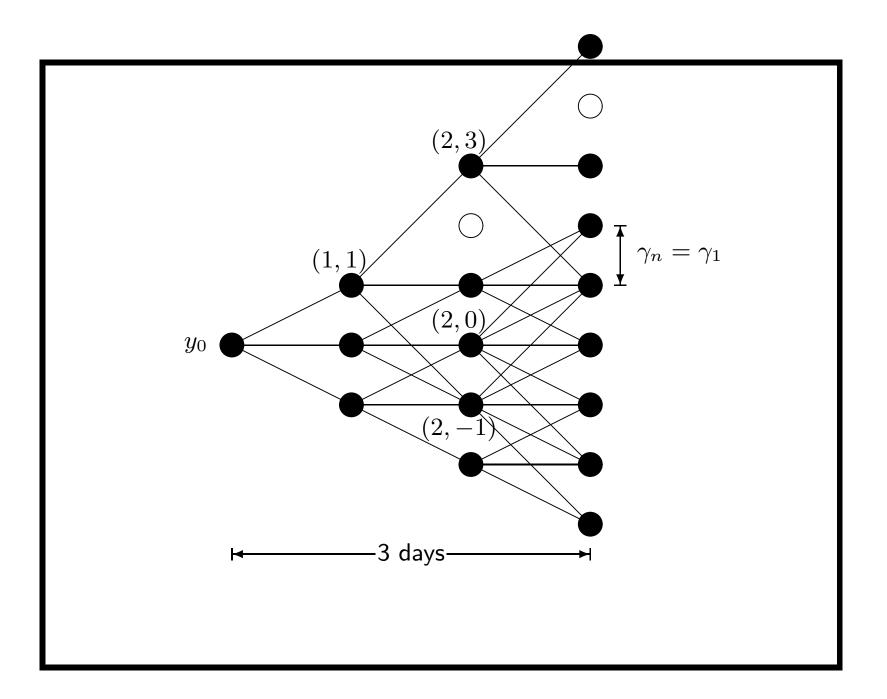
until valid probabilities are obtained or until their nonexistence is confirmed.

• The sufficient and necessary condition for valid probabilities to exist is^a

$$\frac{|r - (h_t^2/2)|}{2\eta\gamma\sqrt{n}} \le \frac{h_t^2}{2\eta^2\gamma^2} \le \min\left(1 - \frac{|r - (h_t^2/2)|}{2\eta\gamma\sqrt{n}}, \frac{1}{2}\right)$$

- The plot on p. 939 uses n = 1 to illustrate our points for a 3-day model.
- For example, node (1,1) of date 1 and node (2,3) of date 2 pick $\eta = 2$.

^aC. Wu (**R90723065**) (2003); Lyuu & C. Wu (**R90723065**) (2003, 2005).



- The topology of the tree is not a standard combining multinomial tree.
- For example, a few nodes on p. 939 such as nodes (2,0) and (2,-1) have *multiple* jump sizes.
- The reason is path dependency of the model.
 - Two paths can reach node (2,0) from the root node, each with a different variance for the node.
 - One variance results in $\eta = 1$.
 - The other results in $\eta = 2$.

The RT Algorithm (concluded)

- The number of possible values of h_t^2 at a node can be exponential.
 - Because each path brings a different variance h_t^2 .
- To address this problem, we record only the maximum and minimum h_t^2 at each node.^a
- Therefore, each node on the tree contains only two states (y_t, h_{max}^2) and (y_t, h_{min}^2) .
- Each of (y_t, h_{\max}^2) and (y_t, h_{\min}^2) carries its own η and set of 2n + 1 branching probabilities.

