Backward Induction on the RT Tree

- After the RT tree is constructed, it can be used to price options by backward induction.
- Recall that each node keeps two variances h_{max}^2 and h_{min}^2 .
- We now increase that number to K equally spaced variances between h_{max}^2 and h_{min}^2 at each node.
- Besides the minimum and maximum variances, the other K-2 variances in between are linearly interpolated.^a

^aIn practice, log-linear interpolation works better (Lyuu & C. Wu (R90723065), 2005). Log-cubic interpolation works even better (C. Liu (R92922123), 2005).

Backward Induction on the RT Tree (continued)

• For example, if K = 3, then a variance of

$$10.5436 \times 10^{-6}$$

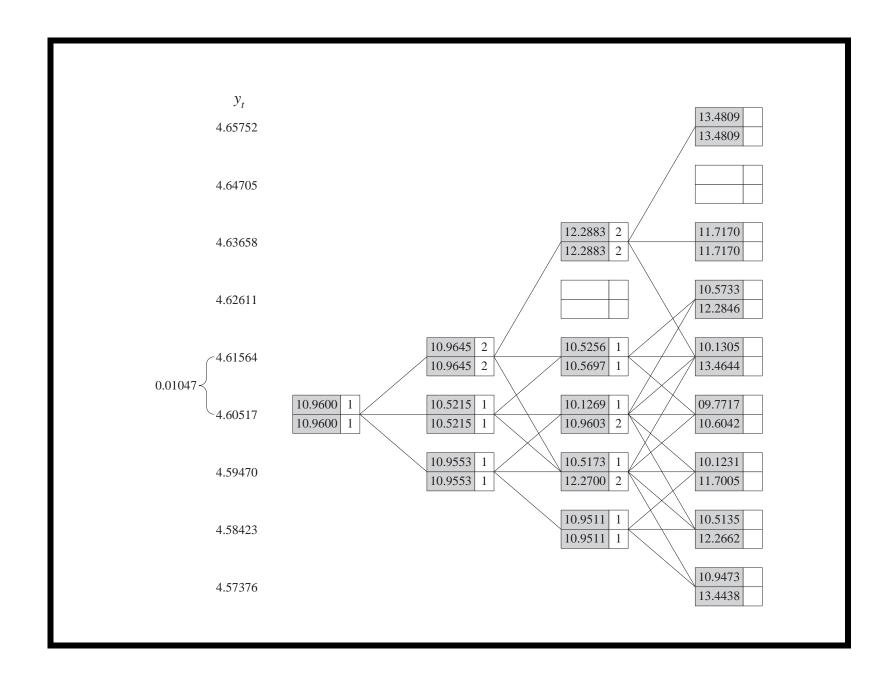
will be added between the maximum and minimum variances at node (2,0) on p. 936.^a

• In general, the kth variance at node (i, j) is

$$h_{\min}^2(i,j) + k \frac{h_{\max}^2(i,j) - h_{\min}^2(i,j)}{K-1}, \quad k = 0, 1, \dots, K-1.$$

• Each interpolated variance's jump parameter and branching probabilities can be computed as before.

^aRepeated on p. 956.



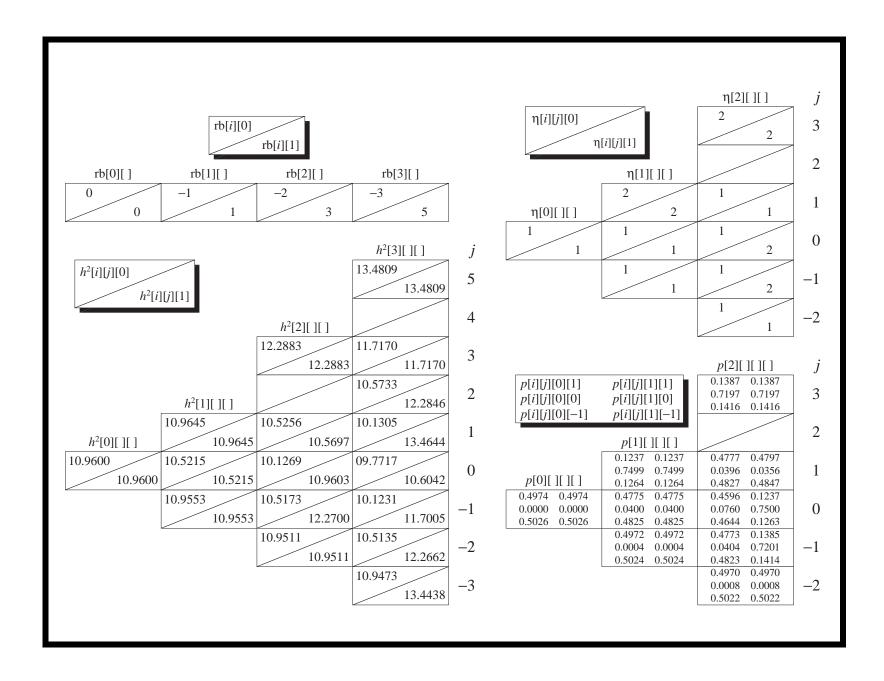
Backward Induction on the RT Tree (concluded)

- Suppose a variance falls between two of the K variances during backward induction.
- Linear interpolation of the option prices corresponding to the two bracketing variances will be used as the approximate option price.
- The above ideas are reminiscent of the ones on p. 431, where we dealt with Asian options.

Numerical Examples

- We next use the tree on p. 956 to price a European call option with a strike price of 100 and expiring at date 3.
- Recall that the riskless interest rate is zero.
- Assume K = 2; hence there are no interpolated variances.
- The pricing tree is shown on p. 959 with a call price of 0.66346.
 - The branching probabilities needed in backward induction can be found on p. 960.





