Monte Carlo Option Pricing

• For the pricing of European options on a dividend-paying stock, we may proceed as follows.

• Assume

\[
\frac{dS}{S} = \mu \, dt + \sigma \, dW.
\]

• Stock prices \(S_1, S_2, S_3, \ldots \) at times \(\Delta t, 2\Delta t, 3\Delta t, \ldots \) can be generated via

\[
S_{i+1} = S_i e^{(\mu - \sigma^2/2) \Delta t + \sigma \sqrt{\Delta t} \, \xi}, \quad \xi \sim N(0, 1).
\]

(117)
Monte Carlo Option Pricing (continued)

- If we discretize $dS/S = \mu \, dt + \sigma \, dW$ directly, we will obtain
 \[S_{i+1} = S_i + S_i \mu \Delta t + S_i \sigma \sqrt{\Delta t} \xi. \]

- But this is locally normally distributed, not lognormally, hence biased.\(^a\)

- In practice, this is not expected to be a major problem as long as Δt is sufficiently small.

\(^a\)Contributed by Mr. Tai, Hui-Chin (R97723028) on April 22, 2009.
Monte Carlo Option Pricing (continued)

Non-dividend-paying stock prices in a risk-neutral economy can be generated by setting $\mu = r$ and $\Delta t = T$.

1: $C := 0$; \{Accumulated terminal option value.\}
2: for $i = 1, 2, 3, \ldots, N$ do
3: \quad $P := S \times e^{(r-\sigma^2/2)T+\sigma T \xi}$, $\xi \sim N(0, 1)$;
4: \quad $C := C + \max(P - X, 0)$;
5: end for
6: return Ce^{-rT}/N;
Monte Carlo Option Pricing (concluded)

Pricing Asian options is also easy.

1: \(C := 0; \)
2: \textbf{for} \(i = 1, 2, 3, \ldots, N \) \textbf{do}
3: \(P := S; \; M := S; \)
4: \textbf{for} \(j = 1, 2, 3, \ldots, n \) \textbf{do}
5: \(P := P \times e^{(r-\sigma^2/2)(T/n)+\sigma\sqrt{T/n} \xi);} \)
6: \(M := M + P; \)
7: \textbf{end for}
8: \(C := C + \max(M/(n+1) - X, 0); \)
9: \textbf{end for}
10: \textbf{return} \(Ce^{-rT}/N; \)
How about American Options?

• Standard Monte Carlo simulation is inappropriate for American options because of early exercise.
 – Given a sample path S_0, S_1, \ldots, S_n, how to decide which S_i is an early-exercise point?
 – What is the option price at each S_i if the option is not exercised?

• It is difficult to determine the early-exercise point based on one single path.

• But Monte Carlo simulation can be modified to price American options with small biases (pp. 891ff).\(^a\)

\(^a\)Longstaff & Schwartz (2001).
Delta and Common Random Numbers

• In estimating delta, it is natural to start with the finite-difference estimate

\[e^{-r\tau} \frac{E[P(S + \epsilon)] - E[P(S - \epsilon)]}{2\epsilon}. \]

- \(P(x) \) is the terminal payoff of the derivative security when the underlying asset’s initial price equals \(x \).

• Use simulation to estimate \(E[P(S + \epsilon)] \) first.

• Use another simulation to estimate \(E[P(S - \epsilon)] \).

• Finally, apply the formula to approximate the delta.

• This is also called the bump-and-revalue method.
Delta and Common Random Numbers (concluded)

• This method is not recommended because of its high variance.

• A much better approach is to use common random numbers to lower the variance:

\[e^{-r\tau} E \left[\frac{P(S + \epsilon) - P(S - \epsilon)}{2\epsilon} \right]. \]

• Here, the same random numbers are used for \(P(S + \epsilon) \) and \(P(S - \epsilon) \).

• This holds for gamma and cross gamma.a

aFor multivariate derivatives.
Problems with the Bump-and-Revalue Method

- Consider the binary option with payoff

\[
\begin{cases}
1, & \text{if } S(T) > X, \\
0, & \text{otherwise.}
\end{cases}
\]

- Then

\[
P(S+\epsilon) - P(S-\epsilon) = \begin{cases}
1, & \text{if } S + \epsilon > X \text{ and } S - \epsilon < X, \\
0, & \text{otherwise.}
\end{cases}
\]

- So the finite-difference estimate per run for the (undiscounted) delta is 0 or \(O(1/\epsilon)\).

