
Monte Carlo Option Pricing

• For the pricing of European options on a

dividend-paying stock, we may proceed as follows.

• Assume
dS

S
= μ dt+ σ dW.

• Stock prices S1, S2, S3, . . . at times Δt, 2Δt, 3Δt, . . .

can be generated via

Si+1 = Sie
(μ−σ2/2)Δt+σ

√
Δt ξ, ξ ∼ N(0, 1).

(117)
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Monte Carlo Option Pricing (continued)

• If we discretize dS/S = μ dt+ σ dW directly, we will

obtain

Si+1 = Si + SiμΔt+ Siσ
√
Δt ξ.

• But this is locally normally distributed, not lognormally,

hence biased.a

• In practice, this is not expected to be a major problem

as long as Δt is sufficiently small.

aContributed by Mr. Tai, Hui-Chin (R97723028) on April 22, 2009.
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Monte Carlo Option Pricing (continued)

Non-dividend-paying stock prices in a risk-neutral economy

can be generated by setting μ = r and Δt = T .

1: C := 0; {Accumulated terminal option value.}
2: for i = 1, 2, 3, . . . , N do

3: P := S × e(r−σ2/2)T+σ
√
T ξ, ξ ∼ N(0, 1);

4: C := C +max(P −X, 0);

5: end for

6: return Ce−rT /N ;
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Monte Carlo Option Pricing (concluded)

Pricing Asian options is also easy.

1: C := 0;

2: for i = 1, 2, 3, . . . , N do

3: P := S; M := S;

4: for j = 1, 2, 3, . . . , n do

5: P := P × e(r−σ2/2)(T/n)+σ
√

T/n ξ;

6: M := M + P ;

7: end for

8: C := C +max(M/(n+ 1)−X, 0);

9: end for

10: return Ce−rT /N ;
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How about American Options?

• Standard Monte Carlo simulation is inappropriate for

American options because of early exercise.

– Given a sample path S0, S1, . . . , Sn, how to decide

which Si is an early-exercise point?

– What is the option price at each Si if the option is

not exercised?

• It is difficult to determine the early-exercise point based

on one single path.

• But Monte Carlo simulation can be modified to price

American options with small biases (pp. 891ff).a

aLongstaff & Schwartz (2001).
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Delta and Common Random Numbers

• In estimating delta, it is natural to start with the

finite-difference estimate

e−rτ E[P (S + ε) ]− E[P (S − ε) ]

2ε
.

– P (x) is the terminal payoff of the derivative security

when the underlying asset’s initial price equals x.

• Use simulation to estimate E[P (S + ε) ] first.

• Use another simulation to estimate E[P (S − ε) ].

• Finally, apply the formula to approximate the delta.

• This is also called the bump-and-revalue method.
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Delta and Common Random Numbers (concluded)

• This method is not recommended because of its high

variance.

• A much better approach is to use common random

numbers to lower the variance:

e−rτ E

[
P (S + ε)− P (S − ε)

2ε

]
.

• Here, the same random numbers are used for P (S + ε)

and P (S − ε).

• This holds for gamma and cross gamma.a

aFor multivariate derivatives.
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Problems with the Bump-and-Revalue Method

• Consider the binary option with payoff⎧⎨
⎩

1, if S(T ) > X,

0, otherwise.

• Then

P (S+ε)−P (S−ε) =

⎧⎨
⎩

1, if S + ε > X and S − ε < X,

0, otherwise.

• So the finite-difference estimate per run for the

(undiscounted) delta is 0 or O(1/ε).

• This means high variance.
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Problems with the Bump-and-Revalue Method
(concluded)

• The price of the binary option equals

e−rτN(x− σ
√
τ).

– It equals minus the derivative of the European call

with respect to X .

– It also equals Xτ times the rho of a European call (p.

351).

• Its delta is
N ′ (x− σ

√
τ)

Sσ
√
τ

.
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Gamma

• The finite-difference formula for gamma is

e−rτ E

[
P (S + ε)− 2× P (S) + P (S − ε)

ε2

]
.