- Let us derive some of the numbers on p. 959.
- A gray line means the updated variance falls strictly between h_{max}^2 and h_{min}^2 .
- The option price for a terminal node at date 3 equals $\max(S_3 100, 0)$, independent of the variance level.
- Now move on to nodes at date 2.
- The option price at node (2,3) depends on those at nodes (3,5), (3,3), and (3,1).
- It therefore equals

 $0.1387 \times 5.37392 + 0.7197 \times 3.19054 + 0.1416 \times 1.05240 = 3.19054.$

- Option prices for other nodes at date 2 can be computed similarly.
- For node (1,1), the option price for both variances is $0.1237 \times 3.19054 + 0.7499 \times 1.05240 + 0.1264 \times 0.14573 = 1.20241$.
- Node (1,0) is most interesting.
- We knew that a down move from it gives a variance of 0.000105609.
- This number falls between the minimum variance 0.000105173 and the maximum variance 0.0001227 at node (2,-1) on p. 960.

- The option price corresponding to the minimum variance is 0 (p. 960).
- The option price corresponding to the maximum variance is 0.14573.
- The equation

$$x \times 0.000105173 + (1 - x) \times 0.0001227 = 0.000105609$$
 is satisfied by $x = 0.9751$.

• So the option for the down state is approximated by

$$x \times 0 + (1 - x) \times 0.14573 = 0.00362.$$

- The up move leads to the state with option price 1.05240.
- The middle move leads to the state with option price 0.48366.
- The option price at node (1,0) is finally calculated as $0.4775 \times 1.05240 + 0.0400 \times 0.48366 + 0.4825 \times 0.00362 = 0.52360$.

- A variance following an interpolated variance may exceed the maximum variance or be exceeded by the minimum variance.
- When this happens, the option price corresponding to the maximum or minimum variance will be used during backward induction.^a

^aCakici & Topyan (2000).

Numerical Examples (concluded)

- But an interpolated variance may choose a branch that goes into a node that is *not* reached in forward induction.^a
- In this case, the algorithm fails.
- The RT algorithm does not have this problem.
 - This is because all interpolated variances are involved in the forward-induction phase.
- It may be hard to calculate the implied β_1 and β_2 from option prices.^b

^aLyuu & C. Wu (R90723065) (2005).

^bY. Chang (B89704039, R93922034) (2006).

Complexities of GARCH Models^a

- The RT algorithm explodes exponentially if n is big enough (p. 932).
- The mean-tracking tree of Lyuu and Wu (2005) makes sure explosion does not happen if n is not too large.^b
- The next page summarizes the situations for many GARCH option pricing models.
 - Our earlier treatment is for NGARCH only.

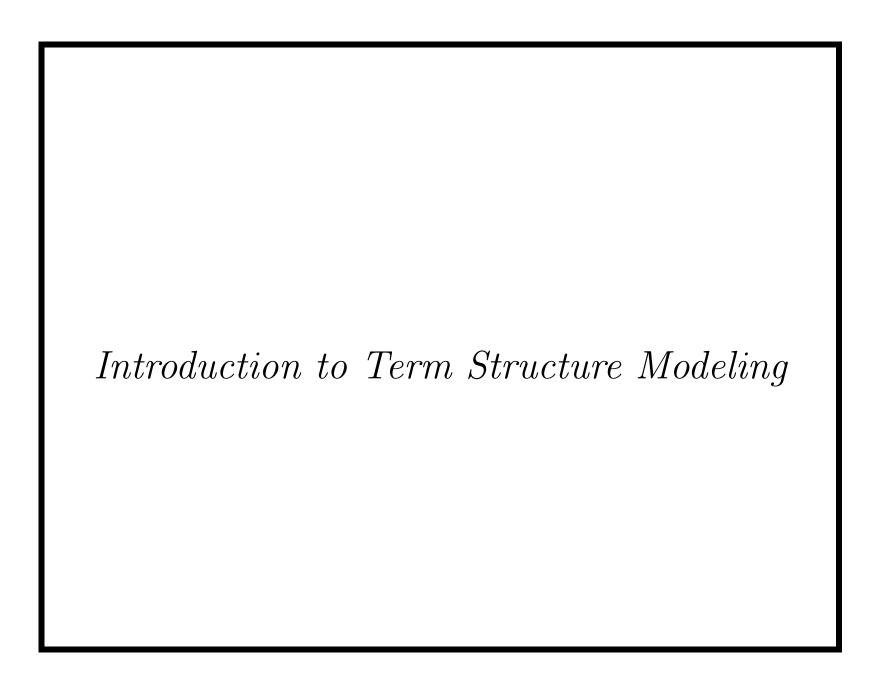
^aLyuu & C. Wu (R90723065) (2003, 2005).

^bSimilar to, but earlier than, the binomial-trinomial tree on pp. 725ff.

Complexities of GARCH Models (concluded)^a

Model	Explosion	Non-explosion
NGARCH	$\beta_1 + \beta_2 n > 1$	$\beta_1 + \beta_2(\sqrt{n} + \lambda + c)^2 \le 1$
LGARCH	$\beta_1 + \beta_2 n > 1$	$\beta_1 + \beta_2(\sqrt{n} + \lambda)^2 \le 1$
AGARCH	$\beta_1 + \beta_2 n > 1$	$\beta_1 + \beta_2(\sqrt{n} + \lambda)^2 \le 1$
GJR-GARCH	$\beta_1 + \beta_2 n > 1$	$\beta_1 + (\beta_2 + \beta_3)(\sqrt{n} + \lambda)^2 \le 1$
TS-GARCH	$\beta_1 + \beta_2 \sqrt{n} > 1$	$\beta_1 + \beta_2(\lambda + \sqrt{n}) \le 1$
TGARCH	$\beta_1 + \beta_2 \sqrt{n} > 1$	$\beta_1 + (\beta_2 + \beta_3)(\lambda + \sqrt{n}) \le 1$
Heston-Nandi	$\beta_1 + \beta_2 (c - \frac{1}{2})^2 > 1$	$\beta_1 + \beta_2 c^2 \le 1$
	& $c \leq \frac{1}{2}$	
VGARCH	$\beta_1 + (\beta_2/4) > 1$	$\beta_1 \le 1$

 $^{^{\}rm a}{\rm Y.~C.~Chen}$ (R95723051) (2008); Y. C. Chen (R95723051), Lyuu, & Wen (D94922003) (2012).