- This means high variance.
Problems with the Bump-and-Revalue Method (concluded)

- The price of the binary option equals
 \[e^{-r\tau} N(x - \sigma \sqrt{\tau}). \]
 - It equals minus the derivative of the European call with respect to \(X \).
 - It also equals \(X\tau \) times the rho of a European call (p. 351).

- Its delta is
 \[\frac{N'(x - \sigma \sqrt{\tau})}{S \sigma \sqrt{\tau}}. \]
Gamma

- The finite-difference formula for gamma is
 \[e^{-r\tau} \mathbb{E}\left[\frac{P(S + \epsilon) - 2 \times P(S) + P(S - \epsilon)}{\epsilon^2} \right] . \]

- For a correlation option with multiple underlying assets, the finite-difference formula for the cross gamma \(\partial^2 P(S_1, S_2, \ldots) / (\partial S_1 \partial S_2) \) is:

 \[e^{-r\tau} \mathbb{E}\left[\frac{P(S_1 + \epsilon_1, S_2 + \epsilon_2) - P(S_1 - \epsilon_1, S_2 + \epsilon_2)}{4\epsilon_1\epsilon_2} \right. \]

 \[-P(S_1 + \epsilon_1, S_2 - \epsilon_2) + P(S_1 - \epsilon_1, S_2 - \epsilon_2) \]
Gamma (continued)

• Choosing an ϵ of the right magnitude can be challenging.
 – If ϵ is too large, inaccurate Greeks result.
 – If ϵ is too small, unstable Greeks result.

• This phenomenon is sometimes called the curse of differentiation.a

aAït-Sahalia & Lo (1998); Bondarenko (2003).
Gamma (continued)

• In general, suppose

\[
\frac{\partial^i}{\partial \theta^i} e^{-r\tau} E[P(S)] = e^{-r\tau} E \left[\frac{\partial^i P(S)}{\partial \theta^i} \right]
\]

holds for all \(i > 0 \), where \(\theta \) is a parameter of interest.\(^a\)

-- A common requirement is Lipschitz continuity.\(^b\)

• Then Greeks become integrals.

• As a result, we avoid \(\epsilon \), finite differences, and resimulation.

\(^a\)\(\partial^i P(S)/\partial \theta^i \) may not be partial differentiation in the classic sense.

\(^b\)Broadie & Glasserman (1996).
Gamma (continued)

• This is indeed possible for a broad class of payoff functions.\(^a\)

 – Roughly speaking, any payoff function that is equal to a sum of products of differentiable functions and indicator functions with the right kind of support.

 – For example, the payoff of a call is

 \[
 \max(S(T) - X, 0) = (S(T) - X) I_{\{S(T) - X \geq 0\}}.
 \]

 – The results are too technical to cover here (see next page).

\(^a\)Teng (R91723054) (2004); Lyuu & Teng (R91723054) (2011).
Gamma (continued)

• Suppose $h(\theta, x) \in \mathcal{H}$ with pdf $f(x)$ for x and $g_j(\theta, x) \in \mathcal{G}$ for $j \in \mathcal{B}$, a finite set of natural numbers.

• Then

\[
\frac{\partial}{\partial \theta} \int_{\mathbb{R}} h(\theta, x) \prod_{j \in \mathcal{B}} 1\{g_j(\theta, x) > 0\}(x) f(x) \, dx
\]

\[
= \int_{\mathbb{R}} h_{\theta}(\theta, x) \prod_{j \in \mathcal{B}} 1\{g_j(\theta, x) > 0\}(x) f(x) \, dx
\]

\[
+ \sum_{l \in \mathcal{B}} \left[h(\theta, x) J_l(\theta, x) \prod_{j \in \mathcal{B} \setminus l} 1\{g_j(\theta, x) > 0\}(x) f(x) \right]_{x = \chi_l(\theta)}
\]

where

\[
J_l(\theta, x) = \text{sign} \left(\frac{\partial g_l(\theta, x)}{\partial x_k} \right) \frac{\partial g_l(\theta, x)/\partial \theta}{\partial g_l(\theta, x)/\partial x} \text{ for } l \in \mathcal{B}.
\]
Gamma (concluded)

- Similar results have been derived for Levy processes.\(^a\)
- Formulas are also recently obtained for credit derivatives.\(^b\)
- In queueing networks, this is called infinitesimal perturbation analysis (IPA).\(^c\)

\(^{a}\) Lyuu, Teng (R91723054), & S. Wang (2013).
\(^{b}\) Lyuu, Teng (R91723054), & Tseng (2014, 2018).
\(^{c}\) Cao (1985); Y. C. Ho & Cao (1985).
Biases in Pricing Continuously Monitored Options with Monte Carlo

• We are asked to price a continuously monitored up-and-out call with barrier H.