• For a correlation option with multiple underlying assets,

the finite-difference formula for the cross gamma

∂2P (S1, S2, . . . )/(∂S1∂S2) is:

e−rτ E

[
P (S1 + ε1, S2 + ε2)− P (S1 − ε1, S2 + ε2)

4ε1ε2

−P (S1 + ε1, S2 − ε2) + P (S1 − ε1, S2 − ε2)
]
.

c©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 835



Gamma (continued)

• Choosing an ε of the right magnitude can be

challenging.

– If ε is too large, inaccurate Greeks result.

– If ε is too small, unstable Greeks result.

• This phenomenon is sometimes called the curse of

differentiation.a

aAı̈t-Sahalia & Lo (1998); Bondarenko (2003).
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Gamma (continued)

• In general, suppose

∂i

∂θi
e−rτE[P (S) ] = e−rτE

[
∂iP (S)

∂θi

]

holds for all i > 0, where θ is a parameter of interest.a

– A common requirement is Lipschitz continuity.b

• Then Greeks become integrals.

• As a result, we avoid ε, finite differences, and

resimulation.

a∂iP (S)/∂θi may not be partial differentiation in the classic sense.
bBroadie & Glasserman (1996).
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Gamma (continued)

• This is indeed possible for a broad class of payoff

functions.a

– Roughly speaking, any payoff function that is equal

to a sum of products of differentiable functions and

indicator functions with the right kind of support.

– For example, the payoff of a call is

max(S(T )−X, 0) = (S(T )−X)I{S(T )−X≥0 }.

– The results are too technical to cover here (see next

page).

aTeng (R91723054) (2004); Lyuu & Teng (R91723054) (2011).
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Gamma (continued)

• Suppose h(θ, x) ∈ H with pdf f(x) for x and gj(θ, x) ∈ G
for j ∈ B, a finite set of natural numbers.

• Then
∂

∂θ

∫
�

h(θ, x)
∏

j∈B
1{gj (θ,x)>0}(x) f(x) dx

=

∫
�

hθ(θ, x)
∏

j∈B
1{gj (θ,x)>0}(x) f(x) dx

+
∑

l∈B

⎡
⎢⎣h(θ, x)Jl(θ, x)

∏
j∈B\l

1{gj (θ, x)>0}(x) f(x)

⎤
⎥⎦
x=χl(θ)

,

where
Jl(θ, x) = sign

(
∂gl(θ, x)

∂xk

)
∂gl(θ, x)/∂θ

∂gl(θ, x)/∂x
for l ∈ B.
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Gamma (concluded)

• Similar results have been derived for Levy processes.a

• Formulas are also recently obtained for credit

derivatives.b

• In queueing networks, this is called infinitesimal

perturbation analysis (IPA).c

aLyuu, Teng (R91723054), & S. Wang (2013).
bLyuu, Teng (R91723054), & Tseng (2014, 2018).
cCao (1985); Y. C. Ho & Cao (1985).
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Biases in Pricing Continuously Monitored Options
with Monte Carlo

• We are asked to price a continuously monitored

up-and-out call with barrier H.

• The Monte Carlo method samples the stock price at n

discrete time points t1, t2, . . . , tn.

• A sample path

S(t0), S(t1), . . . , S(tn)

is produced.

– Here, t0 = 0 is the current time, and tn = T is the

expiration time of the option.
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Biases in Pricing Continuously Monitored Options
with Monte Carlo (continued)

• If all of the sampled prices are below the barrier, this

sample path pays max(S(tn)−X, 0).

• Repeating these steps and averaging the payoffs yield a

Monte Carlo estimate.
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1: C := 0;

2: for i = 1, 2, 3, . . . , N do

3: P := S; hit := 0;

4: for j = 1, 2, 3, . . . , n do

5: P := P × e(r−σ2/2) (T/n)+σ
√

(T/n) ξ; {By Eq. (117) on p.

826.}
6: if P ≥ H then

7: hit := 1;

8: break;

9: end if

10: end for

11: if hit = 0 then

12: C := C +max(P −X, 0);

13: end if

14: end for

15: return Ce−rT /N ;
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Biases in Pricing Continuously Monitored Options
with Monte Carlo (continued)

• This estimate is biased.a

– Suppose none of the sampled prices on a sample path

equals or exceeds the barrier H.

– It remains possible for the continuous sample path

that passes through them to hit the barrier between

sampled time points (see plot on next page).

aShevchenko (2003).
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H
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Biases in Pricing Continuously Monitored Options
with Monte Carlo (concluded)

• The bias can certainly be lowered by increasing the

number of observations along the sample path.

