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[Meriwether] scoring especially high marks

in mathematics — an indispensable subject

for a bond trader.

— Roger Lowenstein,

When Genius Failed (2000)
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[The] fixed-income traders I knew

seemed smarter than the equity trader [· · · ]
there’s no competitive edge to

being smart in the equities business[.]

— Emanuel Derman,

My Life as a Quant (2004)

Bond market terminology was designed less

to convey meaning than to bewilder outsiders.

— Michael Lewis, The Big Short (2011)
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Terminology

• A period denotes a unit of elapsed time.

– Viewed at time t, the next time instant refers to time

t+ dt in the continuous-time model and time t+ 1

in the discrete-time case.

• Bonds will be assumed to have a par value of one —

unless stated otherwise.

• The time unit for continuous-time models will usually be

measured by the year.
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Standard Notations

The following notation will be used throughout.

t: a point in time.

r(t): the one-period riskless rate prevailing at time t for

repayment one period later.a

P (t, T ): the present value at time t of one dollar at time T .

aAlternatively, the instantaneous spot rate, or short rate, at time t.
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Standard Notations (continued)

r(t, T ): the (T − t)-period interest rate prevailing at time t

stated on a per-period basis and compounded once per

period.a

F (t, T,M): the forward price at time t of a forward

contract that delivers at time T a zero-coupon bond

maturing at time M ≥ T .

aIn other words, the (T − t)-period spot rate at time t.
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Standard Notations (concluded)

f(t, T, L): the L-period forward rate at time T implied at

time t stated on a per-period basis and compounded

once per period.

f(t, T ): the one-period or instantaneous forward rate at

time T as seen at time t stated on a per period basis

and compounded once per period.

• It is f(t, T, 1) in the discrete-time model and

f(t, T, dt) in the continuous-time model.

• Note that f(t, t) equals the short rate r(t).
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Fundamental Relations

• The price of a zero-coupon bond equals

P (t, T ) =

⎧⎨
⎩

(1 + r(t, T ))−(T−t), in discrete time,

e−r(t,T )(T−t), in continuous time. (134)

• r(t, T ) as a function of T defines the spot rate curve at

time t.

• By definition,

f(t, t) =

⎧⎨
⎩ r(t, t+ 1), in discrete time,

r(t, t), in continuous time.
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Fundamental Relations (continued)

• Forward prices and zero-coupon bond prices are related:

F (t, T,M) =
P (t,M)

P (t, T )
, T ≤ M. (135)

– The forward price equals the future value at time T

of the underlying asset.a

• Equation (135) holds whether the model is discrete-time

or continuous-time.

aSee Exercise 24.2.1 of the textbook for proof.
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Fundamental Relations (continued)

• Forward rates and forward prices are related
definitionally by

f(t, T, L) =

(
1

F (t, T, T + L)

)1/L

− 1 =

(
P (t, T )

P (t, T + L)

)1/L

− 1

(136)

in discrete time.

• The analog to Eq. (136) under simple compounding is

f(t, T, L) =
1

L

(
P (t, T )

P (t, T + L)
− 1

)
.
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Fundamental Relations (continued)

• In continuous time,

f(t, T, L) = − lnF (t, T, T + L)

L
=

ln(P (t, T )/P (t, T + L))

L
(137)

by Eq. (135) on p. 1039.

• Furthermore,

f(t, T,Δt) =
ln(P (t, T )/P (t, T +Δt))

Δt
→ −∂ lnP (t, T )

∂T

= −∂P (t, T )/∂T

P (t, T )
.
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Fundamental Relations (continued)

• So

f(t, T )
Δ
= lim

Δt→0
f(t, T,Δt) = −∂P (t, T )/∂T

P (t, T )
, t ≤ T.

(138)

• Because Eq. (138) is equivalent to

P (t, T ) = e−
∫ T
t

f(t,s) ds, (139)

the spot rate curve is

r(t, T ) =

∫ T

t
f(t, s) ds

T − t
.
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Fundamental Relations (concluded)

• The discrete analog to Eq. (139) is

P (t, T ) =
1

(1 + r(t))(1 + f(t, t+ 1)) · · · (1 + f(t, T − 1))
.

• The short rate and the market discount function are

related by

r(t) = − ∂P (t, T )

∂T

∣∣∣∣
T=t

.
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Risk-Neutral Pricing

• Assume the local expectations theory.

• The expected rate of return of any riskless bond over a

single period equals the prevailing one-period spot rate.

