
Futures Options

• The underlying of a futures option is a futures contract.

• Upon exercise, the option holder takes a position in the

futures contract with a futures price equal to the

option’s strike price.

– A call holder acquires a long futures position.

– A put holder acquires a short futures position.

• The futures contract is then marked to market.

• And the futures position of the two parties will be at the

prevailing futures price (thus zero-valued).
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Futures Options (concluded)

• It works as if the call holder received a futures contract

plus cash equivalent to the prevailing futures price Ft

minus the strike price X :

Ft −X.

– This futures contract has zero value.

• It works as if the put holder sold a futures contract for

X − Ft

dollars.
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Forward Options

• Similar to futures options except that what is delivered

is a forward contract with a delivery price equal to the

option’s strike price.

– Exercising a call forward option results in a long

position in a forward contract.

– Exercising a put forward option results in a short

position in a forward contract.

• Exercising a forward option incurs no immediate cash

flows: There is no marking to market.
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Example

• Consider a call with strike $100 and an expiration date

in September.

• The underlying asset is a forward contract with a

delivery date in December.

• Suppose the forward price in July is $110.

• Upon exercise, the call holder receives a forward

contract with a delivery price of $100.a

• If an offsetting position is then taken in the forward

market,b a $10 profit in December will be assured.

• A call on the futures would realize the $10 profit in July.
aRecall p. 466.
bThe counterparty will pay you $110 for the underlying asset.
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Some Pricing Relations

• Let delivery take place at time T , the current time be 0,

and the option on the futures or forward contract have

expiration date t (t ≤ T ).

• Assume a constant, positive interest rate.

• Although forward price equals futures price, a forward

option does not have the same value as a futures option.

• The payoffs of calls at time t are, respectively,a

futures option = max(Ft −X, 0), (62)

forward option = max(Ft −X, 0) e−r(T−t). (63)

aRecall p. 495.
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Some Pricing Relations (concluded)

• A European futures option is worth the same as the

corresponding European option on the underlying asset

if the futures contract has the same maturity as both

options.

– Futures price equals spot price at maturity.

• This conclusion is independent of the model for the spot

price.
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Put-Call Paritya

The put-call parity is slightly different from the one in

Eq. (30) on p. 221.

Theorem 13 (1) For European options on futures

contracts,

C = P − (X − F ) e−rt.

(2) For European options on forward contracts,

C = P − (X − F ) e−rT .

aSee Theorem 12.4.4 of the textbook for proof.
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Early Exercise

The early exercise feature is not valuable for forward options.

Theorem 14 American forward options should not be

exercised before expiration as long as the probability of their

ending up out of the money is positive.

• See Theorem 12.4.5 of the textbook for proof.

Early exercise may be optimal for American futures options

even if the underlying asset generates no payouts.

Theorem 15 American futures options may be exercised

optimally before expiration.
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Black’s Modela

• Formulas for European futures options:

C = Fe−rtN(x)−Xe−rtN(x− σ
√
t), (64)

P = Xe−rtN(−x+ σ
√
t)− Fe−rtN(−x),

where x
Δ
= ln(F/X)+(σ2/2) t

σ
√
t

.

• Formulas (64) are related to those for options on a stock

paying a continuous dividend yield.

• They are exactly Eqs. (42) on p. 322 with q set to r

and S replaced by F .

aBlack (1976).
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Black’s Model (concluded)

• This observation incidentally proves Theorem 15

(p. 501).

• For European forward options, just multiply the above

formulas by e−r(T−t).

– Forward options differ from futures options by a

factor of e−r(T−t).a

aRecall Eqs. (62)–(63) on p. 498.
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Binomial Model for Forward and Futures Options

• Futures price behaves like a stock paying a continuous

dividend yield of r.

– The futures price at time 0 is (p. 474)

F = SerT .

– From Lemma 9 (p. 290), the expected value of S at

time Δt in a risk-neutral economy is

SerΔt.

– So the expected futures price at time Δt is

SerΔter(T−Δt) = SerT = F.
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Binomial Model for Forward and Futures Options
(continued)

• The above observation continues to hold even if S pays a

dividend yield!a

– By Eq. (60) on p. 484, the futures price at time 0 is

F = Se(r−q)T .

– From Lemma 9 (p. 290), the expected value of S at

time Δt in a risk-neutral economy is

Se(r−q)Δt.