• The Monte Carlo method samples the stock price at n discrete time points t_1, t_2, \ldots, t_n.

• A sample path

$$S(t_0), S(t_1), \ldots, S(t_n)$$

is produced.

 – Here, $t_0 = 0$ is the current time, and $t_n = T$ is the expiration time of the option.
Biases in Pricing Continuously Monitored Options with Monte Carlo (continued)

- If all of the sampled prices are below the barrier, this sample path pays $\max(S(t_n) - X, 0)$.

- Repeating these steps and averaging the payoffs yield a Monte Carlo estimate.
1: \(C := 0; \)
2: \(\text{for } i = 1, 2, 3, \ldots , N \text{ do} \)
3: \(P := S; \) hit := 0;
4: \(\text{for } j = 1, 2, 3, \ldots , n \text{ do} \)
5: \(P := P \times e^{(r-\sigma^2/2) (T/n)+\sigma \sqrt{T/n}} \xi; \) \(\{ \text{By Eq. (117) on p. 826}\} \)
6: \(\text{if } P \geq H \text{ then} \)
7: \(\quad \text{hit} := 1; \)
8: \(\quad \text{break}; \)
9: \(\text{end if} \)
10: \(\text{end for} \)
11: \(\text{if hit = 0 then} \)
12: \(C := C + \max(P - X, 0); \)
13: \(\text{end if} \)
14: \(\text{end for} \)
15: \(\text{return } Ce^{-rT}/N; \)
Biases in Pricing Continuously Monitored Options with Monte Carlo (continued)

• This estimate is biased.a

 – Suppose none of the sampled prices on a sample path equals or exceeds the barrier H.

 – It remains possible for the continuous sample path that passes through them to hit the barrier \textit{between} sampled time points (see plot on next page).

aShevchenko (2003).
Biases in Pricing Continuously Monitored Options with Monte Carlo (concluded)

- The bias can certainly be lowered by increasing the number of observations along the sample path.
- However, even daily sampling may not suffice.
- The computational cost also rises as a result.
Brownian Bridge Approach to Pricing Barrier Options

- We desire an unbiased estimate which can be calculated efficiently.

- The above-mentioned payoff should be multiplied by the probability p that a continuous sample path does not hit the barrier conditional on the sampled prices.

- This methodology is called the Brownian bridge approach.

- Formally, we have

$$p = \Delta \text{Prob}[S(t) < H, 0 \leq t \leq T | S(t_0), S(t_1), \ldots, S(t_n)].$$
Brownian Bridge Approach to Pricing Barrier Options (continued)

• As a barrier is hit over a time interval if and only if the maximum stock price over that period is at least \(H \),

\[
p = \text{Prob} \left[\max_{0 \leq t \leq T} S(t) < H \mid S(t_0), S(t_1), \ldots, S(t_n) \right].
\]

• Luckily, the conditional distribution of the maximum over a time interval given the beginning and ending stock prices is known.
Brownian Bridge Approach to Pricing Barrier Options
(continued)

Lemma 21 Assume S follows $dS/S = \mu \, dt + \sigma \, dW$ and define

$$
\zeta(x) \triangleq \exp \left[-\frac{2 \ln(x/S(t)) \ln(x/S(t+\Delta t))}{\sigma^2 \Delta t} \right].
$$

(1) If $H > \max(S(t), S(t+\Delta t))$, then

$$
\text{Prob} \left[\max_{t \leq u \leq t+\Delta t} S(u) < H \, \bigg| \, S(t), S(t+\Delta t) \right] = 1 - \zeta(H).
$$

(2) If $h < \min(S(t), S(t+\Delta t))$, then

$$
\text{Prob} \left[\min_{t \leq u \leq t+\Delta t} S(u) > h \, \bigg| \, S(t), S(t+\Delta t) \right] = 1 - \zeta(h).
$$
Brownian Bridge Approach to Pricing Barrier Options (continued)

- Lemma 21 gives the probability that the barrier is not hit in a time interval, given the starting and ending stock prices.
- For our up-and-out call,\(^a\) choose \(n = 1 \).
- As a result,

\[
p = \begin{cases}
1 - \exp \left[-\frac{2 \ln(H/S(0)) \ln(H/S(T))}{\sigma^2 T} \right], & \text{if } H > \max(S(0), S(T)), \\
0, & \text{otherwise.}
\end{cases}
\]

\(^a\)So \(S(0) < H \).
Brownian Bridge Approach to Pricing Barrier Options (continued)

The following algorithm works for up-and-out and down-and-out calls.