– For all t+ 1 < T ,

Et[P (t+ 1, T ) ]

P (t, T )
= 1 + r(t). (140)

– Relation (140) in fact follows from the risk-neutral

valuation principle.a

aTheorem 16 on p. 544.
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Risk-Neutral Pricing (continued)

• The local expectations theory is thus a consequence of

the existence of a risk-neutral probability π.

• Equation (140) on p. 1044 can also be expressed as

Et[P (t+ 1, T ) ] = F (t, t+ 1, T ).

– Verify that with, e.g., Eq. (135) on p. 1039.

• Hence the forward price for the next period is an

unbiased estimator of the expected bond price.a

aUnder the local expectations theory. But the forward rate is not an

unbiased estimator of the expected future short rate (p. 995).
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Risk-Neutral Pricing (continued)

• Rewrite Eq. (140) on p. 1044 as

Eπ
t [P (t+ 1, T ) ]

1 + r(t)
= P (t, T ). (141)

– It says the current market discount function equals

the expected market discount function one period

from now discounted by the short rate.
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Risk-Neutral Pricing (concluded)

• Apply the above equality iteratively to obtain

P (t, T )

= Eπ
t

[
P (t+ 1, T )

1 + r(t)

]

= Eπ
t

[
Eπ

t+1[P (t+ 2, T ) ]

(1 + r(t))(1 + r(t+ 1))

]
= · · ·

= Eπ
t

[
1

(1 + r(t))(1 + r(t+ 1)) · · · (1 + r(T − 1))

]
.
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Continuous-Time Risk-Neutral Pricing

• In continuous time, the local expectations theory implies

P (t, T ) = Et

[
e−

∫ T
t

r(s) ds
]
, t < T. (142)

• Note that e
∫ T
t

r(s) ds is the bank account process, which

denotes the rolled-over money market account.
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Interest Rate Swaps

• Consider an interest rate swap made at time t (now)

with payments to be exchanged at times t1, t2, . . . , tn.

• The fixed rate is c per annum.

• The floating-rate payments are based on the future

annual rates f0, f1, . . . , fn−1 at times t0, t1, . . . , tn−1.

• For simplicity, assume ti+1 − ti is a fixed constant Δt

for all i, and the notional principal is one dollar.

• If t < t0, we have a forward interest rate swap.

• The ordinary swap corresponds to t = t0.
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Interest Rate Swaps (continued)

• The amount to be paid out at time ti+1 is (fi − c)Δt

for the floating-rate payer.

• Simple rates are adopted here.

• Hence fi satisfies

P (ti, ti+1) =
1

1 + fiΔt
.
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Interest Rate Swaps (continued)

• The value of the swap at time t is thus

n∑
i=1

Eπ
t

[
e−

∫ ti
t r(s) ds(fi−1 − c)Δt

]

=
n∑

i=1

Eπ
t

[
e−

∫ ti
t r(s) ds

(
1

P (ti−1, ti)
− (1 + cΔt)

)]

=
n∑

i=1

Eπ
t

[
e−

∫ ti
t r(s) ds

(
e
∫ ti
ti−1

r(s) ds − (1 + cΔt)

)]

=
n∑

i=1

[P (t, ti−1)− (1 + cΔt)× P (t, ti) ]

= P (t, t0)− P (t, tn)− cΔt

n∑
i=1

P (t, ti).
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Interest Rate Swaps (concluded)

• So a swap can be replicated as a portfolio of bonds.

• In fact, it can be priced by simple present-value

calculations.
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Swap Rate

• The swap rate, which gives the swap zero value, equals

Sn(t)
Δ
=

P (t, t0)− P (t, tn)∑n
i=1 P (t, ti)Δt

. (143)

• The swap rate is the fixed rate that equates the present

values of the fixed payments and the floating payments.

• For an ordinary swap, P (t, t0) = 1.
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The Term Structure Equationa

• Let us start with the zero-coupon bonds and the money

market account.

• Let the zero-coupon bond price P (r, t, T ) follow

dP

P
= μp dt+ σp dW.

• At time t, short one unit of a bond maturing at time s1

and buy α units of a bond maturing at time s2.

aVasicek (1977).
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The Term Structure Equation (continued)

• The net wealth change follows

−dP (r, t, s1) + αdP (r, t, s2)

= (−P (r, t, s1)μp(r, t, s1) + αP (r, t, s2)μp(r, t, s2)) dt

+(−P (r, t, s1)σp(r, t, s1) + αP (r, t, s2)σp(r, t, s2)) dW.