– So the expected futures price at time Δt is

Se(r−q)Δte(r−q)(T−Δt) = Se(r−q)T = F.
aContributed by Mr. Liu, Yi-Wei (R02723084) on April 16, 2014.

c©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 505



Binomial Model for Forward and Futures Options
(concluded)

• Now, under the BOPM, the risk-neutral probability for

the futures price is

pf
Δ
= (1− d)/(u− d)

by Eq. (43) on p. 324.

– The futures price moves from F to Fu with

probability pf and to Fd with probability 1− pf.

– Note that the original u and d are used!

• The binomial tree algorithm for forward options is

identical except that Eq. (63) on p. 498 is the payoff.
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Spot and Futures Prices under BOPM

• The futures price is related to the spot price via

F = SerT

if the underlying asset pays no dividends.a

• Recall the futures price F moves to Fu with probability

pf per period.

• So the stock price moves from S = Fe−rT to

Fue−r(T−Δt) = SuerΔt

with probability pf per period.

aRecall Lemma 11 (p. 474).
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Spot and Futures Prices under BOPM (concluded)

• Similarly, the stock price moves from S = Fe−rT to

SderΔt

with probability 1− pf per period.

• Note that

S(uerΔt)(derΔt) = Se2rΔt �= S.

• So this binomial model for S is not the CRR tree.

• This model may not be suitable for pricing barrier

options (why?).
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Negative Probabilities Revisited

• As 0 < pf < 1, we have 0 < 1− pf < 1 as well.

• The problem of negative risk-neutral probabilities is

solved:

– Build the tree for the futures price F of the futures

contract expiring at the same time as the option.

– Let the stock pay a continuous dividend yield of q.

– By Eq. (60) on p. 484, calculate S from F at each

node via

S = Fe−(r−q)(T−t).
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Swaps

• Swaps are agreements between two counterparties to

exchange cash flows in the future according to a

predetermined formula.

• There are two basic types of swaps: interest rate and

currency.

• An interest rate swap occurs when two parties exchange

interest payments periodically.

• Currency swaps are agreements to deliver one currency

against another (our focus here).

• There are theories about why swaps exist.a

aThanks to a lively discussion on April 16, 2014.
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Currency Swaps

• A currency swap involves two parties to exchange cash

flows in different currencies.

• Consider the following fixed rates available to party A

and party B in U.S. dollars and Japanese yen:

Dollars Yen

A DA% YA%

B DB% YB%

• Suppose A wants to take out a fixed-rate loan in yen,

and B wants to take out a fixed-rate loan in dollars.
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Currency Swaps (continued)

• A straightforward scenario is for A to borrow yen at

YA% and B to borrow dollars at DB%.

• But suppose A is relatively more competitive in the

dollar market than the yen market, i.e.,

YB −DB < YA −DA or YB − YA < DB −DA.

• Consider this alternative arrangement:

– A borrows dollars.

– B borrows yen.

– They enter into a currency swap with a bank (the

swap dealer) as the intermediary.
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Currency Swaps (concluded)

• The counterparties exchange principal at the beginning

and the end of the life of the swap.

• This act transforms A’s loan into a yen loan and B’s yen

loan into a dollar loan.

• The total gain is ((DB −DA)− (YB − YA))%:

– The total interest rate is originally (YA +DB)%.

– The new arrangement has a smaller total rate of

(DA + YB)%.

• Transactions will happen only if the gain is distributed

so that the cost to each party is less than the original.
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Example

• A and B face the following borrowing rates:

Dollars Yen

A 9% 10%

B 12% 11%

• A wants to borrow yen, and B wants to borrow dollars.

• A can borrow yen directly at 10%.

• B can borrow dollars directly at 12%.

c©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 514



Example (continued)

• The rate differential in dollars (3%) is different from

that in yen (1%).

• So a currency swap with a total saving of 3− 1 = 2% is

possible.

• A is relatively more competitive in the dollar market.

• B is relatively more competitive in the yen market.
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Example (concluded)

• Next page shows an arrangement which is beneficial to

all parties involved.

– A effectively borrows yen at 9.5% (lower than 10%).

– B borrows dollars at 11.5% (lower than 12%).

– The gain is 0.5% for A, 0.5% for B, and, if we treat

dollars and yen identically, 1% for the bank.

c©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 516



���������	
�������

��������� ��	����

���������

��	������	�����

������������

c©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 517



As a Package of Cash Market Instruments

• Assume no default risk.

