Monte Carlo Option Pricing

- For the pricing of European options on a dividend-paying stock, we may proceed as follows.
- Assume

$$\frac{dS}{S} = \mu \, dt + \sigma \, dW.$$

• Stock prices S_1, S_2, S_3, \ldots at times $\Delta t, 2\Delta t, 3\Delta t, \ldots$ can be generated via

$$S_{i+1} = S_i e^{(\mu - \sigma^2/2) \Delta t + \sigma \sqrt{\Delta t} \xi}, \quad \xi \sim N(0, 1).$$
 (117)

Monte Carlo Option Pricing (continued)

• If we discretize $dS/S = \mu dt + \sigma dW$ directly, we will obtain

$$S_{i+1} = S_i + S_i \mu \, \Delta t + S_i \sigma \sqrt{\Delta t} \, \xi.$$

- But this is locally normally distributed, not lognormally, hence biased.^a
- In practice, this is not expected to be a major problem as long as Δt is sufficiently small.

^aContributed by Mr. Tai, Hui-Chin (R97723028) on April 22, 2009.

Monte Carlo Option Pricing (continued)

Non-dividend-paying stock prices in a risk-neutral economy can be generated by setting $\mu = r$ and $\Delta t = T$.

- 1: C := 0; {Accumulated terminal option value.}
- 2: **for** $i = 1, 2, 3, \dots, N$ **do**
- 3: $P := S \times e^{(r-\sigma^2/2)T + \sigma\sqrt{T}\xi}, \ \xi \sim N(0,1);$
- 4: $C := C + \max(P X, 0);$
- 5: end for
- 6: return Ce^{-rT}/N ;

Monte Carlo Option Pricing (concluded)

Pricing Asian options is also easy.

```
1: C := 0;

2: for i = 1, 2, 3, ..., N do

3: P := S; M := S;

4: for j = 1, 2, 3, ..., n do

5: P := P \times e^{(r - \sigma^2/2)(T/n) + \sigma \sqrt{T/n}} \xi;

6: M := M + P;

7: end for

8: C := C + \max(M/(n+1) - X, 0);

9: end for

10: return Ce^{-rT}/N;
```

How about American Options?

- Standard Monte Carlo simulation is inappropriate for American options because of early exercise.
 - Given a sample path S_0, S_1, \ldots, S_n , how to decide which S_i is an early-exercise point?
 - What is the option price at each S_i if the option is not exercised?
- It is difficult to determine the early-exercise point based on one single path.
- But Monte Carlo simulation can be modified to price American options with small biases (pp. 891ff).^a

^aLongstaff & Schwartz (2001).

Delta and Common Random Numbers

• In estimating delta, it is natural to start with the finite-difference estimate

$$e^{-r\tau} \frac{E[P(S+\epsilon)] - E[P(S-\epsilon)]}{2\epsilon}$$
.

- -P(x) is the terminal payoff of the derivative security when the underlying asset's initial price equals x.
- Use simulation to estimate $E[P(S+\epsilon)]$ first.
- Use another simulation to estimate $E[P(S-\epsilon)]$.
- Finally, apply the formula to approximate the delta.
- This is also called the bump-and-revalue method.

Delta and Common Random Numbers (concluded)

- This method is not recommended because of its high variance.
- A much better approach is to use common random numbers to lower the variance:

$$e^{-r\tau} E\left[\frac{P(S+\epsilon) - P(S-\epsilon)}{2\epsilon}\right].$$

- Here, the same random numbers are used for $P(S + \epsilon)$ and $P(S \epsilon)$.
- This holds for gamma and cross gamma.^a

^aFor multivariate derivatives.

Problems with the Bump-and-Revalue Method

• Consider the binary option with payoff

$$\begin{cases} 1, & \text{if } S(T) > X, \\ 0, & \text{otherwise.} \end{cases}$$

• Then

$$P(S+\epsilon)-P(S-\epsilon) = \begin{cases} 1, & \text{if } S+\epsilon > X \text{ and } S-\epsilon < X, \\ 0, & \text{otherwise.} \end{cases}$$

- So the finite-difference estimate per run for the (undiscounted) delta is 0 or $O(1/\epsilon)$.
- This means high variance.

Problems with the Bump-and-Revalue Method (concluded)

• The price of the binary option equals

$$e^{-r\tau}N(x-\sigma\sqrt{\tau}).$$

- It equals minus the derivative of the European call with respect to X.
- It also equals $X\tau$ times the rho of a European call (p. 351).
- Its delta is

$$\frac{N'\left(x-\sigma\sqrt{\tau}\right)}{S\sigma\sqrt{\tau}}.$$

Gamma

• The finite-difference formula for gamma is

$$e^{-r\tau} E\left[\frac{P(S+\epsilon)-2\times P(S)+P(S-\epsilon)}{\epsilon^2}\right].$$