• Pick

α
Δ
=

P (r, t, s1)σp(r, t, s1)

P (r, t, s2)σp(r, t, s2)
.
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The Term Structure Equation (continued)

• Then the net wealth has no volatility and must earn the

riskless return:

−P (r, t, s1)μp(r, t, s1) + αP (r, t, s2)μp(r, t, s2)

−P (r, t, s1) + αP (r, t, s2)
= r.

• Simplify the above to obtain

σp(r, t, s1)μp(r, t, s2)− σp(r, t, s2)μp(r, t, s1)

σp(r, t, s1)− σp(r, t, s2)
= r.

• This becomes

μp(r, t, s2)− r

σp(r, t, s2)
=

μp(r, t, s1)− r

σp(r, t, s1)

after rearrangement.
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The Term Structure Equation (continued)

• Since the above equality holds for any s1 and s2,

μp(r, t, s)− r

σp(r, t, s)

Δ
= λ(r, t) (144)

for some λ independent of the bond maturity s.

• As μp = r+ λσp, all assets are expected to appreciate at

a rate equal to the sum of the short rate and a constant

times the asset’s volatility.

• The term λ(r, t) is called the market price of risk.

• The market price of risk must be the same for all bonds

to preclude arbitrage opportunities.
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The Term Structure Equation (continued)

• Assume a Markovian short rate model,

dr = μ(r, t) dt+ σ(r, t) dW.

• Then the bond price process is also Markovian.

• By Eq. (14.15) on p. 202 of the textbook,

μp =

(
−∂P

∂T
+ μ(r, t)

∂P

∂r
+

σ(r, t)2

2

∂2P

∂r2

)
/P,

(145)

σp =

(
σ(r, t)

∂P

∂r

)
/P, (145′)

subject to P ( · , T, T ) = 1.

c©2018 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 1058



The Term Structure Equation (concluded)

• Substitute μp and σp into Eq. (144) on p. 1057 to

obtain

− ∂P

∂T
+ [μ(r, t)− λ(r, t)σ(r, t) ]

∂P

∂r
+

1

2
σ(r, t)2

∂2P

∂r2
= rP.

(146)

• This is called the term structure equation.

• It applies to all interest rate derivatives: The differences

are the terminal and boundary conditions.

• Once P is available, the spot rate curve emerges via

r(t, T ) = − lnP (t, T )

T − t
.
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Numerical Examples

• Assume this spot rate curve:

Year 1 2

Spot rate 4% 5%

• Assume the one-year rate (short rate) can move up to

8% or down to 2% after a year:

4%
� 8%

� 2%
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Numerical Examples (continued)

• No real-world probabilities are specified.

• The prices of one- and two-year zero-coupon bonds are,

respectively,

100/1.04 = 96.154,

100/(1.05)2 = 90.703.

• They follow the binomial processes on p. 1062.
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Numerical Examples (continued)

90.703
� 92.593 (= 100/1.08)

� 98.039 (= 100/1.02)
96.154

� 100

� 100

The price process of the two-year zero-coupon bond is on the

left; that of the one-year zero-coupon bond is on the right.
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Numerical Examples (continued)

• The pricing of derivatives can be simplified by assuming

investors are risk-neutral.

• Suppose all securities have the same expected one-period

rate of return, the riskless rate.

• Then

(1− p)× 92.593

90.703
+ p× 98.039

90.703
− 1 = 4%,

where p denotes the risk-neutral probability of a down

move in rates.
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Numerical Examples (concluded)

• Solving the equation leads to p = 0.319.

• Interest rate contingent claims can be priced under this

probability.
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Numerical Examples: Fixed-Income Options

• A one-year European call on the two-year zero with a

$95 strike price has the payoffs,

C
� 0.000

� 3.039 (= 98.039− 95)

• To solve for the option value C, we replicate the call by

a portfolio of x one-year and y two-year zeros.
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Numerical Examples: Fixed-Income Options
(continued)

• This leads to the simultaneous equations,

x× 100 + y × 92.593 = 0.000,

x× 100 + y × 98.039 = 3.039.

• They give x = −0.5167 and y = 0.5580.

• Consequently,

C = x× 96.154 + y × 90.703 ≈ 0.93

to prevent arbitrage.
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Numerical Examples: Fixed-Income Options
(continued)

• This price is derived without assuming any version of an

expectations theory.

• Instead, the arbitrage-free price is derived by replication.

• The price of an interest rate contingent claim does not

depend directly on the real-world probabilities.