• Take B on p. 517 as an example.

• The swap is equivalent to a long position in a yen bond

paying 11% annual interest and a short position in a

dollar bond paying 11.5% annual interest.

• The pricing formula is SPY − PD.

– PD is the dollar bond’s value in dollars.

– PY is the yen bond’s value in yen.

– S is the $/yen spot exchange rate.
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As a Package of Cash Market Instruments (concluded)

• The value of a currency swap depends on:

– The term structures of interest rates in the currencies

involved.

– The spot exchange rate.

• It has zero value when

SPY = PD.
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Example

• Take a 3-year swap on p. 517 with principal amounts of

US$1 million and 100 million yen.

• The payments are made once a year.

• The spot exchange rate is 90 yen/$ and the term

structures are flat in both nations—8% in the U.S. and

9% in Japan.

• For B, the value of the swap is (in millions of USD)

1

90
× (

11× e−0.09 + 11× e−0.09×2 + 111× e−0.09×3
)

− (
0.115× e−0.08 + 0.115× e−0.08×2 + 1.115× e−0.08×3

)
= 0.074.
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As a Package of Forward Contracts

• From Eq. (59) on p. 484, the forward contract maturing

i years from now has a dollar value of

fi
Δ
= (SYi) e

−qi −Die
−ri. (65)

– Yi is the yen inflow at year i.

– S is the $/yen spot exchange rate.

– q is the yen interest rate.

– Di is the dollar outflow at year i.

– r is the dollar interest rate.
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As a Package of Forward Contracts (concluded)

• For simplicity, flat term structures were assumed.

• Generalization is straightforward.
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Example

• Take the swap in the example on p. 520.

• Every year, B receives 11 million yen and pays 0.115

million dollars.

• In addition, at the end of the third year, B receives 100

million yen and pays 1 million dollars.

• Each of these transactions represents a forward contract.

• Y1 = Y2 = 11, Y3 = 111, S = 1/90, D1 = D2 = 0.115,

D3 = 1.115, q = 0.09, and r = 0.08.

• Plug in these numbers to get f1 + f2 + f3 = 0.074

million dollars as before.
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Stochastic Processes and Brownian Motion
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Of all the intellectual hurdles which the human mind

has confronted and has overcome in the last

fifteen hundred years, the one which seems to me

to have been the most amazing in character and

the most stupendous in the scope of its

consequences is the one relating to

the problem of motion.

— Herbert Butterfield (1900–1979)
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Stochastic Processes

• A stochastic process

X = {X(t) }
is a time series of random variables.

• X(t) (or Xt) is a random variable for each time t and

is usually called the state of the process at time t.

• A realization of X is called a sample path.
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Stochastic Processes (concluded)

• If the times t form a countable set, X is called a

discrete-time stochastic process or a time series.

• In this case, subscripts rather than parentheses are

usually employed, as in

X = {Xn }.

• If the times form a continuum, X is called a

continuous-time stochastic process.
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Random Walks

• The binomial model is a random walk in disguise.

• Consider a particle on the integer line, 0,±1,±2, . . . .

• In each time step, it can make one move to the right

with probability p or one move to the left with

probability 1− p.

– This random walk is symmetric when p = 1/2.

• Connection with the BOPM: The particle’s position

denotes the number of up moves minus that of down

moves up to that time.
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Random Walk with Drift

Xn = μ+Xn−1 + ξn.

• ξn are independent and identically distributed with zero

mean.

• Drift μ is the expected change per period.

• Note that this process is continuous in space.
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Martingalesa

• {X(t), t ≥ 0 } is a martingale if E[ |X(t) | ] < ∞ for

t ≥ 0 and

E[X(t) |X(u), 0 ≤ u ≤ s ] = X(s), s ≤ t. (66)

• In the discrete-time setting, a martingale means

E[Xn+1 |X1, X2, . . . , Xn ] = Xn. (67)

• Xn can be interpreted as a gambler’s fortune after the

nth gamble.

• Identity (67) then says the expected fortune after the

(n+ 1)th gamble equals the fortune after the nth

gamble regardless of what may have occurred before.
aThe origin of the name is somewhat obscure.
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Martingales (concluded)

• A martingale is therefore a notion of fair games.

• Apply the law of iterated conditional expectations to

both sides of Eq. (67) on p. 531 to yield

E[Xn ] = E[X1 ] (68)

for all n.