The fox often ran to the hole by which they had come in, to find out if his body was still thin enough to slip through it. — Grimm's Fairy Tales

And the worst thing you can have is models and spreadsheets. — Warren Buffet, May 3, 2008

Outline

- Use the binomial interest rate tree to model stochastic term structure.
 - Illustrates the basic ideas underlying future models.
 - Applications are generic in that pricing and hedging methodologies can be easily adapted to other models.
- Although the idea is similar to the earlier one used in option pricing, the current task is more complicated.
 - The evolution of an entire term structure, not just a single stock price, is to be modeled.
 - Interest rates of various maturities cannot evolve arbitrarily, or arbitrage profits may occur.

Issues

- A stochastic interest rate model performs two tasks.
 - Provides a stochastic process that defines future term structures without arbitrage profits.
 - "Consistent" with the observed term structures.

History

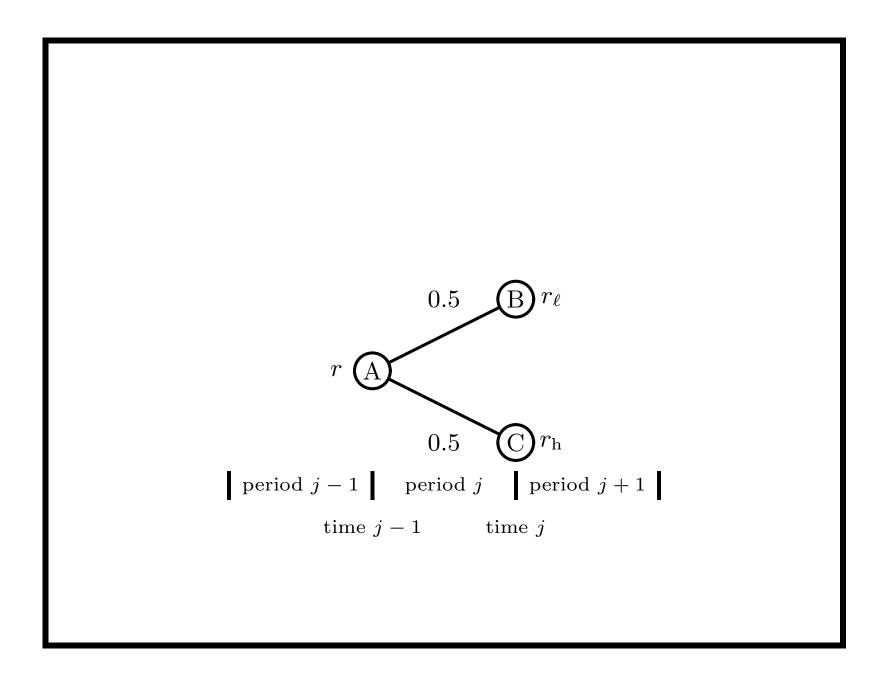
- The methodology was founded by Merton (1970).
- Modern interest rate modeling is often traced to 1977 when Vasicek and Cox, Ingersoll, and Ross developed simultaneously their influential models.
- Early models have fitting problems because they may not price today's benchmark bonds correctly.
- An alternative approach pioneered by Ho and Lee (1986) makes fitting the market yield curve mandatory.
- Models based on such a paradigm are called (somewhat misleadingly) arbitrage-free or no-arbitrage models.

Binomial Interest Rate Tree

- Goal is to construct a no-arbitrage interest rate tree consistent with the yields and/or yield volatilities of zero-coupon bonds of all maturities.
 - This procedure is called calibration.^a
- Pick a binomial tree model in which the logarithm of the future short rate obeys the binomial distribution.
 - Exactly like the CRR tree.
- The limiting distribution of the short rate at any future time is hence lognormal.

^aDerman (2004), "complexity without calibration is pointless."

- A binomial tree of future short rates is constructed.
- Every short rate is followed by two short rates in the following period (p. 977).
- In the figure on p. 977, node A coincides with the start of period j during which the short rate r is in effect.
- At the conclusion of period j, a new short rate goes into effect for period j + 1.



- This may take one of two possible values:
 - $-r_{\ell}$: the "low" short-rate outcome at node B.
 - $-r_{\rm h}$: the "high" short-rate outcome at node C.
- Each branch has a 50% chance of occurring in a risk-neutral economy.
- We require that the paths combine as the binomial process unfolds.
- This model can be traced to Salomon Brothers.^a

^aTuckman (2002).

- The short rate r can go to r_h and r_ℓ with equal risk-neutral probability 1/2 in a period of length Δt .
- Hence the volatility of $\ln r$ after Δt time is^a

$$\sigma = \frac{1}{2} \frac{1}{\sqrt{\Delta t}} \ln \left(\frac{r_{\rm h}}{r_{\ell}} \right). \tag{127}$$

• Above, σ is annualized, whereas r_{ℓ} and $r_{\rm h}$ are period based.

^aSee Exercise 23.2.3 in text.

• Note that

$$\frac{r_{\rm h}}{r_{\ell}} = e^{2\sigma\sqrt{\Delta t}}.$$

- Thus greater volatility, hence uncertainty, leads to larger $r_{\rm h}/r_{\ell}$ and wider ranges of possible short rates.
- The ratio r_h/r_ℓ may depend on time if the volatility is a function of time.
- Note that r_h/r_ℓ has nothing to do with the current short rate r if σ is independent of r.