• The dependence holds only indirectly via the current

bond prices.
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Numerical Examples: Fixed-Income Options
(concluded)

• An equivalent method is to utilize risk-neutral pricing.

• The above call option is worth

C =
(1− p)× 0 + p× 3.039

1.04
≈ 0.93,

the same as before.

• This is not surprising, as arbitrage freedom and the

existence of a risk-neutral economy are equivalent.
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Numerical Examples: Futures and Forward Prices

• A one-year futures contract on the one-year rate has a

payoff of 100− r, where r is the one-year rate at

maturity:

F
� 92 (= 100− 8)

� 98 (= 100− 2)

• As the futures price F is the expected future payoff,a

F = (1− p)× 92 + p× 98 = 93.914.

aSee Exercise 13.2.11 of the textbook or p. 545.
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Numerical Examples: Futures and Forward Prices
(concluded)

• The forward price for a one-year forward contract on a

one-year zero-coupon bond isa

90.703/96.154 = 94.331%.

• The forward price exceeds the futures price.b

aBy Eq. (135) on p. 1039.
bRecall p. 488.
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Equilibrium Term Structure Models
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8. What’s your problem? Any moron

can understand bond pricing models.

— Top Ten Lies Finance Professors

Tell Their Students
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Introduction

• We now survey equilibrium models.

• Recall that the spot rates satisfy

r(t, T ) = − lnP (t, T )

T − t

by Eq. (134) on p. 1038.

• Hence the discount function P (t, T ) suffices to establish

the spot rate curve.

• All models to follow are short rate models.

• Unless stated otherwise, the processes are risk-neutral.
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The Vasicek Modela

• The short rate follows

dr = β(μ− r) dt+ σ dW.

• The short rate is pulled to the long-term mean level μ

at rate β.

• Superimposed on this “pull” is a normally distributed

stochastic term σ dW .

• Since the process is an Ornstein-Uhlenbeck process,

E[ r(T ) | r(t) = r ] = μ+ (r − μ) e−β(T−t)

from Eq. (82) on p. 608.
aVasicek (1977). Vasicek co-founded KMV, which was sold to

Moody’s for USD$210 million in 2002.
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The Vasicek Model (continued)

• The price of a zero-coupon bond paying one dollar at

maturity can be shown to be

P (t, T ) = A(t, T ) e−B(t,T ) r(t), (147)

where

A(t, T ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

exp

[
(B(t,T )−T+t)(β2μ−σ2/2)

β2 − σ2B(t,T )2

4β

]
if β �= 0,

exp

[
σ2(T−t)3

6

]
if β = 0.

and

B(t, T ) =

⎧⎨
⎩

1−e−β(T−t)

β if β �= 0,

T − t if β = 0.
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The Vasicek Model (concluded)

• If β = 0, then P goes to infinity as T → ∞.

• Sensibly, P goes to zero as T → ∞ if β �= 0.

• Even if β �= 0, P may exceed one for a finite T .

• The spot rate volatility structure is the curve

(∂r(t, T )/∂r)σ = σB(t, T )/(T − t).

• When β > 0, the curve tends to decline with maturity.

• The speed of mean reversion, β, controls the shape of

the curve.

• Higher β leads to greater attenuation of volatility with

maturity.
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The Vasicek Model: Options on Zerosa

• Consider a European call with strike price X expiring

at time T on a zero-coupon bond with par value $1 and

maturing at time s > T .

• Its price is given by

P (t, s)N(x)−XP (t, T )N(x− σv).

aJamshidian (1989).
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The Vasicek Model: Options on Zeros (concluded)

• Above

x
Δ
=

1

σv
ln

(
P (t, s)

P (t, T )X

)
+

σv

2
,

σv ≡ v(t, T )B(T, s),

v(t, T )2
Δ
=

⎧⎨
⎩

σ2[1−e−2β(T−t)]
2β , if β �= 0

σ2(T − t), if β = 0
.

• By the put-call parity, the price of a European put is

XP (t, T )N(−x+ σv)− P (t, s)N(−x).

c©2018 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 1079



Binomial Vasicek

• Consider a binomial model for the short rate in the time

interval [ 0, T ] divided into n identical pieces.

• Let Δt
Δ
= T/n and

p(r)
Δ
=

1

2
+

β(μ− r)
√
Δt

2σ
.