• However, even daily sampling may not suffice.

• The computational cost also rises as a result.
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Brownian Bridge Approach to Pricing Barrier Options

• We desire an unbiased estimate which can be calculated

efficiently.

• The above-mentioned payoff should be multiplied by the

probability p that a continuous sample path does not

hit the barrier conditional on the sampled prices.

• This methodology is called the Brownian bridge

approach.

• Formally, we have

p
Δ
= Prob[S(t) < H, 0 ≤ t ≤ T |S(t0), S(t1), . . . , S(tn) ].
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Brownian Bridge Approach to Pricing Barrier Options
(continued)

• As a barrier is hit over a time interval if and only if the

maximum stock price over that period is at least H,

p = Prob

[
max
0≤t≤T

S(t) < H |S(t0), S(t1), . . . , S(tn)
]
.

• Luckily, the conditional distribution of the maximum

over a time interval given the beginning and ending

stock prices is known.
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Brownian Bridge Approach to Pricing Barrier Options
(continued)

Lemma 21 Assume S follows dS/S = μdt+ σ dW and define

ζ(x)
Δ
= exp

[
−2 ln(x/S(t)) ln(x/S(t+Δt))

σ2Δt

]
.

(1) If H > max(S(t), S(t+Δt)), then

Prob

[
max

t≤u≤t+Δt
S(u) < H

∣∣∣∣ S(t), S(t+Δt)

]
= 1− ζ(H).

(2) If h < min(S(t), S(t+Δt)), then

Prob

[
min

t≤u≤t+Δt
S(u) > h

∣∣∣∣ S(t), S(t+Δt)

]
= 1− ζ(h).
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Brownian Bridge Approach to Pricing Barrier Options
(continued)

• Lemma 21 gives the probability that the barrier is not

hit in a time interval, given the starting and ending

stock prices.

• For our up-and-out call,a choose n = 1.

• As a result,

p =

⎧⎨
⎩

1− exp
[
− 2 ln(H/S(0)) ln(H/S(T ))

σ2T

]
, if H > max(S(0), S(T )),

0, otherwise.

aSo S(0) < H.
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Brownian Bridge Approach to Pricing Barrier Options
(continued)

The following algorithm works for up-and-out and

down-and-out calls.

1: C := 0;

2: for i = 1, 2, 3, . . . , N do

3: P := S × e(r−q−σ2/2)T+σ
√
T ξ( );

4: if (S < H and P < H) or (S > H and P > H) then

5: C := C+max(P−X, 0)×
{
1− exp

[
− 2 ln(H/S)×ln(H/P )

σ2T

]}
;

6: end if

7: end for

8: return Ce−rT /N ;
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Brownian Bridge Approach to Pricing Barrier Options
(concluded)

• The idea can be generalized.

• For example, we can handle more complex barrier

options.

• Consider an up-and-out call with barrier Hi for the

time interval (ti, ti+1 ], 0 ≤ i < n.

• This option thus contains n barriers.

• Multiply the probabilities for the n time intervals to

obtain the desired probability adjustment term.
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Pricing Barrier Options without Brownian Bridge

• Let Th denote the amount of time for a process Xt to hit

h for the first time.

• It is called the first passage time or the first hitting time.

• Suppose Xt is a (μ, σ) Brownian motion:

dXt = μ dt+ σ dWt, t ≥ 0.
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Pricing Barrier Options without Brownian Bridge
(continued)

• The first passage time Th follows the inverse Gaussian

(IG) distribution with probability density function:a

|h−X(0) |
σt3/2

√
2π

e−(h−X(0)−μx)2/(2σ2x).

• For pricing a barrier option with barrier H by

simulation, the density function becomes

| ln(H/S(0)) |
σt3/2

√
2π

e−[ln(H/S(0))−(r−σ2/2)x]
2
/(2σ2x).

aA. N. Borodin & Salminen (1996).
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Pricing Barrier Options without Brownian Bridge
(concluded)

• Draw an x from this distribution.a

• If x > T , a knock-in option fails to knock in, whereas a

knock-out option does not knock out.

• If x ≤ T , the opposite is true.