• Similarly,

E[X(t) ] = E[X(0) ]

in the continuous-time case.
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Still a Martingale?

• Suppose we replace Eq. (67) on p. 531 with

E[Xn+1 |Xn ] = Xn.

• It also says past history cannot affect the future.

• But is it equivalent to the original definition (67) on

p. 531?a

aContributed by Mr. Hsieh, Chicheng (M9007304) on April 13, 2005.

c©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 533



Still a Martingale? (continued)

• Well, no.a

• Consider this random walk with drift:

Xi =

⎧⎨⎩ Xi−1 + ξi, if i is even,

Xi−2, otherwise.

• Above, ξn are random variables with zero mean.

aContributed by Mr. Zhang, Ann-Sheng (B89201033) on April 13,

2005.
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Still a Martingale? (concluded)

• It is not hard to see that

E[Xi |Xi−1 ] =

⎧⎨⎩ Xi−1, if i is even,

Xi−1, otherwise.

– It is a martingale by the “new” definition.

• But

E[Xi | . . . , Xi−2, Xi−1 ] =

⎧⎨⎩ Xi−1, if i is even,

Xi−2, otherwise.

– It is not a martingale by the original definition.
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Example

• Consider the stochastic process{
Zn

Δ
=

n∑
i=1

Xi, n ≥ 1

}
,

where Xi are independent random variables with zero

mean.

• This process is a martingale because

E[Zn+1 |Z1, Z2, . . . , Zn ]

= E[Zn +Xn+1 |Z1, Z2, . . . , Zn ]

= E[Zn |Z1, Z2, . . . , Zn ] + E[Xn+1 |Z1, Z2, . . . , Zn ]

= Zn + E[Xn+1 ] = Zn.
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Probability Measure

• A probability measure assigns probabilities to states of

the world.

• A martingale is defined with respect to a probability

measure, under which the expectation is taken.

• Second, a martingale is defined with respect to an

information set.

– In the characterizations (66)–(67) on p. 531, the

information set contains the current and past values

of X by default.

– But it need not be so.
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Probability Measure (continued)

• A stochastic process {X(t), t ≥ 0 } is a martingale with

respect to information sets { It } if, for all t ≥ 0,

E[ |X(t) | ] < ∞ and

E[X(u) | It ] = X(t)

for all u > t.

• The discrete-time version: For all n > 0,

E[Xn+1 | In ] = Xn,

given the information sets { In }.
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Probability Measure (concluded)

• The above implies

E[Xn+m | In ] = Xn

for any m > 0 by Eq. (26) on p. 166.

– A typical In is the price information up to time n.

– Then the above identity says the FVs of X will not

deviate systematically from today’s value given the

price history.
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Example

• Consider the stochastic process {Zn − nμ, n ≥ 1 }.
– Zn

Δ
=

∑n
i=1Xi.

– X1, X2, . . . are independent random variables with

mean μ.

• Now,

E[Zn+1 − (n+ 1)μ |X1, X2, . . . , Xn ]

= E[Zn+1 |X1, X2, . . . , Xn ]− (n+ 1)μ

= E[Zn +Xn+1 |X1, X2, . . . , Xn ]− (n+ 1)μ

= Zn + μ− (n+ 1)μ

= Zn − nμ.

c©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 540



Example (concluded)

• Define

In
Δ
= {X1, X2, . . . , Xn }.

• Then

{Zn − nμ, n ≥ 1 }
is a martingale with respect to { In }.
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Martingale Pricing

• Stock prices and zero-coupon bond prices are expected

to rise, while option prices are expected to fall.

• They are not martingales.

• Why is then martingale useful?

• Recall a martingale is defined with respect to some

information set and some probability measure.

• By modifying the probability measure, we can convert a

price process into a martingale.
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Martingale Pricing (continued)

• The price of a European option is the expected

discounted payoff in a risk-neutral economy.a

• This principle can be generalized using the concept of

martingale.

• Recall the recursive valuation of European option via

C = [ pCu + (1− p)Cd ]/R.

– p is the risk-neutral probability.

– $1 grows to $R in a period.

aRecall Eq. (36) on p. 258.
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Martingale Pricing (continued)

• Let C(i) denote the value of the option at time i.

• Consider the discount process{
C(i)

Ri
, i = 0, 1, . . . , n

}
.