• In general there are j possible rates for period j,

$$r_j, r_j v_j, r_j v_j^2, \ldots, r_j v_j^{j-1},$$

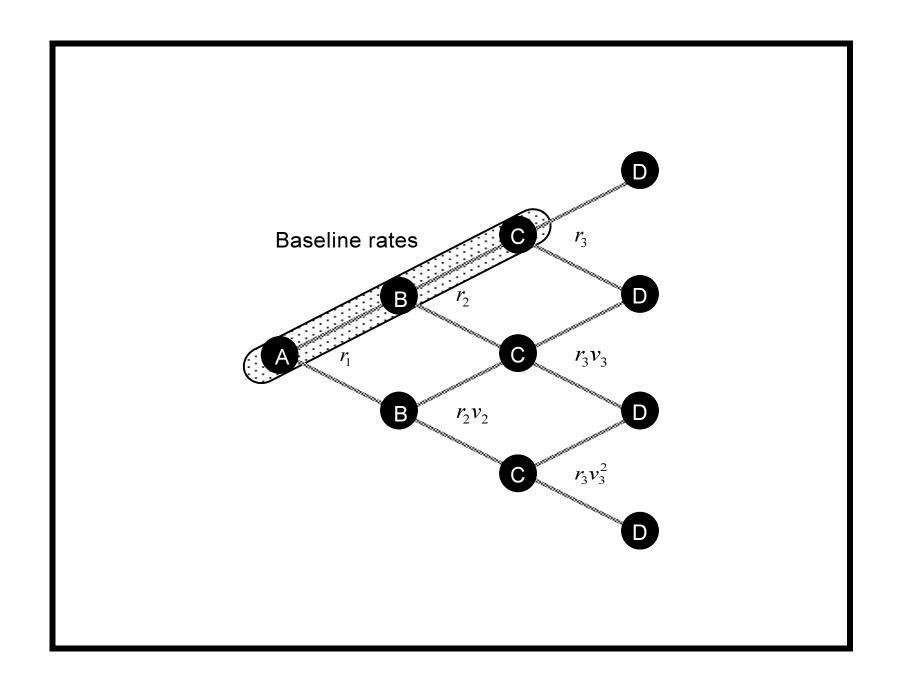
where

$$v_j \stackrel{\Delta}{=} e^{2\sigma_j \sqrt{\Delta t}} \tag{128}$$

is the multiplicative ratio for the rates in period j (see figure on next page).

- We shall call r_j the baseline rates.
- The subscript j in σ_j above is meant to emphasize that the short rate volatility may be time dependent.

^aNot j + 1.



• In the limit, the short rate follows

$$r(t) = \mu(t) e^{\sigma(t) W(t)}$$
. (129)

- The (percent) short rate volatility $\sigma(t)$ is a deterministic function of time.
- The expected value of r(t) equals $\mu(t) e^{\sigma(t)^2(t/2)}$.
- Hence a *declining* short rate volatility is usually imposed to preclude the short rate from assuming implausibly high values.
- Incidentally, this is how the binomial interest rate tree achieves mean reversion to some long-term mean.

Memory Issues

- Path independency: The term structure at any node is independent of the path taken to reach it.
- So only the baseline rates r_i and the multiplicative ratios v_i need to be stored in computer memory.
- This takes up only O(n) space.^a
- Storing the whole tree would take up $O(n^2)$ space.
 - Daily interest rate movements for 30 years require roughly $(30 \times 365)^2/2 \approx 6 \times 10^7$ double-precision floating-point numbers (half a gigabyte!).

^aThroughout, n denotes the depth of the tree.

Set Things in Motion

- The abstract process is now in place.
- We need the yields to maturities of the riskless bonds that make up the benchmark yield curve and their volatilities.
- In the U.S., for example, the on-the-run yield curve obtained by the most recently issued Treasury securities may be used as the benchmark curve.

Set Things in Motion (concluded)

- The term structure of (yield) volatilities^a can be estimated from:
 - Historical data (historical volatility).
 - Or interest rate option prices such as cap prices (implied volatility).
- The binomial tree should be found that is consistent with both term structures.
- Here we focus on the term structure of interest rates.

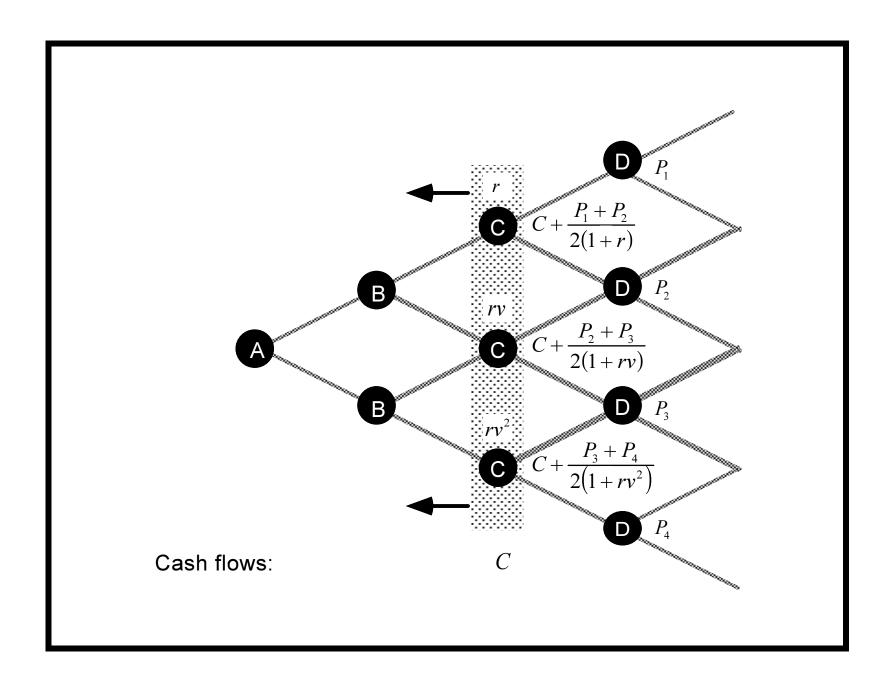
^aOr simply the volatility (term) structure.