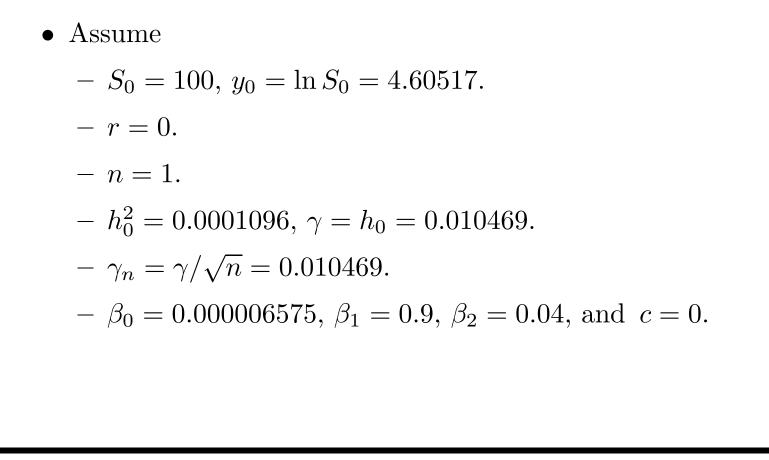
^aCakici & Topyan (2000). But see p. 976 for a potential problem.

Negative Aspects of the Ritchken-Trevor Algorithm $^{\rm a}$

- A small n may yield inaccurate option prices.
- But the tree will grow exponentially if n is large enough. - Specifically, $n > (1 - \beta_1)/\beta_2$ when r = c = 0.
- A large *n* has another serious problem: The tree cannot grow beyond a certain date.
- Thus the choice of n may be quite limited in practice.
- The RT algorithm can be modified to be free of shortened maturity and exponential complexity.^b

^aLyuu & C. Wu (**R90723065**) (2003, 2005). ^bIts size is only $O(n^2)$ if $n \leq (\sqrt{(1-\beta_1)/\beta_2} - c)^2!$

Numerical Examples

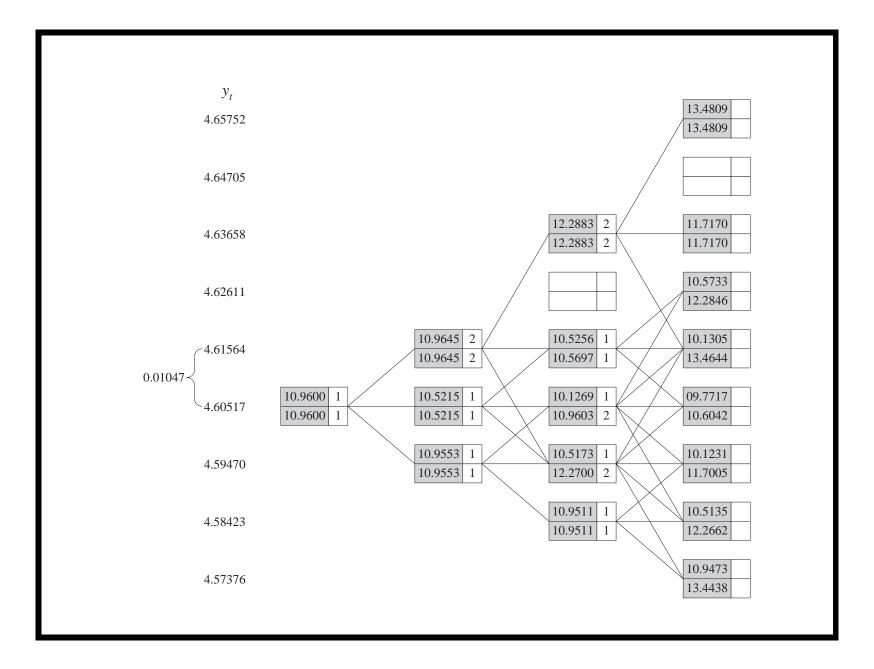


• A daily variance of 0.0001096 corresponds to an annual volatility of

 $\sqrt{365 \times 0.0001096} \approx 20\%.$

- Let $h^2(i,j)$ denote the variance at node (i,j).
- Initially, $h^2(0,0) = h_0^2 = 0.0001096$.

- Let $h_{\max}^2(i,j)$ denote the maximum variance at node (i,j).
- Let $h_{\min}^2(i, j)$ denote the minimum variance at node (i, j).
- Initially, $h_{\max}^2(0,0) = h_{\min}^2(0,0) = h_0^2$.
- The resulting 3-day tree is depicted on p. 946.