• Then,

E

[
C(i+ 1)

Ri+1

∣∣∣∣ C(i)

]
=

pCu + (1− p)Cd

Ri+1
=

C(i)

Ri
.
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Martingale Pricing (continued)

• It is easy to show that

E

[
C(k)

Rk

∣∣∣∣ C(i)

]
=

C(i)

Ri
, i ≤ k. (69)

• This formulation assumes:a

1. The model is Markovian: The distribution of the

future is determined by the present (time i ) and not

the past.

2. The payoff depends only on the terminal price of the

underlying asset (Asian options do not qualify).

aContributed by Mr. Wang, Liang-Kai (Ph.D. student, ECE, Univer-

sity of Wisconsin-Madison) and Mr. Hsiao, Huan-Wen (B90902081) on

May 3, 2006.
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Martingale Pricing (continued)

• In general, the discount process is a martingale in thata

Eπ
i

[
C(k)

Rk

]
=

C(i)

Ri
, i ≤ k. (70)

– Eπ
i is taken under the risk-neutral probability

conditional on the price information up to time i.

• This risk-neutral probability is also called the EMM, or

the equivalent martingale (probability) measure.

aIn this general formulation, Asian options do qualify.
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Martingale Pricing (continued)

• Equation (70) holds for all assets, not just options.

• When interest rates are stochastic, the equation becomes

C(i)

M(i)
= Eπ

i

[
C(k)

M(k)

]
, i ≤ k. (71)

– M(j) is the balance in the money market account at

time j using the rollover strategy with an initial

investment of $1.

– It is called the bank account process.

• It says the discount process is a martingale under π.
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Martingale Pricing (continued)

• If interest rates are stochastic, then M(j) is a random

variable.

– M(0) = 1.

– M(j) is known at time j − 1.a

• Identity (71) on p. 547 is the general formulation of

risk-neutral valuation.

aBecause the interest rate for the next period has been revealed then.
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Martingale Pricing (concluded)

Theorem 16 A discrete-time model is arbitrage-free if and

only if there exists a probability measurea such that the

discount process is a martingale.

aThis measure is called the risk-neutral probability measure.
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Futures Price under the BOPM

• Futures prices form a martingale under the risk-neutral

probability.

– The expected futures price in the next period isa

pfFu+ (1− pf)Fd = F

(
1− d

u− d
u+

u− 1

u− d
d

)
= F.

• Can be generalized to

Fi = Eπ
i [Fk ], i ≤ k,

where Fi is the futures price at time i.

• This equation holds under stochastic interest rates, too.b

aRecall p. 504.
bSee Exercise 13.2.11 of the textbook.
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Martingale Pricing and Numerairea

• The martingale pricing formula (71) on p. 547 uses the

money market account as numeraire.b

– It expresses the price of any asset relative to the

money market account.

• The money market account is not the only choice for

numeraire.

• Suppose asset S’s value is positive at all times.

aJohn Law (1671–1729), “Money to be qualified for exchaning goods

and for payments need not be certain in its value.”
bLeon Walras (1834–1910).
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Martingale Pricing and Numeraire (concluded)

• Choose S as numeraire.

• Martingale pricing says there exists a risk-neutral

probability π under which the relative price of any asset

C is a martingale:

C(i)

S(i)
= Eπ

i

[
C(k)

S(k)

]
, i ≤ k.

– S(j) denotes the price of S at time j.

• So the discount process remains a martingale.a

aThis result is related to Girsanov’s theorem (1960).
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Example

• Take the binomial model with two assets.

• In a period, asset one’s price can go from S to S1 or

S2.

• In a period, asset two’s price can go from P to P1 or

P2.

• Both assets must move up or down at the same time.

• Assume

S1

P1
<

S

P
<

S2

P2
(72)

to rule out arbitrage opportunities.
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Example (continued)

• For any derivative security, let C1 be its price at time

one if asset one’s price moves to S1.

• Let C2 be its price at time one if asset one’s price

moves to S2.

• Replicate the derivative by solving

αS1 + βP1 = C1,

αS2 + βP2 = C2,

using α units of asset one and β units of asset two.
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Example (continued)

• By Eqs. (72) on p. 553, α and β have unique solutions.

• In fact,

α =
P2C1 − P1C2

P2S1 − P1S2
and β =

S2C1 − S1C2

S2P1 − S1P2
.