• For a correlation option with multiple underlying assets, the finite-difference formula for the cross gamma $\partial^2 P(S_1, S_2, \dots)/(\partial S_1 \partial S_2)$ is:

$$e^{-r\tau} E \left[\frac{P(S_1 + \epsilon_1, S_2 + \epsilon_2) - P(S_1 - \epsilon_1, S_2 + \epsilon_2)}{4\epsilon_1 \epsilon_2} - \frac{P(S_1 + \epsilon_1, S_2 - \epsilon_2) + P(S_1 - \epsilon_1, S_2 - \epsilon_2)}{2} \right].$$

- Choosing an ϵ of the right magnitude can be challenging.
 - If ϵ is too large, inaccurate Greeks result.
 - If ϵ is too small, unstable Greeks result.
- This phenomenon is sometimes called the curse of differentiation.^a

^aAït-Sahalia & Lo (1998); Bondarenko (2003).

• In general, suppose

$$\frac{\partial^{i}}{\partial \theta^{i}} e^{-r\tau} E[P(S)] = e^{-r\tau} E\left[\frac{\partial^{i} P(S)}{\partial \theta^{i}}\right]$$

holds for all i > 0, where θ is a parameter of interest.^a

- A common requirement is Lipschitz continuity.^b
- Then Greeks become integrals.
- As a result, we avoid ϵ , finite differences, and resimulation.

 $^{^{\}rm a}\partial^i P(S)/\partial\theta^i$ may not be partial differentiation in the classic sense.

^bBroadie & Glasserman (1996).

- This is indeed possible for a broad class of payoff functions.^a
 - Roughly speaking, any payoff function that is equal to a sum of products of differentiable functions and indicator functions with the right kind of support.
 - For example, the payoff of a call is

$$\max(S(T) - X, 0) = (S(T) - X)I_{\{S(T) - X \ge 0\}}.$$

- The results are too technical to cover here (see next page).

^aTeng (R91723054) (2004); Lyuu & Teng (R91723054) (2011).

- Suppose $h(\theta, x) \in \mathcal{H}$ with pdf f(x) for x and $g_j(\theta, x) \in \mathcal{G}$ for $j \in \mathcal{B}$, a finite set of natural numbers.
- Then

$$\begin{split} &\frac{\partial}{\partial \theta} \int_{\Re} h(\theta, x) \prod_{j \in \mathcal{B}} \mathbf{1}_{\left\{g_{j}(\theta, x) > 0\right\}}(x) \, f(x) \, dx \\ &= \int_{\Re} h_{\theta}(\theta, x) \prod_{j \in \mathcal{B}} \mathbf{1}_{\left\{g_{j}(\theta, x) > 0\right\}}(x) \, f(x) \, dx \\ &+ \sum_{l \in \mathcal{B}} \left[h(\theta, x) J_{l}(\theta, x) \prod_{j \in \mathcal{B} \backslash l} \mathbf{1}_{\left\{g_{j}(\theta, x) > 0\right\}}(x) \, f(x) \right]_{x = \chi_{l}(\theta)}, \end{split}$$

where

$$J_l(\theta, x) = \operatorname{sign}\left(\frac{\partial g_l(\theta, x)}{\partial x_k}\right) \frac{\partial g_l(\theta, x)/\partial \theta}{\partial g_l(\theta, x)/\partial x} \text{ for } l \in \mathcal{B}.$$

Gamma (concluded)

- Similar results have been derived for Levy processes.^a
- Formulas are also recently obtained for credit derivatives.^b
- In queueing networks, this is called infinitesimal perturbation analysis (IPA).^c

^aLyuu, Teng (R91723054), & S. Wang (2013).

^bLyuu, Teng (R91723054), & Tseng (2014, 2018).

^cCao (1985); Y. C. Ho & Cao (1985).

Biases in Pricing Continuously Monitored Options with Monte Carlo

- We are asked to price a continuously monitored up-and-out call with barrier H.
- The Monte Carlo method samples the stock price at n discrete time points t_1, t_2, \ldots, t_n .
- A sample path

$$S(t_0), S(t_1), \ldots, S(t_n)$$

is produced.

- Here, $t_0 = 0$ is the current time, and $t_n = T$ is the expiration time of the option.

Biases in Pricing Continuously Monitored Options with Monte Carlo (continued)