• The following binomial model converges to the Vasicek

model,a

r(k + 1) = r(k) + σ
√
Δt ξ(k), 0 ≤ k < n.

aNelson & Ramaswamy (1990).
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Binomial Vasicek (continued)

• Above, ξ(k) = ±1 with

Prob[ ξ(k) = 1 ] =

⎧⎪⎪⎨
⎪⎪⎩

p(r(k)), if 0 ≤ p(r(k)) ≤ 1

0, if p(r(k)) < 0,

1, if 1 < p(r(k)).

• Observe that the probability of an up move, p, is a

decreasing function of the interest rate r.

• This is consistent with mean reversion.
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Binomial Vasicek (concluded)

• The rate is the same whether it is the result of an up

move followed by a down move or a down move followed

by an up move.

• The binomial tree combines.

• The key feature of the model that makes it happen is its

constant volatility, σ.
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The Cox-Ingersoll-Ross Modela

• It is the following square-root short rate model:

dr = β(μ− r) dt+ σ
√
r dW. (148)

• The diffusion differs from the Vasicek model by a

multiplicative factor
√
r .

• The parameter β determines the speed of adjustment.

• The short rate can reach zero only if 2βμ < σ2.

• See text for the bond pricing formula.

aCox, Ingersoll, & Ross (1985).
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Binomial CIR

• We want to approximate the short rate process in the

time interval [ 0, T ].

• Divide it into n periods of duration Δt
Δ
= T/n.

• Assume μ, β ≥ 0.

• A direct discretization of the process is problematic

because the resulting binomial tree will not combine.
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Binomial CIR (continued)

• Instead, consider the transformed processa

x(r)
Δ
= 2

√
r/σ.

• By Ito’s lemma (p. 585),

dx = m(x) dt+ dW,

where

m(x)
Δ
= 2βμ/(σ2x)− (βx/2)− 1/(2x).

• This new process has a constant volatility.

• Thus its binomial tree combines.
aSee p. 1093ff.
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Binomial CIR (continued)

• Construct the combining tree for r as follows.

• First, construct a tree for x.

• Then transform each node of the tree into one for r via

the inverse transformation (see next page)

r = f(x)
Δ
=

x2σ2

4
.

• But when x ≈ 0 (so r ≈ 0), the moments may not be

matched well.a

aNawalkha & Beliaeva (2007).
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x + 2
√

Δt f(x + 2
√

Δt)

↗ ↗
x +

√
Δt f(x +

√
Δt)

↗ ↘ ↗ ↘
x x f(x) f(x)

↘ ↗ ↘ ↗
x − √

Δt f(x − √
Δt)

↘ ↘
x − 2

√
Δt f(x − 2

√
Δt)
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Binomial CIR (continued)

• The probability of an up move at each node r is

p(r)
Δ
=

β(μ− r)Δt+ r − r−

r+ − r−
.

– r+
Δ
= f(x+

√
Δt) denotes the result of an up move

from r.

– r− Δ
= f(x−√

Δt) the result of a down move.

• Finally, set the probability p(r) to one as r goes to zero

to make the probability stay between zero and one.
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Binomial CIR (concluded)

• It can be shown that

p(r) =

(
βμ− σ2

4

)√
Δt

r
− B

√
rΔt+ C,

for some B ≥ 0 and C > 0.a

• If βμ− (σ2/4) ≥ 0, the up-move probability p(r)

decreases if and only if short rate r increases.

• Even if βμ− (σ2/4) < 0, p(r) tends to decrease as r

increases and decrease as r declines.

• This phenomenon agrees with mean reversion.

aThanks to a lively class discussion on May 28, 2014.
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Numerical Examples

• Consider the process,

0.2 (0.04− r) dt+ 0.1
√
r dW,

for the time interval [ 0, 1 ] given the initial rate

r(0) = 0.04.

• We shall use Δt = 0.2 (year) for the binomial

approximation.

• See p. 1091(a) for the resulting binomial short rate tree

with the up-move probabilities in parentheses.
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Numerical Examples (concluded)

• Consider the node which is the result of an up move

from the root.

• Since the root has x = 2
√
r(0)/σ = 4, this particular

node’s x value equals 4 +
√
Δt = 4.4472135955.

• Use the inverse transformation to obtain the short rate

x2 × (0.1)2

4
≈ 0.0494442719102.

• Once the short rates are in place, computing the

probabilities is easy.

• Convergence is quite good.a

aSee p. 369 of the textbook.
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A General Method for Constructing Binomial Modelsa

• We are given a continuous-time process,

dy = α(y, t) dt+ σ(y, t) dW.

• Need to make sure the binomial model’s drift and

diffusion converge to the above process.