• If the barrier option survives at maturity T , then draw

an S(T ) to calculate its payoff.

• Repeat the above process many times to average the

discounted payoff.

aThe IG distribution can be very efficiently sampled (Michael, Schu-

cany, & Haas, 1976).
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Brownian Bridge Approach to Pricing Lookback
Optionsa

• By Lemma 21(1) (p. 849),

Fmax(y)
Δ
= Prob

[
max
0≤t≤T

S(t) < y |S(0), S(T )
]

= 1− exp

[
−2 ln(y/S(0)) ln(y/S(T ))

σ2T

]
.

• So Fmax is the conditional distribution function of the

maximum stock price.

• A random variable with that distribution can be

generated by F−1
max(x), where x is uniformly distributed

over (0, 1).
aEl Babsiri & Noel (1998).
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Brownian Bridge Approach to Pricing Lookback
Options (continued)

• In other words,

x = 1− exp

[
−2 ln(y/S(0)) ln(y/S(T ))

σ2T

]
.

• Equivalently,

ln(1− x) = −2 ln(y/S(0)) ln(y/S(T ))

σ2T

= − 2

σ2T
{ [ ln(y)− lnS(0) ] [ ln(y)− lnS(T ) ] }.
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Brownian Bridge Approach to Pricing Lookback
Options (continued)

• There are two solutions for ln y.

• But only one is consistent with y ≥ max(S(0), S(T )):

ln y =
ln(S(0)S(T )) +

√(
ln S(T )

S(0)

)2

− 2σ2T ln(1− x)

2
.
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Brownian Bridge Approach to Pricing Lookback
Options (concluded)

The following algorithm works for the lookback put on the

maximum.

1: C := 0;

2: for i = 1, 2, 3, . . . , N do

3: P := S × e(r−q−σ2/2)T+σ
√
T ξ( ); {By Eq. (117) on p. 826.}

4: Y := exp

[
ln(SP )+

√
(ln P

S )
2−2σ2T ln[ 1−U(0,1) ]

2

]
;

5: C := C + (Y − P );

6: end for

7: return Ce−rT /N ;
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Pricing Lookback Options without Brownian Bridge

• Suppose we do not draw S(T ) in simulation.

• Now, the distribution function of the maximum

logarithmic stock price isa

Prob

[
max

0≤t≤T
ln

S(t)

S(0)
< y

]

= 1−N

⎛
⎝−y +

(
r − q − σ2

2

)
T

σ
√
T

⎞
⎠−N

⎛
⎝−y −

(
r − q − σ2

2

)
T

σ
√
T

⎞
⎠ .

• The inverse of that is much harder to calculate.

aA. N. Borodin & Salminen (1996).
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Variance Reduction

• The statistical efficiency of Monte Carlo simulation can

be measured by the variance of its output.

• If this variance can be lowered without changing the

expected value, fewer replications are needed.

• Methods that improve efficiency in this manner are

called variance-reduction techniques.

• Such techniques become practical when the added costs

are outweighed by the reduction in sampling.
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Variance Reduction: Antithetic Variates

• We are interested in estimating E[ g(X1, X2, . . . , Xn) ].

• Let Y1 and Y2 be random variables with the same

distribution as g(X1, X2, . . . , Xn).

• Then

Var

[
Y1 + Y2

2

]
=

Var[Y1 ]

2
+

Cov[Y1, Y2 ]

2
.

– Var[Y1 ]/2 is the variance of the Monte Carlo

method with two independent replications.

• The variance Var[ (Y1 + Y2)/2 ] is smaller than

Var[Y1 ]/2 when Y1 and Y2 are negatively correlated.
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Variance Reduction: Antithetic Variates (continued)

• For each simulated sample path X , a second one is

obtained by reusing the random numbers on which the

first path is based.

• This yields a second sample path Y .

• Two estimates are then obtained: One based on X and

the other on Y .

• If N independent sample paths are generated, the

antithetic-variates estimator averages over 2N

estimates.
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Variance Reduction: Antithetic Variates (continued)

• Consider process dX = at dt+ bt
√
dt ξ.

• Let g be a function of n samples X1, X2, . . . , Xn on

the sample path.

• We are interested in E[ g(X1, X2, . . . , Xn) ].