- A top number inside a gray box refers to the minimum variance h_{\min}^2 for the node.
- A bottom number inside a gray box refers to the maximum variance h_{max}^2 for the node.
- Variances are multiplied by 100,000 for readability.
- The top number inside a white box refers to the η for h_{\min}^2 .
- The bottom number inside a white box refers to the η for $h_{\rm max}^2$.

- Let us see how the numbers are calculated.
- Start with the root node, node (0,0).
- Try $\eta = 1$ in Eqs. (125)–(127) on p. 930 first to obtain

 $p_u = 0.4974,$ $p_m = 0,$ $p_d = 0.5026.$

• As they are valid probabilities, the three branches from the root node use single jumps.

- Move on to node (1,1).
- It has one predecessor node—node (0,0)—and it takes an up move to reach the current node.
- So apply updating rule (129) on p. 936 with $\ell = 1$ and $h_t^2 = h^2(0,0)$.
- The result is $h^2(1,1) = 0.000109645$.

• Because $\lceil h(1,1)/\gamma \rceil = 2$, we try $\eta = 2$ in Eqs. (125)–(127) on p. 930 first to obtain

$$p_u = 0.1237,$$

 $p_m = 0.7499,$
 $p_d = 0.1264.$

• As they are valid probabilities, the three branches from node (1,1) use double jumps.

- Carry out similar calculations for node (1,0) with $\ell = 0$ in updating rule (129) on p. 936.
- Carry out similar calculations for node (1, -1) with $\ell = -1$ in updating rule (129).
- Single jump $\eta = 1$ works for both nodes.
- The resulting variances are

 $h^2(1,0) = 0.000105215,$ $h^2(1,-1) = 0.000109553.$

- Node (2,0) has 2 predecessor nodes, (1,0) and (1,-1).
- Both have to be considered in deriving the variances.
- Let us start with node (1,0).
- Because it takes a middle move to reach the current node, we apply updating rule (129) on p. 936 with $\ell = 0$ and $h_t^2 = h^2(1,0)$.
- The result is $h_{t+1}^2 = 0.000101269$.

- Now move on to the other predecessor node (1, -1).
- Because it takes an up move to reach the current node, apply updating rule (129) on p. 936 with $\ell = 1$ and $h_t^2 = h^2(1, -1)$.
- The result is $h_{t+1}^2 = 0.000109603$.
- We hence record

$$h_{\min}^2(2,0) = 0.000101269,$$

 $h_{\max}^2(2,0) = 0.000109603.$

- Consider state $h_{\max}^2(2,0)$ first.
- Because $\lceil h_{\max}(2,0)/\gamma \rceil = 2$, we first try $\eta = 2$ in Eqs. (125)–(127) on p. 930 to obtain

 $p_u = 0.1237,$ $p_m = 0.7500,$ $p_d = 0.1263.$

• As they are valid probabilities, the three branches from node (2,0) with the maximum variance use double jumps.

- Now consider state $h_{\min}^2(2,0)$.
- Because $\lceil h_{\min}(2,0)/\gamma \rceil = 1$, we first try $\eta = 1$ in Eqs. (125)–(127) on p. 930 to obtain

 $p_u = 0.4596,$ $p_m = 0.0760,$ $p_d = 0.4644.$

• As they are valid probabilities, the three branches from node (2,0) with the minimum variance use single jumps.

- Node (2, -1) has 3 predecessor nodes.
- Start with node (1, 1).
- Because it takes *one* down move to reach the current node, we apply updating rule (129) on p. 936 with $\ell = -1$ and $h_t^2 = h^2(1, 1)$.^a
- The result is $h_{t+1}^2 = 0.0001227$.

^aNote that it is not $\ell = -2$. The reason is that h(1,1) has $\eta = 2$ (p. 950).

- Now move on to predecessor node (1,0).
- Because it also takes a down move to reach the current node, we apply updating rule (129) on p. 936 with $\ell = -1$ and $h_t^2 = h^2(1,0)$.
- The result is $h_{t+1}^2 = 0.000105609$.