1: \(C := 0; \)
2: \textbf{for} \(i = 1, 2, 3, \ldots, N \) \textbf{do}
3: \(P := S \times e^{(r-q-\sigma^2/2)T+\sigma \sqrt{T} \xi()}; \)
4: \textbf{if} \((S < H \text{ and } P < H) \text{ or } (S > H \text{ and } P > H) \) \textbf{then}
5: \(C := C + \max(P-X, 0) \times \left\{ 1 - \exp \left[-\frac{2 \ln(H/S) \times \ln(H/P)}{\sigma^2 T} \right] \right\}; \)
6: \textbf{end if}
7: \textbf{end for}
8: \textbf{return} \(Ce^{-rT}/N; \)
Brownian Bridge Approach to Pricing Barrier Options (concluded)

• The idea can be generalized.

• For example, we can handle more complex barrier options.

• Consider an up-and-out call with barrier H_i for the time interval $(t_i, t_{i+1}]$, $0 \leq i < n$.

• This option thus contains n barriers.

• Multiply the probabilities for the n time intervals to obtain the desired probability adjustment term.
Pricing Barrier Options without Brownian Bridge

• Let T_h denote the amount of time for a process X_t to hit h for the first time.

• It is called the first passage time or the first hitting time.

• Suppose X_t is a (μ, σ) Brownian motion:

$$dX_t = \mu \, dt + \sigma \, dW_t, \quad t \geq 0.$$
Pricing Barrier Options without Brownian Bridge (continued)

- The first passage time T_h follows the inverse Gaussian (IG) distribution with probability density function:\(^\text{a}\)

$$
\frac{|h - X(0)|}{\sigma t^{3/2} \sqrt{2\pi}} e^{-\frac{(h-X(0)-\mu x)^2}{(2\sigma^2 x)}}.
$$

- For pricing a barrier option with barrier H by simulation, the density function becomes

$$
\frac{|\ln(H/S(0))|}{\sigma t^{3/2} \sqrt{2\pi}} e^{-\frac{[\ln(H/S(0))-(r-\sigma^2/2) x]^2}{(2\sigma^2 x)}}.
$$

\(^\text{a}\)A. N. Borodin & Salminen (1996).
Pricing Barrier Options without Brownian Bridge (concluded)

- Draw an x from this distribution.\(^{a}\)
- If $x > T$, a knock-in option fails to knock in, whereas a knock-out option does not knock out.
- If $x \leq T$, the opposite is true.
- If the barrier option survives at maturity T, then draw an $S(T)$ to calculate its payoff.
- Repeat the above process many times to average the discounted payoff.

\(^{a}\)The IG distribution can be very efficiently sampled (Michael, Schucany, & Haas, 1976).
By Lemma 21(1) (p. 849),

\[
F_{\text{max}}(y) \triangleq \text{Prob} \left[\max_{0 \leq t \leq T} S(t) < y \mid S(0), S(T) \right] \\
= 1 - \exp \left[-\frac{2 \ln(y/S(0)) \ln(y/S(T))}{\sigma^2 T} \right].
\]

So \(F_{\text{max}} \) is the conditional distribution function of the maximum stock price.

A random variable with that distribution can be generated by \(F_{\text{max}}^{-1}(x) \), where \(x \) is uniformly distributed over \((0, 1)\).

Brownian Bridge Approach to Pricing Lookback Options (continued)

• In other words,

\[x = 1 - \exp \left[- \frac{2 \ln(y/S(0)) \ln(y/S(T))}{\sigma^2 T} \right]. \]

• Equivalently,

\[
\ln(1 - x) = - \frac{2 \ln(y/S(0)) \ln(y/S(T))}{\sigma^2 T}
= - \frac{2}{\sigma^2 T} \left\{ \left[\ln(y) - \ln S(0) \right] \left[\ln(y) - \ln S(T) \right] \right\}.
\]
Brownian Bridge Approach to Pricing Lookback Options (continued)

- There are two solutions for \(\ln y \).
- But only one is consistent with \(y \geq \max(S(0), S(T)) \):

\[
\ln y = \frac{\ln(S(0) S(T)) + \sqrt{\left(\ln \frac{S(T)}{S(0)} \right)^2 - 2\sigma^2 T \ln(1 - x)}}{2}.
\]
Brownian Bridge Approach to Pricing Lookback Options (concluded)

The following algorithm works for the lookback put on the maximum.