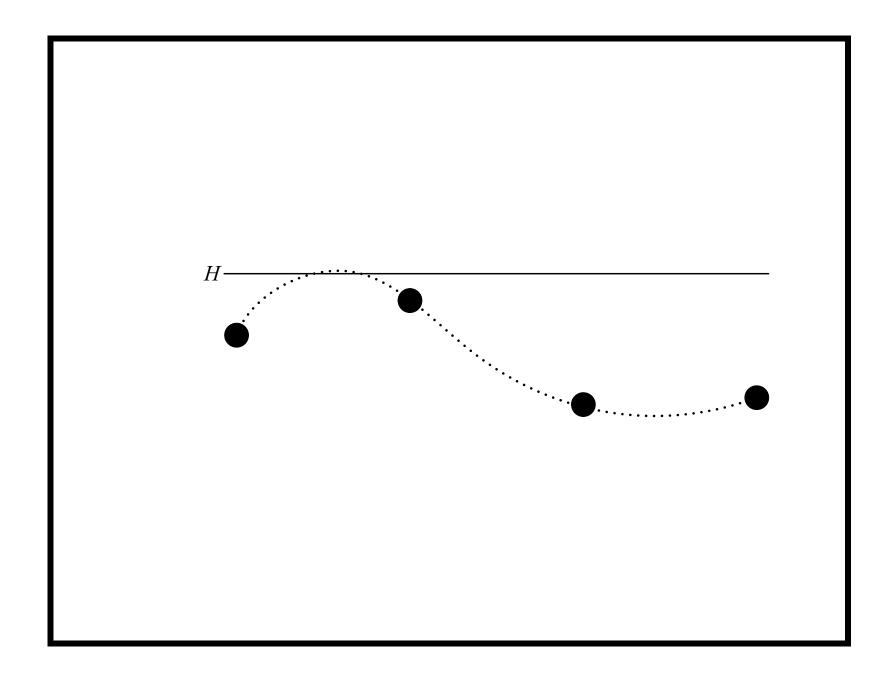
- If all of the sampled prices are below the barrier, this sample path pays $\max(S(t_n) X, 0)$.
- Repeating these steps and averaging the payoffs yield a Monte Carlo estimate.

```
1: C := 0;
2: for i = 1, 2, 3, \dots, N do
3: P := S; hit := 0;
4: for j = 1, 2, 3, \dots, n do
5: P := P \times e^{(r-\sigma^2/2)(T/n)+\sigma\sqrt{(T/n)}} \xi; {By Eq. (117) on p.
     826.}
6: if P \ge H then
7: hit := 1;
8: break;
9: end if
   end for
10:
11: if hit = 0 then
12: C := C + \max(P - X, 0);
    end if
13:
14: end for
15: return Ce^{-rT}/N;
```

Biases in Pricing Continuously Monitored Options with Monte Carlo (continued)

- This estimate is biased.^a
 - Suppose none of the sampled prices on a sample path equals or exceeds the barrier H.
 - It remains possible for the continuous sample path that passes through them to hit the barrier *between* sampled time points (see plot on next page).

^aShevchenko (2003).



Biases in Pricing Continuously Monitored Options with Monte Carlo (concluded)

- The bias can certainly be lowered by increasing the number of observations along the sample path.
- However, even daily sampling may not suffice.
- The computational cost also rises as a result.

Brownian Bridge Approach to Pricing Barrier Options

- We desire an unbiased estimate which can be calculated efficiently.
- The above-mentioned payoff should be multiplied by the probability p that a continuous sample path does not hit the barrier conditional on the sampled prices.
- This methodology is called the Brownian bridge approach.
- Formally, we have

$$p \stackrel{\Delta}{=} \operatorname{Prob}[S(t) < H, 0 \le t \le T \mid S(t_0), S(t_1), \dots, S(t_n)].$$

• As a barrier is hit over a time interval if and only if the maximum stock price over that period is at least H,

$$p = \operatorname{Prob} \left[\max_{0 \le t \le T} S(t) < H \mid S(t_0), S(t_1), \dots, S(t_n) \right].$$

• Luckily, the conditional distribution of the maximum over a time interval given the beginning and ending stock prices is known.

Lemma 21 Assume S follows $dS/S = \mu dt + \sigma dW$ and define

$$\zeta(x) \stackrel{\Delta}{=} \exp \left[-\frac{2\ln(x/S(t))\ln(x/S(t+\Delta t))}{\sigma^2 \Delta t} \right].$$

(1) If $H > \max(S(t), S(t + \Delta t))$, then

Prob
$$\left[\max_{t \le u \le t + \Delta t} S(u) < H \mid S(t), S(t + \Delta t)\right] = 1 - \zeta(H).$$

(2) If $h < \min(S(t), S(t + \Delta t))$, then

Prob
$$\left[\min_{t \le u \le t + \Delta t} S(u) > h \mid S(t), S(t + \Delta t)\right] = 1 - \zeta(h).$$

- Lemma 21 gives the probability that the barrier is not hit in a time interval, given the starting and ending stock prices.
- For our up-and-out call, a choose n = 1.
- As a result,

$$p = \begin{cases} 1 - \exp\left[-\frac{2\ln(H/S(0))\ln(H/S(T))}{\sigma^2 T}\right], & \text{if } H > \max(S(0), S(T)), \\ 0, & \text{otherwise.} \end{cases}$$

^aSo S(0) < H

The following algorithm works for up-and-out and down-and-out calls.

```
1: C := 0;
```

2: **for**
$$i = 1, 2, 3, \ldots, N$$
 do

3:
$$P := S \times e^{(r-q-\sigma^2/2)T + \sigma\sqrt{T}\xi()};$$

4: if
$$(S < H \text{ and } P < H) \text{ or } (S > H \text{ and } P > H)$$
 then

5:
$$C := C + \max(P - X, 0) \times \left\{ 1 - \exp\left[-\frac{2\ln(H/S) \times \ln(H/P)}{\sigma^2 T}\right] \right\};$$

6: end if

7: end for

8: return Ce^{-rT}/N ;

- The idea can be generalized.
- For example, we can handle more complex barrier options.
- Consider an up-and-out call with barrier H_i for the time interval $(t_i, t_{i+1}], 0 \le i < n$.
- This option thus contains n barriers.
- Multiply the probabilities for the n time intervals to obtain the desired probability adjustment term.