• The derivative costs

C = αS + βP

=
P2S − PS2

P2S1 − P1S2
C1 +

PS1 − P1S

P2S1 − P1S2
C2.
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Example (continued)

• It is easy to verify that

C

P
= p

C1

P1
+ (1− p)

C2

P2
.

– Above,

p
Δ
=

(S/P )− (S2/P2)

(S1/P1)− (S2/P2)
.

– By Eqs. (72) on p. 553, 0 < p < 1.

• C’s price using asset two as numeraire (i.e., C/P ) is a

martingale under the risk-neutral probability p.

• The expected returns of the two assets are irrelevant.

c©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 556



Example (concluded)

• In the BOPM, S is the stock and P is the bond.

• Furthermore, p assumes the bond is the numeraire.

• In the binomial option pricing formula (38) on p. 262,

the S
∑

b(j;n, pu/R) term uses the stock as the

numeraire.

– It results in a different probability measure pu/R.

• In the limit, SN(x) for the call and SN(−x) for the put

in the Black-Scholes formula (p. 292) use the stock as

the numeraire.a

aSee Exercise 13.2.12 of the textbook.
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Brownian Motiona

• Brownian motion is a stochastic process {X(t), t ≥ 0 }
with the following properties.

1. X(0) = 0, unless stated otherwise.

2. for any 0 ≤ t0 < t1 < · · · < tn, the random variables

X(tk)−X(tk−1)

for 1 ≤ k ≤ n are independent.b

3. for 0 ≤ s < t, X(t)−X(s) is normally distributed

with mean μ(t− s) and variance σ2(t− s), where μ

and σ �= 0 are real numbers.

aRobert Brown (1773–1858).
bSo X(t)−X(s) is independent of X(r) for r ≤ s < t.
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Brownian Motion (concluded)

• The existence and uniqueness of such a process is

guaranteed by Wiener’s theorem.a

• This process will be called a (μ, σ) Brownian motion

with drift μ and variance σ2.

• Although Brownian motion is a continuous function of t

with probability one, it is almost nowhere differentiable.

• The (0, 1) Brownian motion is called the Wiener process.

• If condition 3 is replaced by “X(t)−X(s) depends only

on t− s,” we have the more general Levy process.b

aNorbert Wiener (1894–1964). He received his Ph.D. from Harvard

in 1912.
bPaul Levy (1886–1971).
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Example

• If {X(t), t ≥ 0 } is the Wiener process, then

X(t)−X(s) ∼ N(0, t− s).

• A (μ, σ) Brownian motion Y = {Y (t), t ≥ 0 } can be

expressed in terms of the Wiener process:

Y (t) = μt+ σX(t). (73)

• Note that

Y (t+ s)− Y (t) ∼ N(μs, σ2s).
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Brownian Motion as Limit of Random Walk

Claim 1 A (μ, σ) Brownian motion is the limiting case of

random walk.

• A particle moves Δx to the right with probability p

after Δt time.

• It moves Δx to the left with probability 1− p.

• Define

Xi
Δ
=

⎧⎨⎩ +1 if the ith move is to the right,

−1 if the ith move is to the left.

– Xi are independent with

Prob[Xi = 1 ] = p = 1− Prob[Xi = −1 ].
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Brownian Motion as Limit of Random Walk (continued)

• Assume n
Δ
= t/Δt is an integer.

• Its position at time t is

Y (t)
Δ
= Δx (X1 +X2 + · · ·+Xn) .

• Recall

E[Xi ] = 2p− 1,

Var[Xi ] = 1− (2p− 1)2.
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Brownian Motion as Limit of Random Walk (continued)

• Therefore,

E[Y (t) ] = n(Δx)(2p− 1),

Var[Y (t) ] = n(Δx)2
[
1− (2p− 1)2

]
.

• With Δx
Δ
= σ

√
Δt and p

Δ
= [ 1 + (μ/σ)

√
Δt ]/2,a

E[Y (t) ] = nσ
√
Δt (μ/σ)

√
Δt = μt,

Var[Y (t) ] = nσ2Δt
[
1− (μ/σ)2Δt

] → σ2t,

as Δt → 0.

aIdentical to Eq. (41) on p. 285!
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Brownian Motion as Limit of Random Walk (concluded)

• Thus, {Y (t), t ≥ 0 } converges to a (μ, σ) Brownian

motion by the central limit theorem.