• Suppose one simulation run has realizations

ξ1, ξ2, . . . , ξn for the normally distributed fluctuation

term ξ.

• This generates samples x1, x2, . . . , xn.

• The estimate is then g(x), where x
Δ
= (x1, x2 . . . , xn).
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Variance Reduction: Antithetic Variates (concluded)

• The antithetic-variates method does not sample n more

numbers from ξ for the second estimate g(x′).

• Instead, generate the sample path x′ Δ
= (x′

1, x
′
2 . . . , x

′
n)

from −ξ1,−ξ2, . . . ,−ξn.

• Compute g(x′).

• Output (g(x) + g(x′))/2.

• Repeat the above steps for as many times as required by

accuracy.
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Variance Reduction: Conditioning

• We are interested in estimating E[X ].

• Suppose here is a random variable Z such that

E[X |Z = z ] can be efficiently and precisely computed.

• E[X ] = E[E[X |Z ] ] by the law of iterated conditional

expectations.

• Hence the random variable E[X |Z ] is also an unbiased

estimator of E[X ].
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Variance Reduction: Conditioning (concluded)

• As

Var[E[X |Z ] ] ≤ Var[X ],

E[X |Z ] has a smaller variance than observing X

directly.

• First, obtain a random observation z on Z.

• Then calculate E[X |Z = z ] as our estimate.

– There is no need to resort to simulation in computing

E[X |Z = z ].

• The procedure can be repeated a few times to reduce

the variance.
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Control Variates

• Use the analytic solution of a “similar” yet “simpler”

problem to improve the solution.

• Suppose we want to estimate E[X ] and there exists a

random variable Y with a known mean μ
Δ
= E[Y ].

• Then W
Δ
= X + β(Y − μ) can serve as a “controlled”

estimator of E[X ] for any constant β.

– However β is chosen, W remains an unbiased

estimator of E[X ] as

E[W ] = E[X ] + βE[Y − μ ] = E[X ].
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Control Variates (continued)

• Note that

Var[W ] = Var[X ] + β2 Var[Y ] + 2βCov[X,Y ],

(118)

• Hence W is less variable than X if and only if

β2 Var[Y ] + 2β Cov[X, Y ] < 0. (119)
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Control Variates (concluded)

• The success of the scheme clearly depends on both β

and the choice of Y .

– American options can be priced by choosing Y to be

the otherwise identical European option and μ the

Black-Scholes formula.a

– Arithmetic Asian options can be priced by choosing

Y to be the otherwise identical geometric Asian

option’s price and β = −1.

• This approach is much more effective than the

antithetic-variates method.b

aHull & White (1988).
bBoyle, Broadie, & Glasserman (1997).
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Choice of Y

• In general, the choice of Y is ad hoc,a and experiments

must be performed to confirm the wisdom of the choice.

• Try to match calls with calls and puts with puts.b

• On many occasions, Y is a discretized version of the

derivative that gives μ.

– Discretely monitored geometric Asian option vs. the

continuously monitored version.c

• The discrepancy can be large (e.g., lookback options).d

aBut see Dai (B82506025, R86526008, D8852600), C. Chiu (B90201037,

R94922072), & Lyuu (2015, 2018).
bContributed by Ms. Teng, Huei-Wen (R91723054) on May 25, 2004.
cPriced by formulas (54) on p. 429.
dContributed by Mr. Tsai, Hwai (R92723049) on May 12, 2004.
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Optimal Choice of β

• Equation (118) on p. 869 is minimized when

β = −Cov[X, Y ]/Var[Y ].

– It is called beta in the book.

• For this specific β,

Var[W ] = Var[X ]− Cov[X, Y ]2

Var[Y ]
=

(
1− ρ2X,Y

)
Var[X ],

where ρX,Y is the correlation between X and Y .
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Optimal Choice of β (continued)

• Note that the variance can never be increased with the

optimal choice.

• Furthermore, the stronger X and Y are correlated, the

greater the reduction in variance.

• For example, if this correlation is nearly perfect (±1),

we could control X almost exactly.
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Optimal Choice of β (continued)

• Typically, neither Var[Y ] nor Cov[X, Y ] is known.

• Therefore, we cannot obtain the maximum reduction in

variance.

• We can guess these values and hope that the resulting

W does indeed have a smaller variance than X .