• Set the probability of an up move to

α(y, t)Δt+ y − yd
yu − yd

.

• Here yu
Δ
= y + σ(y, t)

√
Δt and yd

Δ
= y − σ(y, t)

√
Δt

represent the two rates that follow the current rate y.

aNelson & Ramaswamy (1990).
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A General Method (continued)

• The displacements are identical, at σ(y, t)
√
Δt .

• But the binomial tree may not combine as

σ(y, t)
√
Δt− σ(yu, t+Δt)

√
Δt

�= −σ(y, t)
√
Δt+ σ(yd, t+Δt)

√
Δt

in general.

• When σ(y, t) is a constant independent of y, equality

holds and the tree combines.
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A General Method (continued)

• To achieve this, define the transformation

x(y, t)
Δ
=

∫ y

σ(z, t)−1 dz.

• Then x follows

dx = m(y, t) dt+ dW

for some m(y, t).a

• The diffusion term is now a constant, and the binomial

tree for x combines.

aSee Exercise 25.2.13 of the textbook.
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A General Method (concluded)

• The transformation is unique.a

• The probability of an up move remains

α(y(x, t), t)Δt+ y(x, t)− yd(x, t)

yu(x, t)− yd(x, t)
,

where y(x, t) is the inverse transformation of x(y, t)

from x back to y.

• Note that

yu(x, t)
Δ
= y(x+

√
Δt, t+Δt),

yd(x, t)
Δ
= y(x−

√
Δt, t+Δt).

aH. Chiu (R98723059) (2012).
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Examples

• The transformation is∫ r

(σ
√
z)−1 dz =

2
√
r

σ

for the CIR model.

• The transformation is∫ S

(σz)−1 dz =
lnS

σ

for the Black-Scholes model.

• The familiar BOPM and CRR discretize lnS not S.
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On One-Factor Short Rate Models

• By using only the short rate, they ignore other rates on

the yield curve.

• Such models also restrict the volatility to be a function

of interest rate levels only.

• The prices of all bonds move in the same direction at

the same time (their magnitudes may differ).

• The returns on all bonds thus become highly correlated.

• In reality, there seems to be a certain amount of

independence between short- and long-term rates.
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On One-Factor Short Rate Models (continued)

• One-factor models therefore cannot accommodate

nondegenerate correlation structures across maturities.

• Derivatives whose values depend on the correlation

structure will be mispriced.

• The calibrated models may not generate term structures

as concave as the data suggest.

• The term structure empirically changes in slope and

curvature as well as makes parallel moves.

• This is inconsistent with the restriction that all

segments of the term structure be perfectly correlated.
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On One-Factor Short Rate Models (concluded)

• Multifactor models lead to families of yield curves that

can take a greater variety of shapes and can better

represent reality.

• But they are much harder to think about and work with.

• They also take much more computer time—the curse of

dimensionality.

• These practical concerns limit the use of multifactor

models to two- or three-factor ones.
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Options on Coupon Bondsa

• Assume the market discount function P is a

monotonically decreasing function of the short rate r.

– Such as a one-factor short rate model.

• The price of a European option on a coupon bond can

be calculated from those on zero-coupon bonds.

• Consider a European call expiring at time T on a bond

with par value $1.

• Let X denote the strike price.

aJamshidian (1989).
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Options on Coupon Bonds (continued)

• The bond has cash flows c1, c2, . . . , cn at times

t1, t2, . . . , tn, where ti > T for all i.

• The payoff for the option is

max

{[
n∑

i=1

ciP (r(T ), T, ti)

]
−X, 0

}
.

• At time T , there is a unique value r∗ for r(T ) that

renders the coupon bond’s price equal the strike price

X .
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Options on Coupon Bonds (continued)

• This r∗ can be obtained by solving

X =
n∑

i=1

ciP (r, T, ti)

numerically for r.

• Let

Xi
Δ
= P (r∗, T, ti),

the value at time T of a zero-coupon bond with par

value $1 and maturing at time ti if r(T ) = r∗.

• Note that P (r, T, ti) ≥ Xi if and only if r ≤ r∗.
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Options on Coupon Bonds (concluded)

• As X =
∑

i ciXi, the option’s payoff equals

max

{[
n∑

i=1

ciP (r(T ), T, ti)

]
−
[

n∑
i=1

ciXi

]
, 0

}

=
n∑

i=1

ci ×max(P (r(T ), T, ti)−Xi, 0).

• Thus the call is a package of n options on the

underlying zero-coupon bond.