• Brownian motion with zero drift is the limiting case of

symmetric random walk by choosing μ = 0.

• Similarity to the the BOPM: The p is identical to the

probability in Eq. (41) on p. 285 and Δx = lnu.

• Note that

Var[Y (t+Δt)− Y (t) ]

=Var[ΔxXn+1 ] = (Δx)2 ×Var[Xn+1 ] → σ2Δt.
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Geometric Brownian Motion

• Let X
Δ
= {X(t), t ≥ 0 } be a Brownian motion process.

• The process

{Y (t)
Δ
= eX(t), t ≥ 0 },

is called geometric Brownian motion.

• Suppose further that X is a (μ, σ) Brownian motion.

• X(t) ∼ N(μt, σ2t) with moment generating function

E
[
esX(t)

]
= E [Y (t)s ] = eμts+(σ2ts2/2)

from Eq. (27) on p 168.

c©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 565



Geometric Brownian Motion (concluded)

• In particular,a

E[Y (t) ] = eμt+(σ2t/2),

Var[Y (t) ] = E
[
Y (t)2

]− E[Y (t) ]2

= e2μt+σ2t
(
eσ

2t − 1
)
.

aRecall Eqs. (29) on p. 176.
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A Case for Long-Term Investmenta

• Suppose the stock follows the geometric Brownian

motion

S(t) = S(0) eN(μt,σ2t) = S(0) etN(μ,σ2/t ), t ≥ 0,

where μ > 0.

• The annual rate of return has a normal distribution:

N

(
μ,

σ2

t

)
.

• The larger the t, the likelier the return is positive.

• The smaller the t, the likelier the return is negative.
aContributed by Prof. King, Gow-Hsing on April 9, 2015. See

http://www.cb.idv.tw/phpbb3/viewtopic.php?f=7&t=1025
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Continuous-Time Financial Mathematics
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A proof is that which convinces a reasonable man;

a rigorous proof is that which convinces an

unreasonable man.

— Mark Kac (1914–1984)

The pursuit of mathematics is a

divine madness of the human spirit.

— Alfred North Whitehead (1861–1947),

Science and the Modern World
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Stochastic Integrals

• Use W
Δ
= {W (t), t ≥ 0 } to denote the Wiener process.

• The goal is to develop integrals of X from a class of

stochastic processes,a

It(X)
Δ
=

∫ t

0

X dW, t ≥ 0.

• It(X) is a random variable called the stochastic integral

of X with respect to W .

• The stochastic process { It(X), t ≥ 0 } will be denoted

by
∫
X dW .

aKiyoshi Ito (1915–2008).
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Stochastic Integrals (concluded)

• Typical requirements for X in financial applications are:

– Prob[
∫ t

0
X2(s) ds < ∞ ] = 1 for all t ≥ 0 or the

stronger
∫ t

0
E[X2(s) ] ds < ∞.

– The information set at time t includes the history of

X and W up to that point in time.

– But it contains nothing about the evolution of X or

W after t (nonanticipating, so to speak).

– The future cannot influence the present.
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Ito Integral

• A theory of stochastic integration.

• As with calculus, it starts with step functions.

• A stochastic process {X(t) } is simple if there exist

0 = t0 < t1 < · · ·
such that

X(t) = X(tk−1) for t ∈ [ tk−1, tk), k = 1, 2, . . .

for any realization (see figure on next page).

c©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 573



�
�

�
�

�
�

�
	

�



�
�

� �� �

�

c©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 574



Ito Integral (continued)

• The Ito integral of a simple process is defined as

It(X)
Δ
=

n−1∑
k=0

X(tk)[W (tk+1)−W (tk) ], (74)

where tn = t.

– The integrand X is evaluated at tk, not tk+1.

• Define the Ito integral of more general processes as a

limiting random variable of the Ito integral of simple

stochastic processes.

c©2019 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 575



Ito Integral (continued)

• Let X = {X(t), t ≥ 0 } be a general stochastic process.

• Then there exists a random variable It(X), unique

almost certainly, such that It(Xn) converges in

probability to It(X) for each sequence of simple

stochastic processes X1, X2, . . . such that Xn converges

in probability to X .

• If X is continuous with probability one, then It(Xn)

converges in probability to It(X) as

δn
Δ
= max

1≤k≤n
(tk − tk−1)

goes to zero.
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Ito Integral (concluded)

• It is a fundamental fact that
∫
X dW is continuous

almost surely.