- Finally, consider predecessor node (1, -1).
- Because it takes a middle move to reach the current node, we apply updating rule (129) on p. 936 with $\ell = 0$ and $h_t^2 = h^2(1, -1)$.
- The result is $h_{t+1}^2 = 0.000105173$.
- We hence record

$$h_{\min}^2(2,-1) = 0.000105173,$$

 $h_{\max}^2(2,-1) = 0.0001227.$

- Consider state $h_{\max}^2(2,-1)$.
- Because $\lceil h_{\max}(2,-1)/\gamma \rceil = 2$, we first try $\eta = 2$ in Eqs. (125)–(127) on p. 930 to obtain

 $p_u = 0.1385,$ $p_m = 0.7201,$ $p_d = 0.1414.$

 As they are valid probabilities, the three branches from node (2,-1) with the maximum variance use double jumps.

- Next, consider state $h_{\min}^2(2,-1)$.
- Because $\lceil h_{\min}(2,-1)/\gamma \rceil = 1$, we first try $\eta = 1$ in Eqs. (125)–(127) on p. 930 to obtain

 $p_u = 0.4773,$ $p_m = 0.0404,$ $p_d = 0.4823.$

 As they are valid probabilities, the three branches from node (2,-1) with the minimum variance use single jumps.

Numerical Examples (concluded)

- Other nodes at dates 2 and 3 can be handled similarly.
- In general, if a node has k predecessor nodes, then up to 2k variances will be calculated using the updating rule.
 - This is because each predecessor node keeps two variance numbers.
- But only the maximum and minimum variances will be kept.

Negative Aspects of the RT Algorithm Revisited $^{\rm a}$

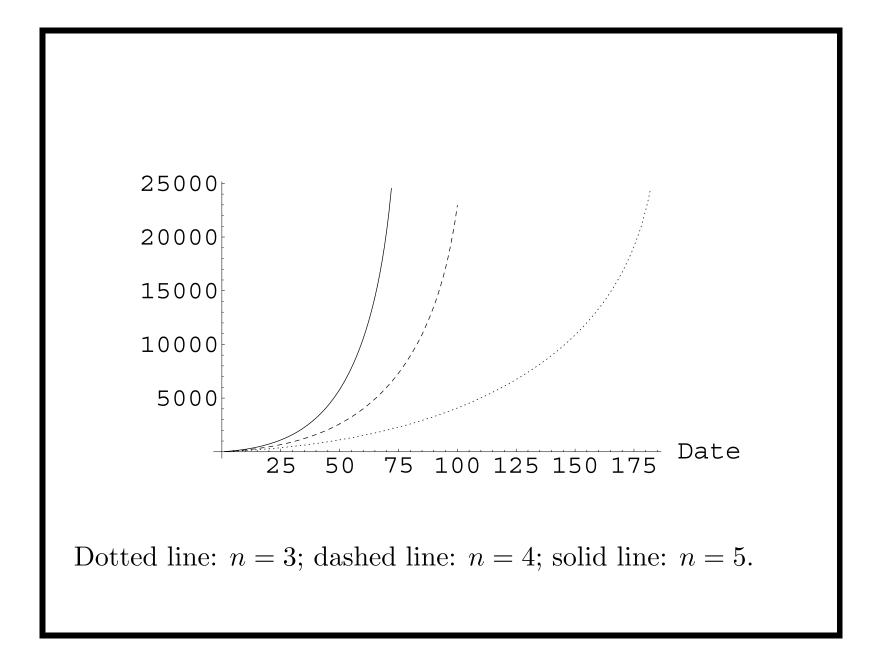
- Recall the problems mentioned on p. 942.
- In our case, combinatorial explosion occurs when

$$n > \frac{1 - \beta_1}{\beta_2} = \frac{1 - 0.9}{0.04} = 2.5$$

(see the next plot).

- Suppose we are willing to accept the exponential running time and pick n = 100 to seek accuracy.
- But the problem of shortened maturity forces the tree to stop at date 9!