• Why can’t we do the same thing for Asian options?a

aContributed by Mr. Yang, Jui-Chung (D97723002) on May 20, 2009.
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No-Arbitrage Term Structure Models
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How much of the structure of our theories

really tells us about things in nature,

and how much do we contribute ourselves?

— Arthur Eddington (1882–1944)
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Motivations

• Recall the difficulties facing equilibrium models

mentioned earlier.

– They usually require the estimation of the market

price of risk.a

– They cannot fit the market term structure.

– But consistency with the market is often mandatory

in practice.

aRecall p. 1057.
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No-Arbitrage Modelsa

• No-arbitrage models utilize the full information of the

term structure.

• They accept the observed term structure as consistent

with an unobserved and unspecified equilibrium.

• From there, arbitrage-free movements of interest rates or

bond prices over time are modeled.

• By definition, the market price of risk must be reflected

in the current term structure; hence the resulting

interest rate process is risk-neutral.

aT. Ho & S. B. Lee (1986). Thomas Lee is a “billionaire founder” of

Thomas H. Lee Partners LP, according to Bloomberg on May 26, 2012.
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No-Arbitrage Models (concluded)

• No-arbitrage models can specify the dynamics of

zero-coupon bond prices, forward rates, or the short rate.

• Bond price and forward rate models are usually

non-Markovian (path dependent).

• In contrast, short rate models are generally constructed

to be explicitly Markovian (path independent).

• Markovian models are easier to handle computationally.
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The Ho-Lee Modela

• The short rates at any given time are evenly spaced.

• Let p denote the risk-neutral probability that the short

rate makes an up move.

• We shall adopt continuous compounding.

aT. Ho & S. B. Lee (1986).
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↗
r3

↗ ↘
r2

↗ ↘ ↗
r1 r3 + v3

↘ ↗ ↘
r2 + v2

↘ ↗
r3 + 2v3

↘
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The Ho-Lee Model (continued)

• The Ho-Lee model starts with zero-coupon bond prices

P (t, t+ 1), P (t, t+ 2), . . . at time t identified with the

root of the tree.

• Let the discount factors in the next period be

Pd(t+ 1, t+ 2), Pd(t+ 1, t+ 3), . . . , if short rate moves down,

Pu(t+ 1, t+ 2), Pu(t+ 1, t+ 3), . . . , if short rate moves up.

• By backward induction, it is not hard to see that for

n ≥ 2,a

Pu(t+ 1, t+ n) = Pd(t+ 1, t+ n) e−(v2+···+vn).

(149)

aSee p. 376 of the textbook.
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The Ho-Lee Model (continued)

• It is also not hard to check that the n-period

zero-coupon bond has yields

yd(n)
Δ
= − lnPd(t+ 1, t+ n)

n− 1

yu(n)
Δ
= − lnPu(t+ 1, t+ n)

n− 1
= yd(n) +

v2 + · · ·+ vn
n− 1

• The volatility of the yield to maturity for this bond is

therefore

κn
Δ
=

√
pyu(n)2 + (1− p) yd(n)2 − [ pyu(n) + (1− p) yd(n) ]2

=
√

p(1− p) (yu(n)− yd(n))

=
√

p(1− p)
v2 + · · ·+ vn

n− 1
.
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The Ho-Lee Model (concluded)

• In particular, the short rate volatility is determined by

taking n = 2:

σ =
√
p(1− p) v2. (150)

• The volatility of the short rate therefore equals√
p(1− p) (ru − rd),

where ru and rd are the two successor rates.a

aContrast this with the lognormal model (127) on p. 979.

c©2018 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 1114



The Ho-Lee Model: Volatility Term Structure

• The volatility term structure is composed of

κ2, κ3, . . . .

– The volatility structure is supplied by the market.

– For the Ho-Lee model, it is independent of

r2, r3, . . . .

• It is easy to compute the vis from the volatility

structure, and vice versa.a

• The ris can be computed by forward induction.

aReview p. 1113.
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The Ho-Lee Model: Bond Price Process

• In a risk-neutral economy, the initial discount factors

satisfya

P (t, t+n) = [ pPu(t+1, t+n)+(1−p)Pd(t+1, t+n) ]P (t, t+1).