1: \(C := 0; \)
2: \(\textbf{for } i = 1, 2, 3, \ldots , N \textbf{ do} \)
3: \(P := S \times e^{(r-q-\sigma^2/2) T+\sigma \sqrt{T} \xi(i)}; \) \{By Eq. (117) on p. 826.\}
4: \(Y := \exp \left[\frac{\ln(SP) + \sqrt{\left(\ln\left(\frac{P}{S}\right)\right)^2 - 2\sigma^2 T \ln[1-U(0,1)]}}{2} \right]; \)
5: \(C := C + (Y - P); \)
6: \textbf{end for} \)
7: \textbf{return } Ce^{-rT}/N;
Pricing Lookback Options without Brownian Bridge

- Suppose we do not draw $S(T)$ in simulation.

- Now, the distribution function of the maximum logarithmic stock price is

$$
\text{Prob} \left[\max_{0 \leq t \leq T} \ln \frac{S(t)}{S(0)} < y \right]
= 1 - N \left(\frac{-y + \left(r - q - \frac{\sigma^2}{2} \right) T}{\sigma \sqrt{T}} \right) - N \left(\frac{-y - \left(r - q - \frac{\sigma^2}{2} \right) T}{\sigma \sqrt{T}} \right).
$$

- The inverse of that is much harder to calculate.

\(^{a}\text{A. N. Borodin & Salminen (1996).}\)
Variance Reduction

- The statistical efficiency of Monte Carlo simulation can be measured by the variance of its output.
- If this variance can be lowered without changing the expected value, fewer replications are needed.
- Methods that improve efficiency in this manner are called variance-reduction techniques.
- Such techniques become practical when the added costs are outweighed by the reduction in sampling.
Variance Reduction: Antithetic Variates

- We are interested in estimating $E[g(X_1, X_2, \ldots, X_n)]$.
- Let Y_1 and Y_2 be random variables with the same distribution as $g(X_1, X_2, \ldots, X_n)$.
- Then
 \[
 \text{Var} \left[\frac{Y_1 + Y_2}{2} \right] = \frac{\text{Var}[Y_1]}{2} + \frac{\text{Cov}[Y_1, Y_2]}{2}.
 \]
 - $\text{Var}[Y_1]/2$ is the variance of the Monte Carlo method with two independent replications.
- The variance $\text{Var}[\frac{Y_1 + Y_2}{2}]$ is smaller than $\text{Var}[Y_1]/2$ when Y_1 and Y_2 are negatively correlated.
Variance Reduction: Antithetic Variates (continued)

- For each simulated sample path X, a second one is obtained by *reusing* the random numbers on which the first path is based.
- This yields a second sample path Y.
- Two estimates are then obtained: One based on X and the other on Y.
- If N independent sample paths are generated, the antithetic-variates estimator averages over $2N$ estimates.
Variance Reduction: Antithetic Variates (continued)

- Consider process $dX = a_t \, dt + b_t \sqrt{dt} \, \xi$.
- Let g be a function of n samples X_1, X_2, \ldots, X_n on the sample path.
- We are interested in $E[g(X_1, X_2, \ldots, X_n)]$.
- Suppose one simulation run has realizations $\xi_1, \xi_2, \ldots, \xi_n$ for the normally distributed fluctuation term ξ.
- This generates samples x_1, x_2, \ldots, x_n.
- The estimate is then $g(\mathbf{x})$, where $\mathbf{x} \triangleq (x_1, x_2 \ldots, x_n)$.
Variance Reduction: Antithetic Variates (concluded)

- The antithetic-variates method does not sample \(n \) more numbers from \(\xi \) for the second estimate \(g(x') \).

- Instead, generate the sample path \(x' \triangleq (x'_1, x'_2 \ldots, x'_n) \) from \(-\xi_1, -\xi_2, \ldots, -\xi_n \).

- Compute \(g(x') \).

- Output \((g(x) + g(x'))/2 \).

- Repeat the above steps for as many times as required by accuracy.
Variance Reduction: Conditioning

- We are interested in estimating $E[X]$.
- Suppose here is a random variable Z such that $E[X \mid Z = z]$ can be efficiently and precisely computed.
- $E[X] = E[E[X \mid Z]]$ by the law of iterated conditional expectations.
- Hence the random variable $E[X \mid Z]$ is also an unbiased estimator of $E[X]$.
Variance Reduction: Conditioning (concluded)

• As

\[\text{Var}[E[X | Z]] \leq \text{Var}[X], \]

\(E[X | Z] \) has a smaller variance than observing \(X \) directly.

• First, obtain a random observation \(z \) on \(Z \).

• Then calculate \(E[X | Z = z] \) as our estimate.
 – There is no need to resort to simulation in computing \(E[X | Z = z] \).