Model Term Structures

- The model price is computed by backward induction.
- Refer back to the figure on p. 977.
- Given that the values at nodes B and C are $P_{\rm B}$ and $P_{\rm C}$, respectively, the value at node A is then

$$\frac{P_{\mathrm{B}}+P_{\mathrm{C}}}{2(1+r)}+\mathsf{cash}$$
 flow at node A.

- We compute the values column by column (see next page).
- This takes $O(n^2)$ time and O(n) space.



Term Structure Dynamics

- An n-period zero-coupon bond's price can be computed by assigning \$1 to every node at period n and then applying backward induction.
- Repeating this step for n = 1, 2, ..., one obtains the market discount function implied by the tree.
- The tree therefore determines a term structure.
- It also contains a term structure dynamics.
 - Taking any node in the tree as the current state induces a binomial interest rate tree and, again, a term structure.

Sample Term Structure

- We shall construct interest rate trees consistent with the sample term structure in the following table.
 - This is calibration (the reverse of pricing).
- Assume the short rate volatility is such that

$$v \stackrel{\Delta}{=} \frac{r_{\rm h}}{r_{\ell}} = 1.5,$$

independent of time.

Period	1	2	3
Spot rate (%)	4	4.2	4.3
One-period forward rate $(\%)$	4	4.4	4.5
Discount factor	0.96154	0.92101	0.88135

An Approximate Calibration Scheme

- Start with the implied one-period forward rates.
- Equate the expected short rate with the forward rate.^a
- For the first period, the forward rate is today's one-period spot rate.
- In general, let f_j denote the forward rate in period j.
- This forward rate can be derived from the market discount function via^b

$$f_j = \frac{d(j)}{d(j+1)} - 1.$$

^aSee Exercise 5.6.6 in text.

^bSee Exercise 5.6.3 in text.

An Approximate Calibration Scheme (continued)

• Since the *i*th short rate $r_j v_j^{i-1}$, $1 \le i \le j$, occurs with probability $2^{-(j-1)} \binom{j-1}{i-1}$, this means

$$\sum_{i=1}^{j} 2^{-(j-1)} {j-1 \choose i-1} r_j v_j^{i-1} = f_j.$$

• Thus

$$r_j = \left(\frac{2}{1+v_j}\right)^{j-1} f_j. \tag{130}$$

• This binomial interest rate tree is trivial to set up (implicitly), in O(n) time.

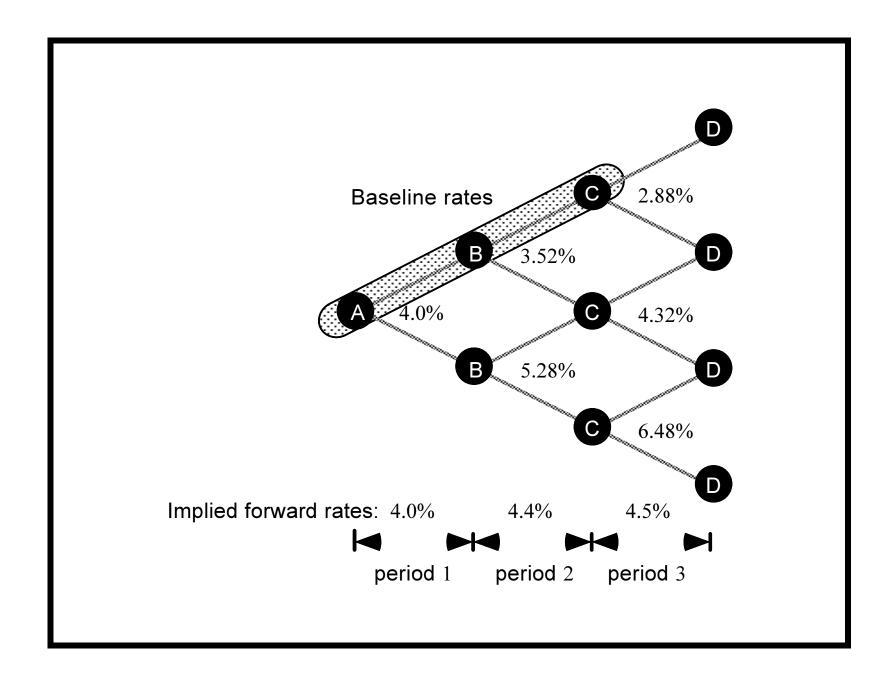
An Approximate Calibration Scheme (continued)

- The ensuing tree for the sample term structure appears in figure next page.
- For example, the price of the zero-coupon bond paying \$1 at the end of the third period is

$$\frac{1}{4} \times \frac{1}{1.04} \times \left(\frac{1}{1.0352} \times \left(\frac{1}{1.0288} + \frac{1}{1.0432}\right) + \frac{1}{1.0528} \times \left(\frac{1}{1.0432} + \frac{1}{1.0648}\right)\right)$$

or 0.88155, which exceeds discount factor 0.88135.

• The tree is thus *not* calibrated.



An Approximate Calibration Scheme (concluded)

- Indeed, this bias is inherent: The tree overprices the bonds.^a
- Suppose we replace the baseline rates r_j by $r_j v_j$.
- Then the resulting tree underprices the bonds.^b
- The true baseline rates are thus bounded between r_j and $r_j v_j$.

^aSee Exercise 23.2.4 in text.