Pricing Barrier Options without Brownian Bridge

- Let T_h denote the amount of time for a process X_t to hit h for the first time.
- It is called the first passage time or the first hitting time.
- Suppose X_t is a (μ, σ) Brownian motion:

$$dX_t = \mu dt + \sigma dW_t, \quad t \ge 0.$$

Pricing Barrier Options without Brownian Bridge (continued)

• The first passage time T_h follows the inverse Gaussian (IG) distribution with probability density function:^a

$$\frac{|h - X(0)|}{\sigma t^{3/2} \sqrt{2\pi}} e^{-(h - X(0) - \mu x)^2/(2\sigma^2 x)}.$$

• For pricing a barrier option with barrier H by simulation, the density function becomes

$$\frac{|\ln(H/S(0))|}{\sigma t^{3/2}\sqrt{2\pi}} e^{-[\ln(H/S(0))-(r-\sigma^2/2)x]^2/(2\sigma^2x)}.$$

^aA. N. Borodin & Salminen (1996).

Pricing Barrier Options without Brownian Bridge (concluded)

- Draw an x from this distribution.^a
- If x > T, a knock-in option fails to knock in, whereas a knock-out option does not knock out.
- If $x \leq T$, the opposite is true.
- If the barrier option survives at maturity T, then draw an S(T) to calculate its payoff.
- Repeat the above process many times to average the discounted payoff.

^aThe IG distribution can be very efficiently sampled (Michael, Schucany, & Haas, 1976).

Brownian Bridge Approach to Pricing Lookback Options^a

• By Lemma 21(1) (p. 849),

$$F_{\max}(y) \stackrel{\Delta}{=} \operatorname{Prob}\left[\max_{0 \le t \le T} S(t) < y \mid S(0), S(T)\right]$$

= $1 - \exp\left[-\frac{2\ln(y/S(0))\ln(y/S(T))}{\sigma^2T}\right].$

- So F_{max} is the conditional distribution function of the maximum stock price.
- A random variable with that distribution can be generated by $F_{\text{max}}^{-1}(x)$, where x is uniformly distributed over (0,1).

^aEl Babsiri & Noel (1998).

Brownian Bridge Approach to Pricing Lookback Options (continued)

• In other words,

$$x = 1 - \exp\left[-\frac{2\ln(y/S(0))\ln(y/S(T))}{\sigma^2 T}\right].$$

• Equivalently,

$$\ln(1-x) = -\frac{2\ln(y/S(0))\ln(y/S(T))}{\sigma^2 T}$$

$$= -\frac{2}{\sigma^2 T} \{ [\ln(y) - \ln S(0)] [\ln(y) - \ln S(T)] \}.$$

Brownian Bridge Approach to Pricing Lookback Options (continued)

- There are two solutions for $\ln y$.
- But only one is consistent with $y \ge \max(S(0), S(T))$:

$$\ln y = \frac{\ln(S(0) S(T)) + \sqrt{\left(\ln \frac{S(T)}{S(0)}\right)^2 - 2\sigma^2 T \ln(1-x)}}{2}$$

Brownian Bridge Approach to Pricing Lookback Options (concluded)

The following algorithm works for the lookback put on the maximum.

1:
$$C := 0$$
;

2: **for**
$$i = 1, 2, 3, \dots, N$$
 do

3:
$$P := S \times e^{(r-q-\sigma^2/2)T+\sigma\sqrt{T}\xi()}$$
; {By Eq. (117) on p. 826.}

4:
$$Y := \exp\left[\frac{\ln(SP) + \sqrt{\left(\ln\frac{P}{S}\right)^2 - 2\sigma^2T\ln[1 - U(0,1)]}}{2}\right];$$

5:
$$C := C + (Y - P);$$

6: end for

7: return
$$Ce^{-rT}/N$$
;

Pricing Lookback Options without Brownian Bridge

- Suppose we do not draw S(T) in simulation.
- Now, the distribution function of the maximum logarithmic stock price is^a

$$\operatorname{Prob}\left[\max_{0 \le t \le T} \ln \frac{S(t)}{S(0)} < y\right] \\ = 1 - N\left(\frac{-y + \left(r - q - \frac{\sigma^2}{2}\right)T}{\sigma\sqrt{T}}\right) - N\left(\frac{-y - \left(r - q - \frac{\sigma^2}{2}\right)T}{\sigma\sqrt{T}}\right).$$

• The inverse of that is much harder to calculate.