• The procedure can be repeated a few times to reduce the variance.
Control Variates

• Use the analytic solution of a “similar” yet “simpler” problem to improve the solution.

• Suppose we want to estimate \(E[X] \) and there exists a random variable \(Y \) with a known mean \(\mu \triangleq E[Y] \).

• Then \(W \triangleq X + \beta(Y - \mu) \) can serve as a “controlled” estimator of \(E[X] \) for any constant \(\beta \).

 − However \(\beta \) is chosen, \(W \) remains an unbiased estimator of \(E[X] \) as

 \[
 E[W] = E[X] + \beta E[Y - \mu] = E[X].
 \]
Control Variates (continued)

• Note that

\[\text{Var}[W] = \text{Var}[X] + \beta^2 \text{Var}[Y] + 2\beta \text{Cov}[X,Y], \]

(118)

• Hence \(W \) is less variable than \(X \) if and only if

\[\beta^2 \text{Var}[Y] + 2\beta \text{Cov}[X,Y] < 0. \]

(119)
Control Variates (concluded)

- The success of the scheme clearly depends on both β and the choice of Y.
 - American options can be priced by choosing Y to be the otherwise identical European option and μ the Black-Scholes formula.a
 - Arithmetic Asian options can be priced by choosing Y to be the otherwise identical geometric Asian option’s price and $\beta = -1$.

- This approach is much more effective than the antithetic-variates method.b

aHull & White (1988).
bBoyle, Broadie, & Glasserman (1997).
Choice of Y

- In general, the choice of Y is ad hoc,a and experiments must be performed to confirm the wisdom of the choice.

- Try to match calls with calls and puts with puts.b

- On many occasions, Y is a discretized version of the derivative that gives μ.
 - Discretely monitored geometric Asian option vs. the continuously monitored version.c

- The discrepancy can be large (e.g., lookback options).d

aBut see Dai (B82506025, R86526008, D8852600), C. Chiu (B90201037, R94922072), & Lyuu (2015, 2018).
bContributed by Ms. Teng, Huei-Wen (R91723054) on May 25, 2004.
cPriced by formulas (54) on p. 429.
dContributed by Mr. Tsai, Hwai (R92723049) on May 12, 2004.
Optimal Choice of β

- Equation (118) on p. 869 is minimized when

$$\beta = -\frac{\text{Cov}[X, Y]}{\text{Var}[Y]}.$$

- It is called beta in the book.

- For this specific β,

$$\text{Var}[W] = \text{Var}[X] - \frac{\text{Cov}[X, Y]^2}{\text{Var}[Y]} = (1 - \rho_{X,Y}^2) \text{Var}[X],$$

where $\rho_{X,Y}$ is the correlation between X and Y.
Optimal Choice of β (continued)

• Note that the variance can never be increased with the optimal choice.

• Furthermore, the stronger X and Y are correlated, the greater the reduction in variance.

• For example, if this correlation is nearly perfect (± 1), we could control X almost exactly.
Optimal Choice of β (continued)

- Typically, neither $\text{Var}[Y]$ nor $\text{Cov}[X,Y]$ is known.
- Therefore, we cannot obtain the maximum reduction in variance.
- We can guess these values and hope that the resulting W does indeed have a smaller variance than X.
- A second possibility is to use the simulated data to estimate these quantities.
 - How to do it efficiently in terms of time and space?
Optimal Choice of β (concluded)

- Observe that $-\beta$ has the same sign as the correlation between X and Y.

- Hence, if X and Y are positively correlated, $\beta < 0$, then X is adjusted downward whenever $Y > \mu$ and upward otherwise.

- The opposite is true when X and Y are negatively correlated, in which case $\beta > 0$.

- Suppose a suboptimal $\beta + \epsilon$ is used instead.

- The variance increases by only $\epsilon^2 \text{Var}[Y]$.\(^a\)

\(^a\)Han & Y. Lai (2010).
A Pitfall

- A potential pitfall is to sample X and Y independently.
- In this case, $\text{Cov}[X, Y] = 0$.
- Equation (118) on p. 869 becomes

$$\text{Var}[W] = \text{Var}[X] + \beta^2 \text{Var}[Y].$$

- So whatever Y is, the variance is *increased*!
- Lesson: X and Y must be correlated.
Problems with the Monte Carlo Method

- The error bound is only probabilistic.
- The probabilistic error bound of $O(1/\sqrt{N})$ does not benefit from regularity of the integrand function.
- The requirement that the points be independent random samples are wasteful because of clustering.
- In reality, pseudorandom numbers generated by completely deterministic means are used.
- Monte Carlo simulation exhibits a great sensitivity on the seed of the pseudorandom-number generator.
Matrix Computation
To set up a philosophy against physics is rash; philosophers who have done so have always ended in disaster.