^bLyuu & C. Wang (F95922018) (2009, 2011).

Issues in Calibration

- The model prices generated by the binomial interest rate tree should match the observed market prices.
- Perhaps the most crucial aspect of model building.
- Treat the backward induction for the model price of the m-period zero-coupon bond as computing some function $f(r_m)$ of the unknown baseline rate r_m for period m.
- A root-finding method is applied to solve $f(r_m) = P$ for r_m given the zero's price P and $r_1, r_2, \ldots, r_{m-1}$.
- This procedure is carried out for m = 1, 2, ..., n.
- It runs in $O(n^3)$ time.

Binomial Interest Rate Tree Calibration

- Calibration can be accomplished in $O(n^2)$ time by the use of forward induction.^a
- The scheme records how much \$1 at a node contributes to the model price.
- This number is called the state price, the Arrow-Debreu price, or Green's function.
 - It is the price of a state contingent claim that pays
 \$1 at that particular node (state) and 0 elsewhere.
- The column of state prices will be established by moving forward from time 0 to time n.

^aJamshidian (1991).

Binomial Interest Rate Tree Calibration (continued)

- Suppose we are at $time \ j$ and there are j+1 nodes.
 - The unknown baseline rate for period j is $r \stackrel{\triangle}{=} r_j$.
 - The multiplicative ratio is $v \stackrel{\Delta}{=} v_j$.
 - $-P_1, P_2, \ldots, P_j$ are the known state prices at earlier time j-1.
 - They have rates r, rv, \ldots, rv^{j-1} for period j.^a
- By definition, $\sum_{i=1}^{j} P_i$ is the price of the (j-1)-period zero-coupon bond.
- We want to find r based on P_1, P_2, \ldots, P_j and the price of the j-period zero-coupon bond.

^aRecall p. 982.

Binomial Interest Rate Tree Calibration (continued)

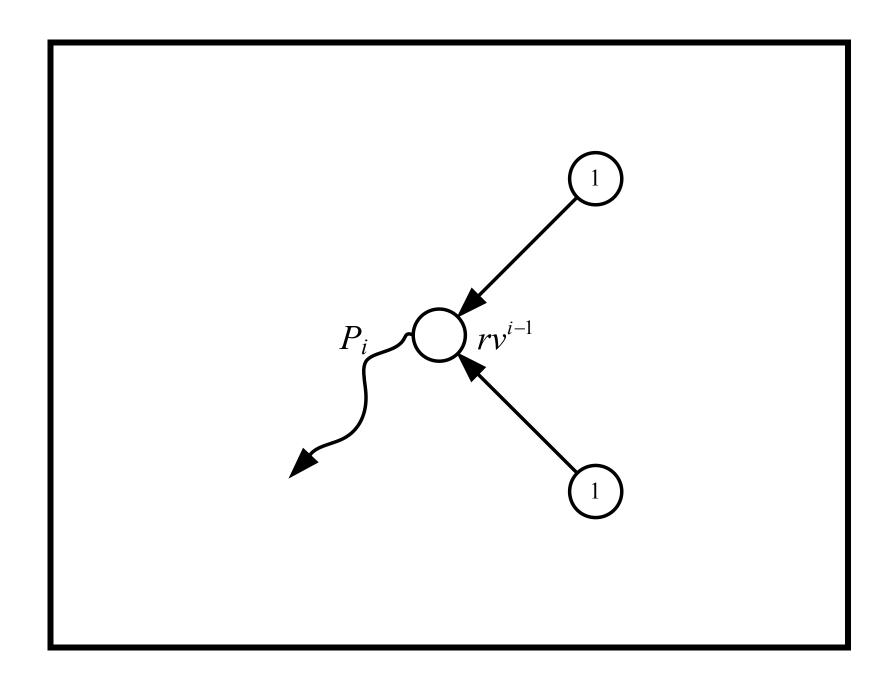
- One dollar at time j has a known market value of $1/[1+S(j)]^j$, where S(j) is the j-period spot rate.
- Alternatively, this dollar has a present value of

$$g(r) \stackrel{\Delta}{=} \frac{P_1}{(1+r)} + \frac{P_2}{(1+rv)} + \frac{P_3}{(1+rv^2)} + \dots + \frac{P_j}{(1+rv^{j-1})}$$
(see next plot).

• So we solve

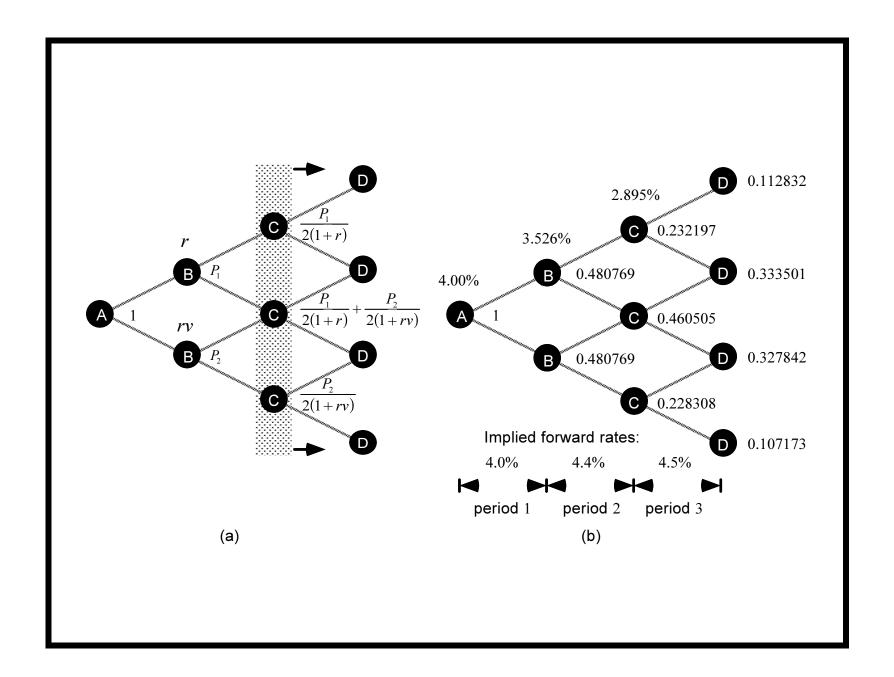
$$g(r) = \frac{1}{[1 + S(j)]^j}$$
 (131)