^aA. N. Borodin & Salminen (1996).

Variance Reduction

- The statistical efficiency of Monte Carlo simulation can be measured by the variance of its output.
- If this variance can be lowered without changing the expected value, fewer replications are needed.
- Methods that improve efficiency in this manner are called variance-reduction techniques.
- Such techniques become practical when the added costs are outweighed by the reduction in sampling.

Variance Reduction: Antithetic Variates

- We are interested in estimating $E[g(X_1, X_2, \dots, X_n)]$.
- Let Y_1 and Y_2 be random variables with the same distribution as $g(X_1, X_2, \ldots, X_n)$.
- Then

$$\operatorname{Var}\left[\frac{Y_1 + Y_2}{2}\right] = \frac{\operatorname{Var}[Y_1]}{2} + \frac{\operatorname{Cov}[Y_1, Y_2]}{2}.$$

- $Var[Y_1]/2$ is the variance of the Monte Carlo method with two independent replications.
- The variance $Var[(Y_1 + Y_2)/2]$ is smaller than $Var[Y_1]/2$ when Y_1 and Y_2 are negatively correlated.

Variance Reduction: Antithetic Variates (continued)

- For each simulated sample path X, a second one is obtained by reusing the random numbers on which the first path is based.
- This yields a second sample path Y.
- Two estimates are then obtained: One based on X and the other on Y.
- If N independent sample paths are generated, the antithetic-variates estimator averages over 2N estimates.

Variance Reduction: Antithetic Variates (continued)

- Consider process $dX = a_t dt + b_t \sqrt{dt} \xi$.
- Let g be a function of n samples X_1, X_2, \ldots, X_n on the sample path.
- We are interested in $E[g(X_1, X_2, ..., X_n)]$.
- Suppose one simulation run has realizations $\xi_1, \xi_2, \ldots, \xi_n$ for the normally distributed fluctuation term ξ .
- This generates samples x_1, x_2, \ldots, x_n .
- The estimate is then $g(\mathbf{x})$, where $\mathbf{x} \stackrel{\Delta}{=} (x_1, x_2 \dots, x_n)$.

Variance Reduction: Antithetic Variates (concluded)

- The antithetic-variates method does not sample n more numbers from ξ for the second estimate g(x').
- Instead, generate the sample path $\mathbf{x}' \stackrel{\Delta}{=} (x_1', x_2', \dots, x_n')$ from $-\xi_1, -\xi_2, \dots, -\xi_n$.
- Compute g(x').
- Output (g(x) + g(x'))/2.
- Repeat the above steps for as many times as required by accuracy.

Variance Reduction: Conditioning

- We are interested in estimating E[X].
- Suppose here is a random variable Z such that E[X | Z = z] can be efficiently and precisely computed.
- E[X] = E[E[X|Z]] by the law of iterated conditional expectations.
- Hence the random variable E[X|Z] is also an unbiased estimator of E[X].

Variance Reduction: Conditioning (concluded)

• As

$$Var[E[X | Z]] \le Var[X],$$

E[X | Z] has a smaller variance than observing X directly.

- First, obtain a random observation z on Z.
- Then calculate E[X | Z = z] as our estimate.
 - There is no need to resort to simulation in computing E[X | Z = z].
- The procedure can be repeated a few times to reduce the variance.

Control Variates

- Use the analytic solution of a "similar" yet "simpler" problem to improve the solution.
- Suppose we want to estimate E[X] and there exists a random variable Y with a known mean $\mu \stackrel{\Delta}{=} E[Y]$.
- Then $W \stackrel{\Delta}{=} X + \beta (Y \mu)$ can serve as a "controlled" estimator of E[X] for any constant β .
 - However β is chosen, W remains an unbiased estimator of E[X] as

$$E[W] = E[X] + \beta E[Y - \mu] = E[X].$$

Control Variates (continued)

• Note that

$$Var[W] = Var[X] + \beta^2 Var[Y] + 2\beta Cov[X, Y],$$
(118)

ullet Hence W is less variable than X if and only if

$$\beta^2 \operatorname{Var}[Y] + 2\beta \operatorname{Cov}[X, Y] < 0. \tag{119}$$

Control Variates (concluded)

- The success of the scheme clearly depends on both β and the choice of Y.
 - American options can be priced by choosing Y to be the otherwise identical European option and μ the Black-Scholes formula.^a
 - Arithmetic Asian options can be priced by choosing Y to be the otherwise identical geometric Asian option's price and $\beta = -1$.
- This approach is much more effective than the antithetic-variates method.^b

^aHull & White (1988).

^bBoyle, Broadie, & Glasserman (1997).