• A second possibility is to use the simulated data to

estimate these quantities.

– How to do it efficiently in terms of time and space?

c©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 874



Optimal Choice of β (concluded)

• Observe that −β has the same sign as the correlation

between X and Y .

• Hence, if X and Y are positively correlated, β < 0,

then X is adjusted downward whenever Y > μ and

upward otherwise.

• The opposite is true when X and Y are negatively

correlated, in which case β > 0.

• Suppose a suboptimal β + ε is used instead.

• The variance increases by only ε2Var[Y ].a

aHan & Y. Lai (2010).
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A Pitfall

• A potential pitfall is to sample X and Y independently.

• In this case, Cov[X, Y ] = 0.

• Equation (118) on p. 869 becomes

Var[W ] = Var[X ] + β2 Var[Y ].

• So whatever Y is, the variance is increased!

• Lesson: X and Y must be correlated.
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Problems with the Monte Carlo Method

• The error bound is only probabilistic.

• The probabilistic error bound of O(1/
√
N ) does not

benefit from regularity of the integrand function.

• The requirement that the points be independent random

samples are wasteful because of clustering.

• In reality, pseudorandom numbers generated by

completely deterministic means are used.

• Monte Carlo simulation exhibits a great sensitivity on

the seed of the pseudorandom-number generator.
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Matrix Computation
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To set up a philosophy against physics is rash;

philosophers who have done so

have always ended in disaster.

— Bertrand Russell
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Definitions and Basic Results

• Let A
Δ
= [ aij ]1≤i≤m,1≤j≤n, or simply A ∈ Rm×n,

denote an m× n matrix.

• It can also be represented as [ a1, a2, . . . , an ] where

ai ∈ Rm are vectors.

– Vectors are column vectors unless stated otherwise.

• A is a square matrix when m = n.

• The rank of a matrix is the largest number of linearly

independent columns.
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Definitions and Basic Results (continued)

• A square matrix A is said to be symmetric if AT = A.

• A real n× n matrix

A
Δ
= [ aij ]i,j

is diagonally dominant if | aii | >
∑

j �=i | aij | for

1 ≤ i ≤ n.

– Such matrices are nonsingular.

• The identity matrix is the square matrix

I
Δ
= diag[ 1, 1, . . . , 1 ].
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Definitions and Basic Results (concluded)

• A matrix has full column rank if its columns are linearly

independent.

• A real symmetric matrix A is positive definite if

xTAx =
∑
i,j

aijxixj > 0

for any nonzero vector x.

• A matrix A is positive definite if and only if there exists

a matrix W such that A = WTW and W has full

column rank.
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Cholesky Decomposition

• Positive definite matrices can be factored as

A = LLT,

called the Cholesky decomposition.

– Above, L is a lower triangular matrix.
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Generation of Multivariate Distribution

• Let x
Δ
= [x1, x2, . . . , xn ]T be a vector random variable

with a positive definite covariance matrix C.

• As usual, assume E[x ] = 0.

• This covariance structure can be matched by Py.

– y
Δ
= [ y1, y2, . . . , yn ]

T is a vector random variable

with a covariance matrix equal to the identity matrix.

– C = PPT is the Cholesky decomposition of C.a

aWhat if C is not positive definite? See Y. Y. Lai (R93942114) &

Lyuu (2007).
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Generation of Multivariate Distribution (concluded)

• For example, suppose

C =

⎡
⎣ 1 ρ

ρ 1

⎤
⎦ .

• Then

P =

⎡
⎣ 1 0

ρ
√
1− ρ2

⎤
⎦

as PPT = C.a

aRecall Eq. (28) on p. 175.
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Generation of Multivariate Normal Distribution

• Suppose we want to generate the multivariate normal

distribution with a covariance matrix C = PPT.

– First, generate independent standard normal

distributions y1, y2, . . . , yn.

– Then

P [ y1, y2, . . . , yn ]
T

has the desired distribution.

– These steps can then be repeated.
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Multivariate Derivatives Pricing

• Generating the multivariate normal distribution is

essential for the Monte Carlo pricing of multivariate

derivatives (pp. 782ff).

• For example, the rainbow option on k assets has payoff

max(max(S1, S2, . . . , Sk)−X, 0)

at maturity.