^aLyuu & C. Wu (**R90723065**) (2003, 2005).



Backward Induction on the RT Tree

- After the RT tree is constructed, it can be used to price options by backward induction.
- Recall that each node keeps two variances h_{\max}^2 and h_{\min}^2 .
- We now increase that number to K equally spaced variances between h_{max}^2 and h_{min}^2 at each node.
- Besides the minimum and maximum variances, the other K-2 variances in between are linearly interpolated.^a

^aIn practice, log-linear interpolation works better (Lyuu & C. Wu (R90723065), 2005). Log-cubic interpolation works even better (C. Liu (R92922123), 2005).

Backward Induction on the RT Tree (continued)

• For example, if K = 3, then a variance of

$$10.5436 \times 10^{-6}$$

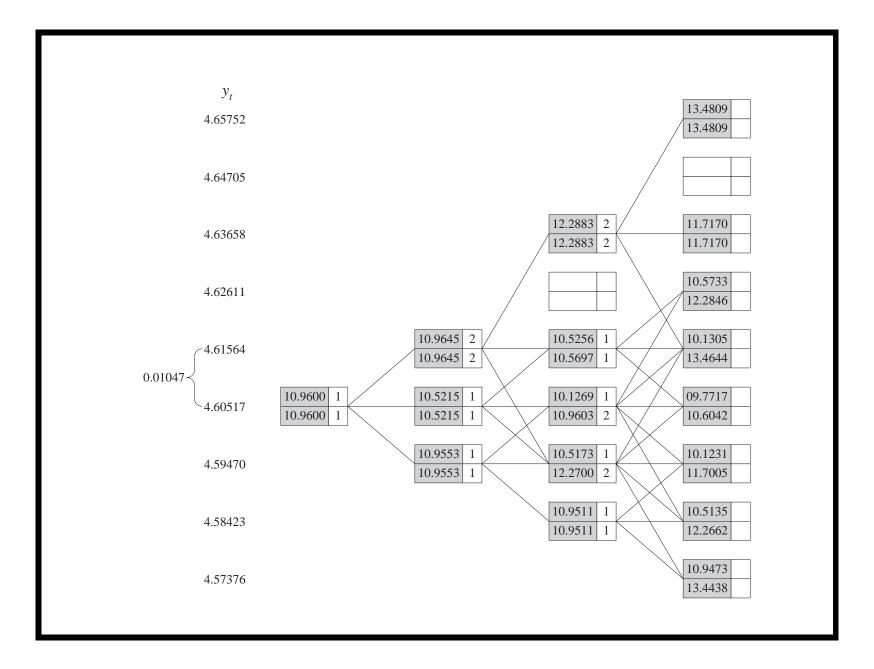
will be added between the maximum and minimum variances at node (2,0) on p. 946.^a

• In general, the kth variance at node (i, j) is

$$h_{\min}^2(i,j) + k \frac{h_{\max}^2(i,j) - h_{\min}^2(i,j)}{K-1}, \quad k = 0, 1, \dots, K-1.$$

• Each interpolated variance's jump parameter and branching probabilities can be computed as before.

^aRepeated on p. 966.