Choice of Y

- In general, the choice of Y is ad hoc, and experiments must be performed to confirm the wisdom of the choice.
- Try to match calls with calls and puts with puts.^b
- On many occasions, Y is a discretized version of the derivative that gives μ .
 - Discretely monitored geometric Asian option vs. the continuously monitored version.^c
- The discrepancy can be large (e.g., lookback options).d

 $^{^{\}rm a}{\rm But}$ see Dai (B82506025, R86526008, D8852600), C. Chiu (B90201037, R94922072), & Lyuu (2015, 2018).

^bContributed by Ms. Teng, Huei-Wen (R91723054) on May 25, 2004.

^cPriced by formulas (54) on p. 429.

^dContributed by Mr. Tsai, Hwai (R92723049) on May 12, 2004.

Optimal Choice of β

• Equation (118) on p. 869 is minimized when

$$\beta = -\text{Cov}[X, Y]/\text{Var}[Y].$$

- It is called beta in the book.
- For this specific β ,

$$Var[W] = Var[X] - \frac{Cov[X,Y]^2}{Var[Y]} = (1 - \rho_{X,Y}^2) Var[X],$$

where $\rho_{X,Y}$ is the correlation between X and Y.

Optimal Choice of β (continued)

- Note that the variance can never be increased with the optimal choice.
- Furthermore, the stronger X and Y are correlated, the greater the reduction in variance.
- For example, if this correlation is nearly perfect (± 1) , we could control X almost exactly.

Optimal Choice of β (continued)

- Typically, neither Var[Y] nor Cov[X, Y] is known.
- Therefore, we cannot obtain the maximum reduction in variance.
- We can guess these values and hope that the resulting W does indeed have a smaller variance than X.
- A second possibility is to use the simulated data to estimate these quantities.
 - How to do it efficiently in terms of time and space?

Optimal Choice of β (concluded)

- Observe that $-\beta$ has the same sign as the correlation between X and Y.
- Hence, if X and Y are positively correlated, $\beta < 0$, then X is adjusted downward whenever $Y > \mu$ and upward otherwise.
- The opposite is true when X and Y are negatively correlated, in which case $\beta > 0$.
- Suppose a suboptimal $\beta + \epsilon$ is used instead.
- The variance increases by only $\epsilon^2 \text{Var}[Y]$.

^aHan & Y. Lai (2010).

A Pitfall

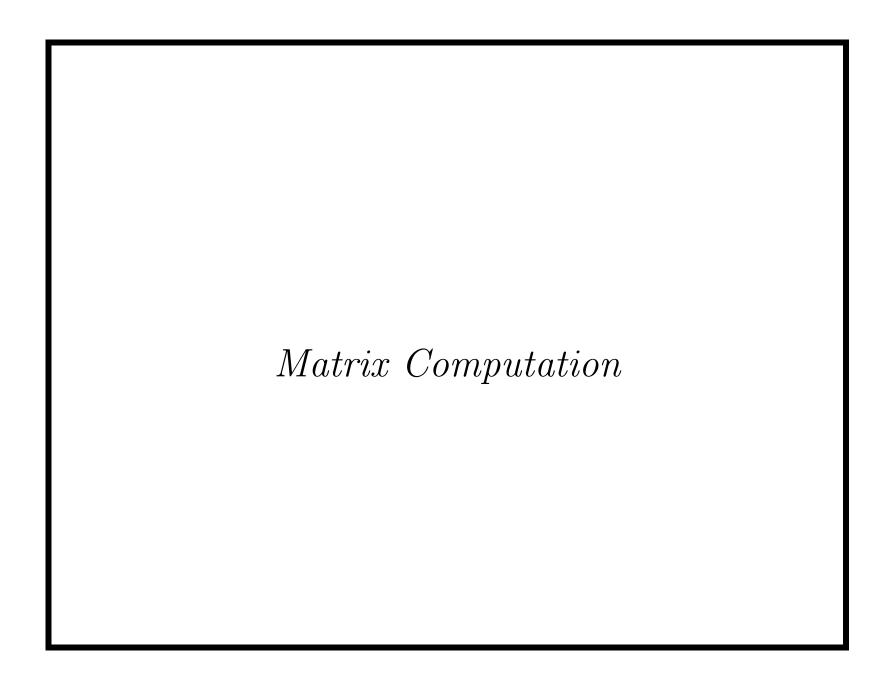
- \bullet A potential pitfall is to sample X and Y independently.
- In this case, Cov[X, Y] = 0.
- Equation (118) on p. 869 becomes

$$\operatorname{Var}[W] = \operatorname{Var}[X] + \beta^2 \operatorname{Var}[Y].$$

- So whatever Y is, the variance is *increased*!
- Lesson: X and Y must be correlated.

Problems with the Monte Carlo Method

- The error bound is only probabilistic.
- The probabilistic error bound of $O(1/\sqrt{N})$ does not benefit from regularity of the integrand function.
- The requirement that the points be independent random samples are wasteful because of clustering.
- In reality, pseudorandom numbers generated by completely deterministic means are used.
- Monte Carlo simulation exhibits a great sensitivity on the seed of the pseudorandom-number generator.