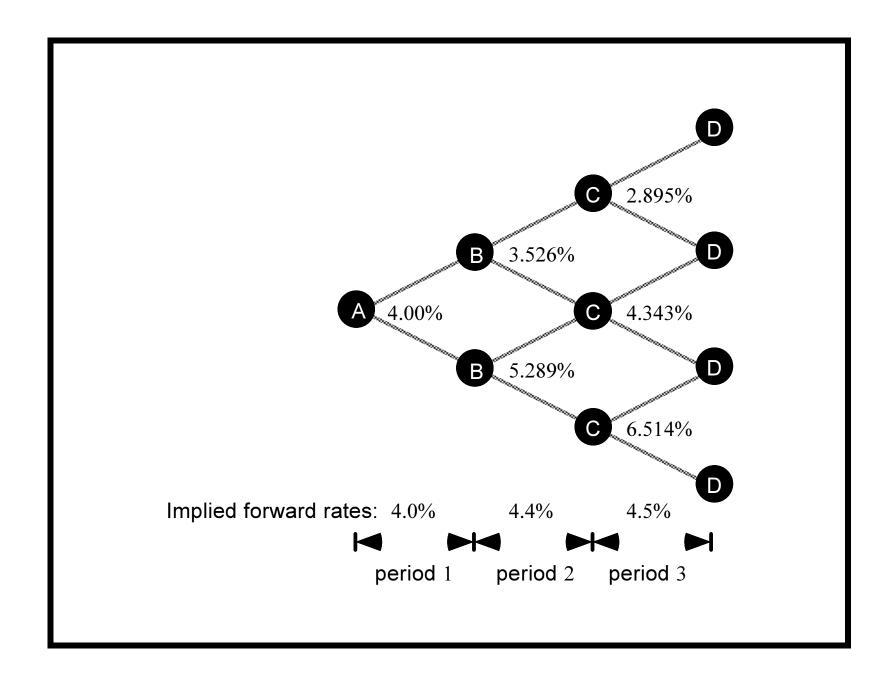
for r.



Binomial Interest Rate Tree Calibration (continued)

- Given a decreasing market discount function, a unique positive solution for r is guaranteed.
- The state prices at time j can now be calculated (see panel (a) next page).
- We call a tree with these state prices a binomial state price tree (see panel (b) next page).
- The calibrated tree is depicted on p. 1003.





Binomial Interest Rate Tree Calibration (concluded)

- The Newton-Raphson method can be used to solve for the r in Eq. (131) on p. 999 as g'(r) is easy to evaluate.
- The monotonicity and the convexity of g(r) also facilitate root finding.
- The total running time is $O(n^2)$, as each root-finding routine consumes O(j) time.
- With a good initial guess,^a the Newton-Raphson method converges in only a few steps.^b

^aSuch as the $r_j = (\frac{2}{1+v_j})^{j-1} f_j$ on p. 992.

^bLyuu (1999).

A Numerical Example

- One dollar at the end of the second period should have a present value of 0.92101 by the sample term structure.
- The baseline rate for the second period, r_2 , satisfies

$$\frac{0.480769}{1+r_2} + \frac{0.480769}{1+1.5 \times r_2} = 0.92101.$$

- The result is $r_2 = 3.526\%$.
- This is used to derive the next column of state prices shown in panel (b) on p. 1002 as 0.232197, 0.460505, and 0.228308.
- Their sum gives the correct market discount factor 0.92101.

A Numerical Example (concluded)

• The baseline rate for the third period, r_3 , satisfies

$$\frac{0.232197}{1+r_3} + \frac{0.460505}{1+1.5 \times r_3} + \frac{0.228308}{1+(1.5)^2 \times r_3} = 0.88135.$$

- The result is $r_3 = 2.895\%$.
- Now, redo the calculation on p. 993 using the new rates:

$$\frac{1}{4} \times \frac{1}{1.04} \times \left[\frac{1}{1.03526} \times \left(\frac{1}{1.02895} + \frac{1}{1.04343}\right) + \frac{1}{1.05289} \times \left(\frac{1}{1.04343} + \frac{1}{1.06514}\right)\right],$$

which equals 0.88135, an exact match.

• The tree on p. 1003 prices without bias the benchmark securities.