— Bertrand Russell
Definitions and Basic Results

- Let \(A \triangleq [a_{ij}]_{1 \leq i \leq m, 1 \leq j \leq n} \), or simply \(A \in \mathbb{R}^{m \times n} \), denote an \(m \times n \) matrix.

- It can also be represented as \([a_1, a_2, \ldots, a_n] \) where \(a_i \in \mathbb{R}^m \) are vectors.
 - Vectors are column vectors unless stated otherwise.

- \(A \) is a square matrix when \(m = n \).

- The rank of a matrix is the largest number of linearly independent columns.
Definitions and Basic Results (continued)

- A square matrix A is said to be symmetric if $A^T = A$.

- A real $n \times n$ matrix

$$A \equiv [a_{ij}]_{i,j}$$

is diagonally dominant if $|a_{ii}| > \sum_{j \neq i} |a_{ij}|$ for $1 \leq i \leq n$.
- Such matrices are nonsingular.

- The identity matrix is the square matrix

$$I \equiv \text{diag}[1, 1, \ldots, 1].$$
Definitions and Basic Results (concluded)

• A matrix has full column rank if its columns are linearly independent.

• A real symmetric matrix A is positive definite if

$$x^T Ax = \sum_{i,j} a_{ij} x_i x_j > 0$$

for any nonzero vector x.

• A matrix A is positive definite if and only if there exists a matrix W such that $A = W^T W$ and W has full column rank.
Cholesky Decomposition

- Positive definite matrices can be factored as

\[A = LL^T, \]

called the Cholesky decomposition.
- Above, \(L \) is a lower triangular matrix.
Generation of Multivariate Distribution

- Let \(\mathbf{x} \triangleq [x_1, x_2, \ldots, x_n]^T \) be a vector random variable with a positive definite covariance matrix \(C \).

- As usual, assume \(E[\mathbf{x}] = 0 \).

- This covariance structure can be matched by \(P\mathbf{y} \).

 - \(\mathbf{y} \triangleq [y_1, y_2, \ldots, y_n]^T \) is a vector random variable with a covariance matrix equal to the identity matrix.

 - \(C = PP^T \) is the Cholesky decomposition of \(C \).\(^a\)

\(^a\)What if \(C \) is not positive definite? See Y. Y. Lai (R93942114) & Lyuu (2007).
Generation of Multivariate Distribution (concluded)

- For example, suppose

\[C = \begin{bmatrix} 1 & \rho \\ \rho & 1 \end{bmatrix}. \]

- Then

\[P = \begin{bmatrix} 1 & 0 \\ \rho & \sqrt{1 - \rho^2} \end{bmatrix} \]

as \(PP^T = C. \)\(^a\)

\(^a\)Recall Eq. (28) on p. 175.
Generation of Multivariate Normal Distribution

- Suppose we want to generate the multivariate normal distribution with a covariance matrix $C = PP^T$.
 - First, generate independent standard normal distributions y_1, y_2, \ldots, y_n.
 - Then
 $$P[y_1, y_2, \ldots, y_n]^T$$
 has the desired distribution.
 - These steps can then be repeated.
Multivariate Derivatives Pricing

- Generating the multivariate normal distribution is essential for the Monte Carlo pricing of multivariate derivatives (pp. 782ff).
- For example, the rainbow option on \(k \) assets has payoff

\[
\max(\max(S_1, S_2, \ldots, S_k) - X, 0)
\]

at maturity.
- The closed-form formula is a multi-dimensional integral.\(^a\)

\(^a\)Johnson (1987); C. Y. Chen (D95723006) & Lyuu (2009).
Multivariate Derivatives Pricing (concluded)

• Suppose \(dS_j / S_j = r \, dt + \sigma_j \, dW_j \), \(1 \leq j \leq k \), where \(C \) is the correlation matrix for \(dW_1, dW_2, \ldots, dW_k \).

• Let \(C = PP^T \).

• Let \(\xi \) consist of \(k \) independent random variables from \(N(0,1) \).

• Let \(\xi' = P\xi \).

• Similar to Eq. (117) on p. 826, for each asset \(1 \leq j \leq k \),

\[
S_{i+1} = S_i e^{(r-\sigma_j^2/2) \Delta t + \sigma_j \sqrt{\Delta t} \, \xi_j'}
\]

by Eq. (117) on p. 826.
The least-squares (LS) problem is concerned with

$$\min_{x \in \mathbb{R}^n} \| Ax - b \|,$$

where $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, and $m \geq n$.