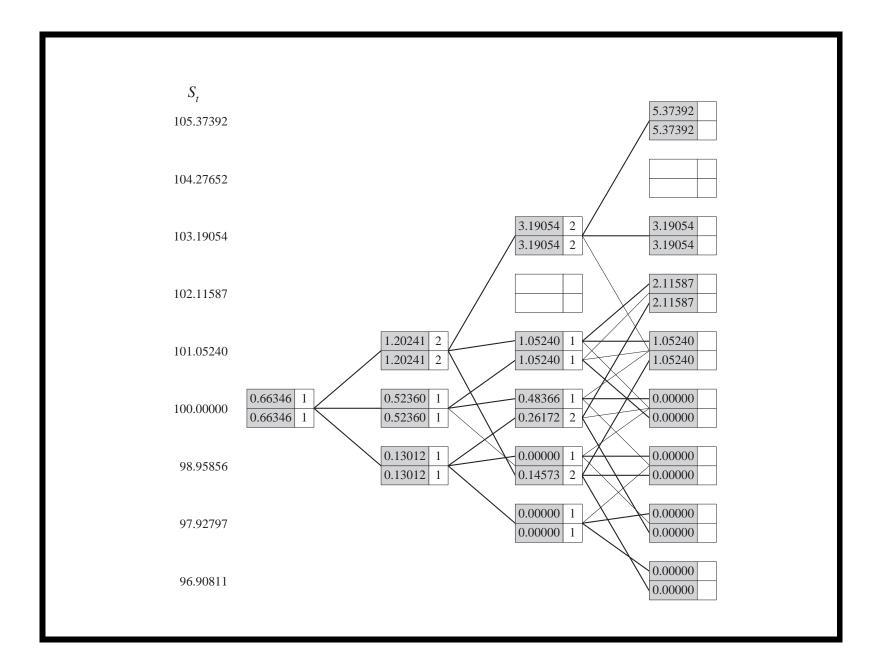


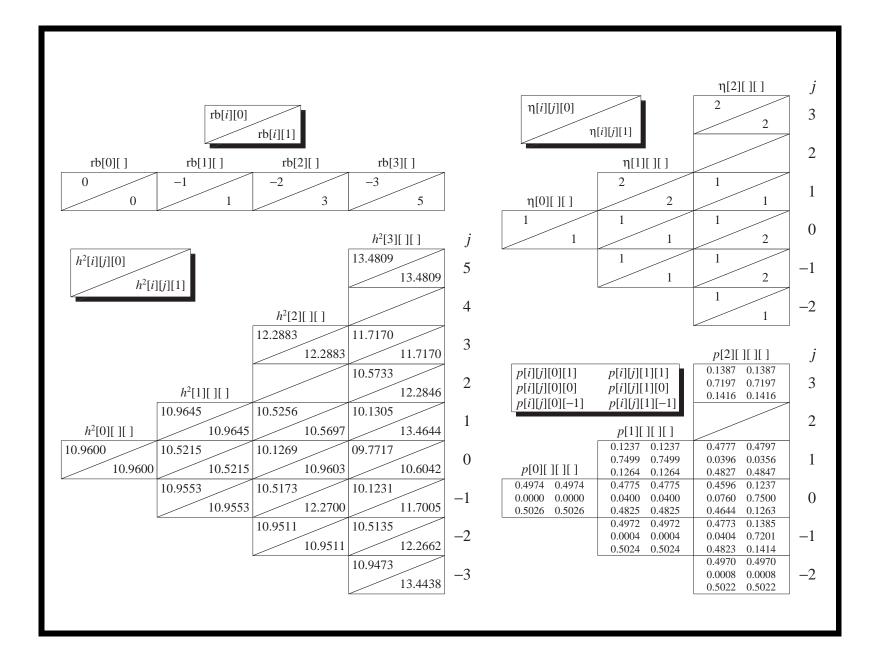
Backward Induction on the RT Tree (concluded)

- Suppose a variance falls between two of the K variances during backward induction.
- Linear interpolation of the option prices corresponding to the two bracketing variances will be used as the approximate option price.
- The above ideas are reminiscent of the ones on p. 436, where we dealt with Asian options.

Numerical Examples

- We next use the tree on p. 966 to price a European call option with a strike price of 100 and expiring at date 3.
- Recall that the riskless interest rate is zero.
- Assume K = 2; hence there are no interpolated variances.
- The pricing tree is shown on p. 969 with a call price of 0.66346.
 - The branching probabilities needed in backward induction can be found on p. 970.