• The closed-form formula is a multi-dimensional integral.a

aJohnson (1987); C. Y. Chen (D95723006) & Lyuu (2009).
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Multivariate Derivatives Pricing (concluded)

• Suppose dSj/Sj = r dt+ σj dWj, 1 ≤ j ≤ k, where C is

the correlation matrix for dW1, dW2, . . . , dWk.

• Let C = PPT.

• Let ξ consist of k independent random variables from

N(0, 1).

• Let ξ′ = Pξ.

• Similar to Eq. (117) on p. 826, for each asset 1 ≤ j ≤ k,

Si+1 = Sie
(r−σ2

j/2)Δt+σj

√
Δt ξ′j

by Eq. (117) on p. 826.
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Least-Squares Problems

• The least-squares (LS) problem is concerned with

min
x∈Rn

‖ Ax− b ‖,

where A ∈ Rm×n, b ∈ Rm, and m ≥ n.

• The LS problem is called regression analysis in statistics

and is equivalent to minimizing the mean-square error.

• Often written as

Ax = b.
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Polynomial Regression

• In polynomial regression, x0 + x1x+ · · ·+ xnx
n is used

to fit the data { (a1, b1), (a2, b2), . . . , (am, bm) }.
• This leads to the LS problem,⎡

⎢⎢⎢⎢⎢⎢⎣

1 a1 a21 · · · an1

1 a2 a22 · · · an2
...

...
...

. . .
...

1 am a2m · · · anm

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

x0

x1

...

xn

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎣

b1

b2
...

bm

⎤
⎥⎥⎥⎥⎥⎥⎦
.

• Consult p. 273 of the textbook for solutions.
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American Option Pricing by Simulation

• The continuation value of an American option is the

conditional expectation of the payoff from keeping the

option alive now.

• The option holder must compare the immediate exercise

value and the continuation value.

• In standard Monte Carlo simulation, each path is

treated independently of other paths.

• But the decision to exercise the option cannot be

reached by looking at one path alone.
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The Least-Squares Monte Carlo Approach

• The continuation value can be estimated from the

cross-sectional information in the simulation by using

least squares.a

• The result is a function (of the state) for estimating the

continuation values.

• Use the function to estimate the continuation value for

each path to determine its cash flow.

• This is called the least-squares Monte Carlo (LSM)

approach.

aLongstaff & Schwartz (2001).
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The Least-Squares Monte Carlo Approach (concluded)

• The LSM is provably convergent.a

• The LSM can be easily parallelized.b

– Partition the paths into subproblems and perform

LSM on each of them independently.

– The speedup is close to linear (i.e., proportional to

the number of cores).

• Surprisingly, accuracy is not affected.

aClément, Lamberton, & Protter (2002); Stentoft (2004).
bK. Huang (B96902079, R00922018) (2013); C. W. Chen (B97902046,

R01922005) (2014); C. W. Chen (B97902046, R01922005), K. Huang

(B96902079, R00922018) & Lyuu (2015).
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A Numerical Example

• Consider a 3-year American put on a

non-dividend-paying stock.

• The put is exercisable at years 0, 1, 2, and 3.

• The strike price X = 105.

• The annualized riskless rate is r = 5%.

– The annual discount factor hence equals 0.951229.

• The current stock price is 101.

• We use only 8 price paths to illustrate the algorithm.
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A Numerical Example (continued)

Stock price paths

Path Year 0 Year 1 Year 2 Year 3

1 101 97.6424 92.5815 107.5178

2 101 101.2103 105.1763 102.4524

3 101 105.7802 103.6010 124.5115

4 101 96.4411 98.7120 108.3600

5 101 124.2345 101.0564 104.5315

6 101 95.8375 93.7270 99.3788

7 101 108.9554 102.4177 100.9225

8 101 104.1475 113.2516 115.0994
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A Numerical Example (continued)

• We use the basis functions 1, x, x2.

– Other basis functions are possible.a

• The plot next page shows the final estimated optimal

exercise strategy given by LSM.

• We now proceed to tackle our problem.

• The idea is to calculate the cash flow along each path,

using information from all paths.

aLaguerre polynomials, Hermite polynomials, Legendre polynomials,

Chebyshev polynomials, Gedenbauer polynomials, and Jacobi polynomi-

als.
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