• Combine the above with Eq. (149) on p. 1112 and

assume p = 1/2 to obtainb

Pd(t+ 1, t+ n) =
P (t, t+ n)

P (t, t+ 1)

2× exp[ v2 + · · ·+ vn ]

1 + exp[ v2 + · · ·+ vn ]
,

Pu(t+ 1, t+ n) =
P (t, t+ n)

P (t, t+ 1)

2

1 + exp[ v2 + · · ·+ vn ]
.

aRecall Eq. (141) on p. 1046.
bIn the limit, only the volatility matters; the first formula is similar

to multiple logistic regression.
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The Ho-Lee Model: Bond Price Process (concluded)

• The bond price tree combines.a

• Suppose all vi equal some constant v and δ
Δ
= ev > 0.

• Then

Pd(t+ 1, t+ n) =
P (t, t+ n)

P (t, t+ 1)

2δn−1

1 + δn−1
,

Pu(t+ 1, t+ n) =
P (t, t+ n)

P (t, t+ 1)

2

1 + δn−1
.

• Short rate volatility σ = v/2 by Eq. (150) on p. 1114.

• Price derivatives by taking expectations under the

risk-neutral probability.

aSee Exercise 26.2.3 of the textbook.
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Calibration

• The Ho-Lee model can be calibrated in O(n2) time using

state prices.

• But it can actually be calibrated in O(n) time.

– Derive the vi’s in linear time.

– Derive the ri’s in linear time.a

aSee Programming Assignment 26.2.6 of the textbook.
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The Ho-Lee Model: Yields and Their Covariances

• The one-period rate of return of an n-period

zero-coupon bond is

r(t, t+ n)
Δ
= ln

(
P (t+ 1, t+ n)

P (t, t+ n)

)
.

• Its two possible value are

ln
Pd(t+ 1, t+ n)

P (t, t+ n)
and ln

Pu(t+ 1, t+ n)

P (t, t+ n)
.

• Thus the variance of return is

Var[ r(t, t+ n) ] = p(1− p)((n− 1) v)2 = (n− 1)2σ2.
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The Ho-Lee Model: Yields and Their Covariances
(concluded)

• The covariance between r(t, t+ n) and r(t, t+m) isa

(n− 1)(m− 1)σ2.

• As a result, the correlation between any two one-period

rates of return is one.

• Strong correlation between rates is inherent in all

one-factor Markovian models.

aSee Exercise 26.2.7 of the textbook.
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The Ho-Lee Model: Short Rate Process

• The continuous-time limit of the Ho-Lee model isa

dr = θ(t) dt+ σ dW.

• This is Vasicek’s model with the mean-reverting drift

replaced by a deterministic, time-dependent drift.

• A nonflat term structure of volatilities can be achieved if

the short rate volatility is also made time varying,

dr = θ(t) dt+ σ(t) dW.

• This corresponds to the discrete-time model in which vi

are not all identical.
aSee Exercise 26.2.10 of the textbook.
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The Ho-Lee Model: Some Problems

• Future (nominal) interest rates may be negative.

• The short rate volatility is independent of the rate level.

• It has all the problems associated with a one-factor

model.a

aRecall pp. 1098ff. See T. Ho & S. B. Lee (2004) for a multifactor

Ho-Lee model.
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Problems with No-Arbitrage Models in General

• Interest rate movements should reflect shifts in the

model’s state variables (factors) not its parameters.

• Model parameters, such as the drift θ(t) in the

continuous-time Ho-Lee model, should be stable over

time.

• But in practice, no-arbitrage models capture yield curve

shifts through the recalibration of parameters.

– A new model is thus born every day.
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Problems with No-Arbitrage Models in General
(concluded)

• This in effect says the model estimated at some time

does not describe the term structure of interest rates

and their volatilities at other times.

• Consequently, a model’s intertemporal behavior is

suspect, and using it for hedging and risk management

may be unreliable.
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The Black-Derman-Toy Modela

• This model is extensively used by practitioners.

• The BDT short rate process is the lognormal binomial

interest rate process described on pp. 975ff.b

• The volatility structurec is given by the market.

• From it, the short rate volatilities (thus vi) are

determined together with the baseline rates ri.

aBlack, Derman, & Toy (BDT) (1990), but essentially finished in 1986

according to Mehrling (2005).
bRepeated on next page.
cRecall Eq. (133) on p. 1025.
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r4

↗
r3

↗ ↘
r2 r4v4

↗ ↘ ↗
r1 r3v3

↘ ↗ ↘
r2v2 r4v24

↘ ↗
r3v23

↘
r4v34
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The Black-Derman-Toy Model (concluded)

• Our earlier binomial interest rate tree, in contrast,

assumes vi are given a priori.

• Lognormal models preclude negative short rates.
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