- Let us derive some of the numbers on p. 969.
- A gray line means the updated variance falls strictly between h_{max}^2 and h_{min}^2 .
- The option price for a terminal node at date 3 equals $\max(S_3 100, 0)$, independent of the variance level.
- Now move on to nodes at date 2.
- The option price at node (2,3) depends on those at nodes (3,5), (3,3), and (3,1).
- It therefore equals

 $0.1387 \times 5.37392 + 0.7197 \times 3.19054 + 0.1416 \times 1.05240 = 3.19054.$

- Option prices for other nodes at date 2 can be computed similarly.
- For node (1, 1), the option price for both variances is
 0.1237 × 3.19054 + 0.7499 × 1.05240 + 0.1264 × 0.14573 = 1.20241.
- Node (1,0) is most interesting.
- We knew that a down move from it gives a variance of 0.000105609.
- This number falls between the minimum variance
 0.000105173 and the maximum variance 0.0001227 at
 node (2,-1) on p. 970.

- The option price corresponding to the minimum variance is 0 (p. 970).
- The option price corresponding to the maximum variance is 0.14573.
- The equation

 $x \times 0.000105173 + (1 - x) \times 0.0001227 = 0.000105609$

is satisfied by x = 0.9751.

• So the option for the down state is approximated by

$$x \times 0 + (1 - x) \times 0.14573 = 0.00362.$$

- The up move leads to the state with option price 1.05240.
- The middle move leads to the state with option price 0.48366.
- The option price at node (1,0) is finally calculated as
 0.4775 × 1.05240 + 0.0400 × 0.48366 + 0.4825 × 0.00362 = 0.52360.

- A variance following an interpolated variance may exceed the maximum variance or be exceeded by the minimum variance.
- When this happens, the option price corresponding to the maximum or minimum variance will be used during backward induction.^a

^aCakici & Topyan (2000).

Numerical Examples (concluded)

- But an interpolated variance may choose a branch that goes into a node that is *not* reached in forward induction.^a
- In this case, the algorithm fails.
- The RT algorithm does not have this problem.
 - This is because all interpolated variances are involved in the forward-induction phase.
- It may be hard to calculate the implied β_1 and β_2 from option prices.^b

^aLyuu & C. Wu (R90723065) (2005). ^bY. Chang (B89704039, R93922034) (2006).

Complexities of GARCH Models $^{\rm a}$

- The RT algorithm explodes exponentially if n is big enough (p. 942).
- The mean-tracking tree of Lyuu and Wu (2005) makes sure explosion does not happen if n is not too large.^b
- The next page summarizes the situations for many GARCH option pricing models.

- Our earlier treatment is for NGARCH only.

^aLyuu & C. Wu (**R90723065**) (2003, 2005).

^bSimilar to, but earlier than, the binomial-trinomial tree on pp. 735ff.

Complexities of GARCH Models (concluded)^a

Model	Explosion	Non-explosion
NGARCH	$\beta_1 + \beta_2 n > 1$	$\beta_1 + \beta_2(\sqrt{n} + \lambda + c)^2 \le 1$
LGARCH	$\beta_1 + \beta_2 n > 1$	$\beta_1 + \beta_2(\sqrt{n} + \lambda)^2 \le 1$
AGARCH	$\beta_1 + \beta_2 n > 1$	$\beta_1 + \beta_2(\sqrt{n} + \lambda)^2 \le 1$
GJR-GARCH	$\beta_1 + \beta_2 n > 1$	$\beta_1 + (\beta_2 + \beta_3)(\sqrt{n} + \lambda)^2 \le 1$
TS-GARCH	$\beta_1 + \beta_2 \sqrt{n} > 1$	$\beta_1 + \beta_2(\lambda + \sqrt{n}) \le 1$
TGARCH	$\beta_1 + \beta_2 \sqrt{n} > 1$	$\beta_1 + (\beta_2 + \beta_3)(\lambda + \sqrt{n}) \le 1$
Heston-Nandi	$\beta_1 + \beta_2 (c - \frac{1}{2})^2 > 1$	$\beta_1 + \beta_2 c^2 \le 1$
	$\& \ c \leq \frac{1}{2}$	
VGARCH	$\beta_1 + (\beta_2/4) > 1$	$\beta_1 \leq 1$

^aY. C. Chen (R95723051) (2008); Y. C. Chen (R95723051), Lyuu, & Wen (D94922003) (2012).