• The following theorem says the Ito integral is a

martingale.a

Theorem 17 The Ito integral
∫
X dW is a martingale.

• A corollary is the mean value formula

E

[∫ b

a

X dW

]
= 0.

aSee Exercise 14.1.1 for simple stochastic processes.
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Discrete Approximation

• Recall Eq. (74) on p. 575.

• The following simple stochastic process { X̂(t) } can be

used in place of X to approximate
∫ t

0
X dW ,

X̂(s)
Δ
= X(tk−1) for s ∈ [ tk−1, tk), k = 1, 2, . . . , n.

• Note the nonanticipating feature of X̂.

– The information up to time s,

{ X̂(t),W (t), 0 ≤ t ≤ s },

cannot determine the future evolution of X or W .
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Discrete Approximation (concluded)

• Suppose, unlike Eq. (74) on p. 575, we defined the

stochastic integral from

n−1∑
k=0

X(tk+1)[W (tk+1)−W (tk) ].

• Then we would be using the following different simple

stochastic process in the approximation,

Ŷ (s)
Δ
= X(tk) for s ∈ [ tk−1, tk), k = 1, 2, . . . , n.

• This clearly anticipates the future evolution of X .a

aSee Exercise 14.1.2 of the textbook for an example where it matters.
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Ito Process

• The stochastic process X = {Xt, t ≥ 0 } that solves

Xt = X0 +

∫ t

0

a(Xs, s) ds+

∫ t

0

b(Xs, s) dWs, t ≥ 0

is called an Ito process.

– X0 is a scalar starting point.

– { a(Xt, t) : t ≥ 0 } and { b(Xt, t) : t ≥ 0 } are

stochastic processes satisfying certain regularity

conditions.

– a(Xt, t): the drift.

– b(Xt, t): the diffusion.
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Ito Process (continued)

• A shorthanda is the following stochastic differential

equationb (SDE) for the Ito differential dXt,

dXt = a(Xt, t) dt+ b(Xt, t) dWt. (75)

– Or simply

dXt = at dt+ bt dWt.

– This is Brownian motion with an instantaneous drift

at and an instantaneous variance b2t .

• X is a martingale if at = 0.c

aPaul Langevin (1872–1946) in 1904.
bLike any equation, an SDE contains an unknown, the process Xt.
cRecall Theorem 17 (p. 577).
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Ito Process (concluded)

• From calculus, we would expect
∫ t

0
W dW = W (t)2/2.

• But W (t)2/2 is not a martingale, hence wrong!

• The correct answer is [W (t)2 − t ]/2.

• An equivalent form of Eq. (75) is

dXt = at dt+ bt
√
dt ξ, (76)

where ξ ∼ N(0, 1).
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Euler Approximation

• Define tn
Δ
= nΔt.

• The following approximation follows from Eq. (76),

X̂(tn+1)

=X̂(tn) + a(X̂(tn), tn)Δt+ b(X̂(tn), tn)ΔW (tn). (77)

• It is called the Euler or Euler-Maruyama method.

• Recall that ΔW (tn) should be interpreted as

W (tn+1)−W (tn),

not W (tn)−W (tn−1)!
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Euler Approximation (concluded)

• With the Euler method, one can obtain a sample path

X̂(t1), X̂(t2), X̂(t3), . . .

from a sample path

W (t0),W (t1),W (t2), . . . .

• Under mild conditions, X̂(tn) converges to X(tn).
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More Discrete Approximations

• Under fairly loose regularity conditions, Eq. (77) on

p. 584 can be replaced by

X̂(tn+1)

=X̂(tn) + a(X̂(tn), tn)Δt+ b(X̂(tn), tn)
√
Δt Y (tn).

– Y (t0), Y (t1), . . . are independent and identically

distributed with zero mean and unit variance.
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More Discrete Approximations (concluded)

• An even simpler discrete approximation scheme:

X̂(tn+1)

=X̂(tn) + a(X̂(tn), tn)Δt+ b(X̂(tn), tn)
√
Δt ξ.

– Prob[ ξ = 1 ] = Prob[ ξ = −1 ] = 1/2.

– Note that E[ ξ ] = 0 and Var[ ξ ] = 1.

• This is a binomial model.

• As Δt goes to zero, X̂ converges to X .a

aHe (1990).
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