The LS problem is called regression analysis in statistics and is equivalent to minimizing the mean-square error.

Often written as

$$Ax = b.$$
Polynomial Regression

• In polynomial regression, \(x_0 + x_1 x + \cdots + x_n x^n \) is used to fit the data \{ \((a_1, b_1), (a_2, b_2), \ldots, (a_m, b_m) \) \}.

• This leads to the LS problem,

\[
\begin{bmatrix}
1 & a_1 & a_1^2 & \cdots & a_1^n \\
1 & a_2 & a_2^2 & \cdots & a_2^n \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & a_m & a_m^2 & \cdots & a_m^n \\
\end{bmatrix}
\begin{bmatrix}
x_0 \\
x_1 \\
\vdots \\
x_n \\
\end{bmatrix}
=
\begin{bmatrix}
b_1 \\
b_2 \\
\vdots \\
b_m \\
\end{bmatrix}.
\]

• Consult p. 273 of the textbook for solutions.
American Option Pricing by Simulation

- The continuation value of an American option is the conditional expectation of the payoff from keeping the option alive now.
- The option holder must compare the immediate exercise value and the continuation value.
- In standard Monte Carlo simulation, each path is treated independently of other paths.
- But the decision to exercise the option cannot be reached by looking at one path alone.
The Least-Squares Monte Carlo Approach

- The continuation value can be estimated from the cross-sectional information in the simulation by using least squares.\(^a\)

- The result is a function (of the state) for estimating the continuation values.

- Use the function to estimate the continuation value for each path to determine its cash flow.

- This is called the least-squares Monte Carlo (LSM) approach.

\(^a\)Longstaff & Schwartz (2001).
The Least-Squares Monte Carlo Approach (concluded)

- The LSM is provably convergent.\(^a\)

- The LSM can be easily parallelized.\(^b\)
 - Partition the paths into subproblems and perform LSM on each of them independently.
 - The speedup is close to linear (i.e., proportional to the number of cores).

- Surprisingly, accuracy is not affected.

\(^a\)Clément, Lamberton, & Protter (2002); Stentoft (2004).
\(^b\)K. Huang (B96902079, R00922018) (2013); C. W. Chen (B97902046, R01922005) (2014); C. W. Chen (B97902046, R01922005), K. Huang (B96902079, R00922018) & Lyuu (2015).
A Numerical Example

• Consider a 3-year American put on a non-dividend-paying stock.

• The put is exercisable at years 0, 1, 2, and 3.

• The strike price $X = 105$.

• The annualized riskless rate is $r = 5\%$.

 – The annual discount factor hence equals 0.951229.

• The current stock price is 101.

• We use only 8 price paths to illustrate the algorithm.
A Numerical Example (continued)

<table>
<thead>
<tr>
<th>Path</th>
<th>Year 0</th>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>101</td>
<td>97.6424</td>
<td>92.5815</td>
<td>107.5178</td>
</tr>
<tr>
<td>2</td>
<td>101</td>
<td>101.2103</td>
<td>105.1763</td>
<td>102.4524</td>
</tr>
<tr>
<td>3</td>
<td>101</td>
<td>105.7802</td>
<td>103.6010</td>
<td>124.5115</td>
</tr>
<tr>
<td>4</td>
<td>101</td>
<td>96.4411</td>
<td>98.7120</td>
<td>108.3600</td>
</tr>
<tr>
<td>5</td>
<td>101</td>
<td>124.2345</td>
<td>101.0564</td>
<td>104.5315</td>
</tr>
<tr>
<td>6</td>
<td>101</td>
<td>95.8375</td>
<td>93.7270</td>
<td>99.3788</td>
</tr>
<tr>
<td>7</td>
<td>101</td>
<td>108.9554</td>
<td>102.4177</td>
<td>100.9225</td>
</tr>
<tr>
<td>8</td>
<td>101</td>
<td>104.1475</td>
<td>113.2516</td>
<td>115.0994</td>
</tr>
</tbody>
</table>
A Numerical Example (continued)

• We use the basis functions $1, x, x^2$.
 – Other basis functions are possible.\(^a\)

• The plot next page shows the final estimated optimal exercise strategy given by LSM.

• We now proceed to tackle our problem.

• The idea is to calculate the cash flow along each path, using information from all paths.

\(^a\)Laguerre polynomials, Hermite polynomials, Legendre polynomials, Chebyshev polynomials, Gedenbauer polynomials, and Jacobi polynomials.