To set up a philosophy against physics is rash; philosophers who have done so have always ended in disaster. — Bertrand Russell	

Definitions and Basic Results

- Let $A \stackrel{\Delta}{=} [a_{ij}]_{1 \leq i \leq m, 1 \leq j \leq n}$, or simply $A \in \mathbb{R}^{m \times n}$, denote an $m \times n$ matrix.
- It can also be represented as $[a_1, a_2, \ldots, a_n]$ where $a_i \in \mathbb{R}^m$ are vectors.
 - Vectors are column vectors unless stated otherwise.
- A is a square matrix when m = n.
- The rank of a matrix is the largest number of linearly independent columns.

Definitions and Basic Results (continued)

- A square matrix A is said to be symmetric if $A^{T} = A$.
- A real $n \times n$ matrix

$$A \stackrel{\Delta}{=} [a_{ij}]_{i,j}$$

is diagonally dominant if $|a_{ii}| > \sum_{j \neq i} |a_{ij}|$ for $1 \leq i \leq n$.

- Such matrices are nonsingular.
- The identity matrix is the square matrix

$$I \stackrel{\Delta}{=} \operatorname{diag}[1, 1, \dots, 1].$$

Definitions and Basic Results (concluded)

- A matrix has full column rank if its columns are linearly independent.
- A real symmetric matrix A is positive definite if

$$x^{\mathrm{T}}Ax = \sum_{i,j} a_{ij}x_ix_j > 0$$

for any nonzero vector x.

• A matrix A is positive definite if and only if there exists a matrix W such that $A = W^{T}W$ and W has full column rank.

Cholesky Decomposition

• Positive definite matrices can be factored as

$$A = LL^{\mathrm{T}}$$
,

called the Cholesky decomposition.

- Above, L is a lower triangular matrix.

Generation of Multivariate Distribution

- Let $\mathbf{x} \stackrel{\Delta}{=} [x_1, x_2, \dots, x_n]^T$ be a vector random variable with a positive definite covariance matrix C.
- As usual, assume E[x] = 0.
- This covariance structure can be matched by Py.
 - $-\mathbf{y} \stackrel{\Delta}{=} [y_1, y_2, \dots, y_n]^{\mathrm{T}}$ is a vector random variable with a covariance matrix equal to the identity matrix.
 - $-C = PP^{T}$ is the Cholesky decomposition of C.^a

^aWhat if C is not positive definite? See Y. Y. Lai (R93942114) & Lyuu (2007).

Generation of Multivariate Distribution (concluded)

• For example, suppose

$$C = \left[\begin{array}{cc} 1 & \rho \\ \rho & 1 \end{array} \right].$$

• Then

$$P = \begin{bmatrix} 1 & 0 \\ \rho & \sqrt{1 - \rho^2} \end{bmatrix}$$

as
$$PP^{\mathrm{T}} = C$$
.

^aRecall Eq. (28) on p. 175.

Generation of Multivariate Normal Distribution

- Suppose we want to generate the multivariate normal distribution with a covariance matrix $C = PP^{T}$.
 - First, generate independent standard normal distributions y_1, y_2, \ldots, y_n .
 - Then

$$P[y_1, y_2, \ldots, y_n]^{\mathrm{T}}$$

has the desired distribution.

- These steps can then be repeated.

Multivariate Derivatives Pricing

- Generating the multivariate normal distribution is essential for the Monte Carlo pricing of multivariate derivatives (pp. 782ff).
- \bullet For example, the rainbow option on k assets has payoff

$$\max(\max(S_1, S_2, \dots, S_k) - X, 0)$$

at maturity.

• The closed-form formula is a multi-dimensional integral.^a

^aJohnson (1987); C. Y. Chen (D95723006) & Lyuu (2009).

Multivariate Derivatives Pricing (concluded)

- Suppose $dS_j/S_j = r dt + \sigma_j dW_j$, $1 \le j \le k$, where C is the correlation matrix for dW_1, dW_2, \ldots, dW_k .
- Let $C = PP^{T}$.
- Let ξ consist of k independent random variables from N(0,1).
- Let $\xi' = P\xi$.
- Similar to Eq. (117) on p. 826, for each asset $1 \le j \le k$,

$$S_{i+1} = S_i e^{(r-\sigma_j^2/2)\Delta t + \sigma_j \sqrt{\Delta t} \xi_j'}$$

by Eq. (117) on p. 826.

Least-Squares Problems

• The least-squares (LS) problem is concerned with

$$\min_{x \in R^n} \parallel Ax - b \parallel,$$

where $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, and $m \ge n$.

- The LS problem is called regression analysis in statistics and is equivalent to minimizing the mean-square error.
- Often written as

$$Ax = b$$
.

Polynomial Regression

- In polynomial regression, $x_0 + x_1x + \cdots + x_nx^n$ is used to fit the data $\{(a_1, b_1), (a_2, b_2), \dots, (a_m, b_m)\}.$
- This leads to the LS problem,

$$\begin{bmatrix} 1 & a_1 & a_1^2 & \cdots & a_1^n \\ 1 & a_2 & a_2^2 & \cdots & a_2^n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & a_m & a_m^2 & \cdots & a_m^n \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}.$$

• Consult p. 273 of the textbook for solutions.

American Option Pricing by Simulation

- The continuation value of an American option is the conditional expectation of the payoff from keeping the option alive now.
- The option holder must compare the immediate exercise value and the continuation value.
- In standard Monte Carlo simulation, each path is treated independently of other paths.
- But the decision to exercise the option cannot be reached by looking at one path alone.

The Least-Squares Monte Carlo Approach

- The continuation value can be estimated from the cross-sectional information in the simulation by using least squares.^a
- The result is a function (of the state) for estimating the continuation values.
- Use the function to estimate the continuation value for each path to determine its cash flow.
- This is called the least-squares Monte Carlo (LSM) approach.

^aLongstaff & Schwartz (2001).

The Least-Squares Monte Carlo Approach (concluded)

- The LSM is provably convergent.^a
- The LSM can be easily parallelized.^b
 - Partition the paths into subproblems and perform
 LSM on each of them independently.
 - The speedup is close to linear (i.e., proportional to the number of cores).
- Surprisingly, accuracy is not affected.

^aClément, Lamberton, & Protter (2002); Stentoft (2004).

^bK. Huang (B96902079, R00922018) (2013); C. W. Chen (B97902046, R01922005) (2014); C. W. Chen (B97902046, R01922005), K. Huang (B96902079, R00922018) & Lyuu (2015).

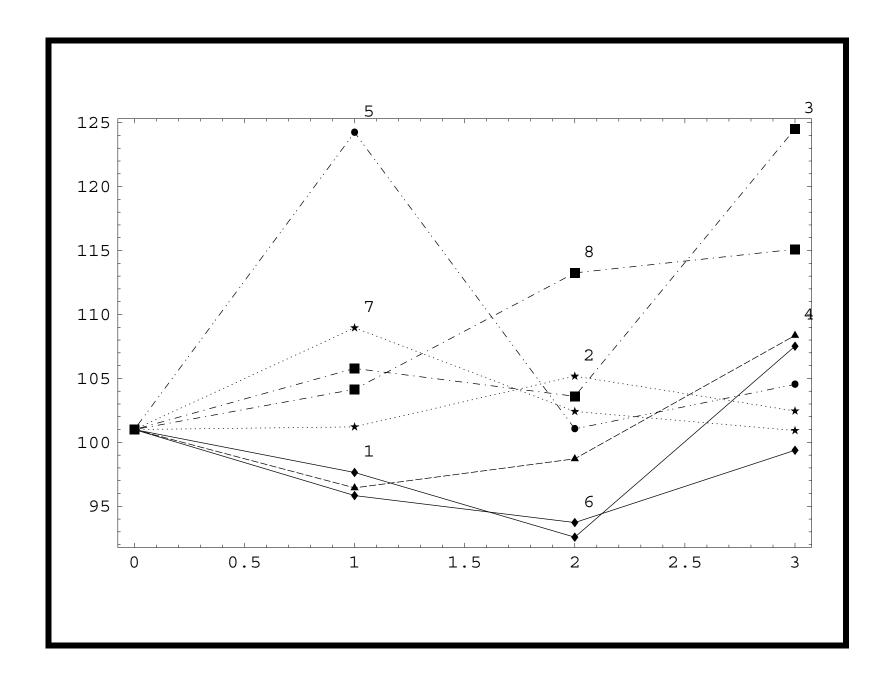
A Numerical Example

- Consider a 3-year American put on a non-dividend-paying stock.
- The put is exercisable at years 0, 1, 2, and 3.
- The strike price X = 105.
- The annualized riskless rate is r = 5%.
 - The annual discount factor hence equals 0.951229.
- The current stock price is 101.
- We use only 8 price paths to illustrate the algorithm.

A Numerical Example (continued)

Stock price paths

Path	Year 0	Year 1	Year 2	Year 3
1	101	97.6424	92.5815	107.5178
2	101	101.2103	105.1763	102.4524
3	101	105.7802	103.6010	124.5115
4	101	96.4411	98.7120	108.3600
5	101	124.2345	101.0564	104.5315
6	101	95.8375	93.7270	99.3788
7	101	108.9554	102.4177	100.9225
8	101	104.1475	113.2516	115.0994



A Numerical Example (continued)

- We use the basis functions $1, x, x^2$.
 - Other basis functions are possible.^a
- The plot next page shows the final estimated optimal exercise strategy given by LSM.
- We now proceed to tackle our problem.
- The idea is to calculate the cash flow along each path, using information from *all* paths.

^aLaguerre polynomials, Hermite polynomials, Legendre polynomials, Chebyshev polynomials, Gedenbauer polynomials, and Jacobi polynomials.