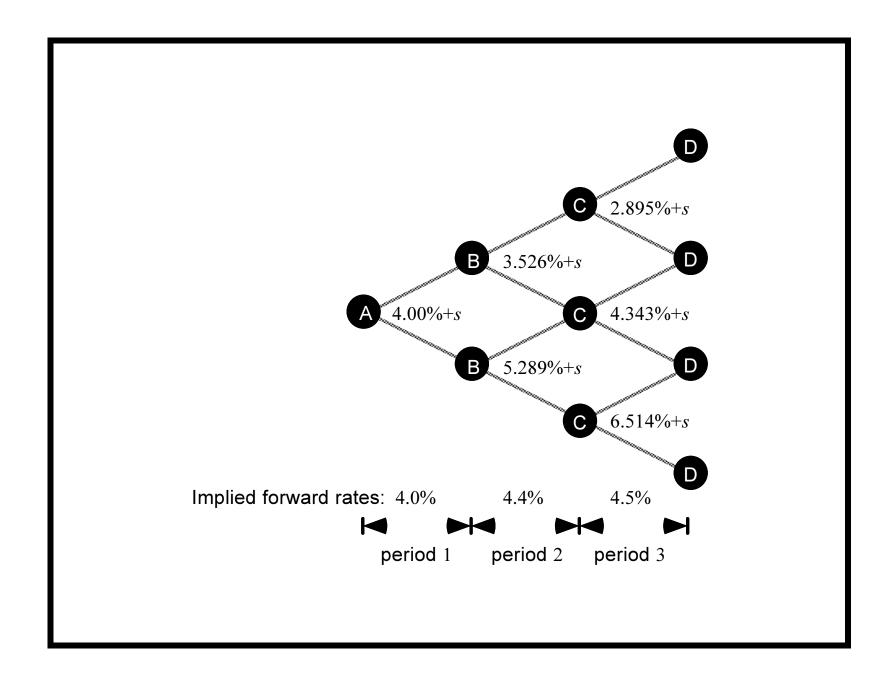
Spread of Nonbenchmark Bonds

- Model prices calculated by the calibrated tree as a rule do not match market prices of nonbenchmark bonds.
- The incremental return over the benchmark bonds is called spread.
- If we add the spread uniformly over the short rates in the tree, the model price will equal the market price.
- We will apply the spread concept to option-free bonds next.

- We illustrate the idea with an example.
- Start with the tree on p. 1009.
- Consider a security with cash flow C_i at time i for i = 1, 2, 3.
- Its model price is p(s), which is equal to

$$\frac{1}{1.04+s} \times \left[C_1 + \frac{1}{2} \times \frac{1}{1.03526+s} \times \left(C_2 + \frac{1}{2} \left(\frac{C_3}{1.02895+s} + \frac{C_3}{1.04343+s} \right) \right) + \frac{1}{2} \times \frac{1}{1.05289+s} \times \left(C_2 + \frac{1}{2} \left(\frac{C_3}{1.04343+s} + \frac{C_3}{1.06514+s} \right) \right) \right].$$

• Given a market price of P, the spread is the s that solves P = p(s).



- The model price p(s) is a monotonically decreasing, convex function of s.
- We will employ the Newton-Raphson root-finding method to solve

$$p(s) - P = 0$$

for s.

- But a quick look at the equation for p(s) reveals that evaluating p'(s) directly is infeasible.
- Fortunately, the tree can be used to evaluate both p(s) and p'(s) during backward induction.

- Consider an arbitrary node A in the tree associated with the short rate r.
- In the process of computing the model price p(s), a price $p_{A}(s)$ is computed at A.
- Prices computed at A's two successor nodes B and C are discounted by r + s to obtain $p_{A}(s)$ as follows,

$$p_{\rm A}(s) = c + \frac{p_{\rm B}(s) + p_{\rm C}(s)}{2(1+r+s)},$$

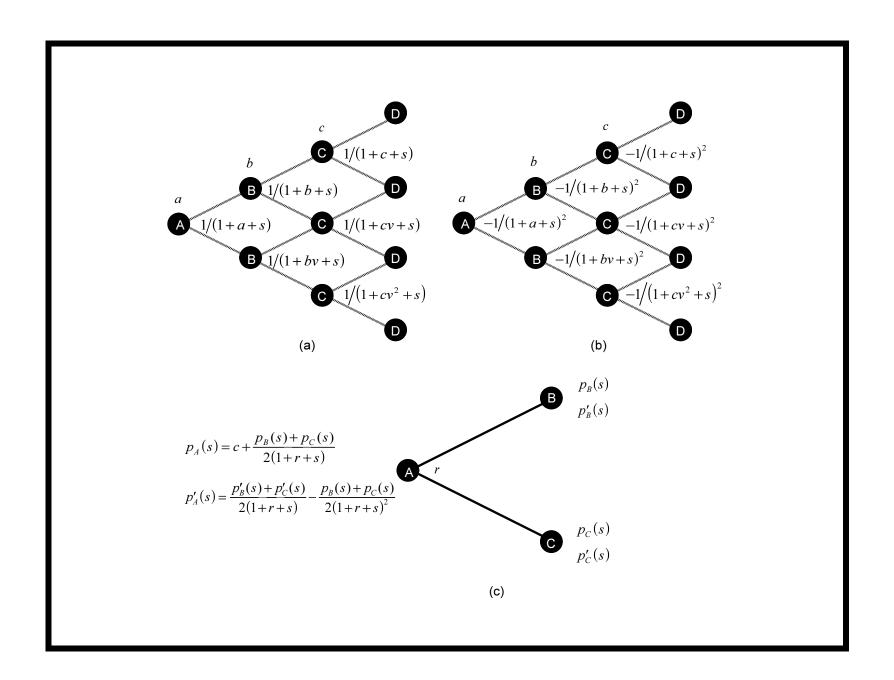
where c denotes the cash flow at A.

• To compute $p'_{A}(s)$ as well, node A calculates

$$p_{\mathcal{A}}'(s) = \frac{p_{\mathcal{B}}'(s) + p_{\mathcal{C}}'(s)}{2(1+r+s)} - \frac{p_{\mathcal{B}}(s) + p_{\mathcal{C}}(s)}{2(1+r+s)^2}.$$
(132)

- This is easy if $p'_{B}(s)$ and $p'_{C}(s)$ are also computed at nodes B and C.
- When A is a terminal node, simply use the payoff function for $p_{A}(s)$.^a

^aContributed by Mr. Chou, Ming-Hsin (R02723073) on May 28, 2014.



- Apply the above procedure inductively to yield p(s) and p'(s) at the root (p. 1013).
- This is called the differential tree method.^a
 - Similar ideas can be found in automatic differentiation (AD)^b and backpropagation^c in artificial neural networks.
- The total running time is $O(n^2)$.
- The memory requirement is O(n).

^aLyuu (1999).

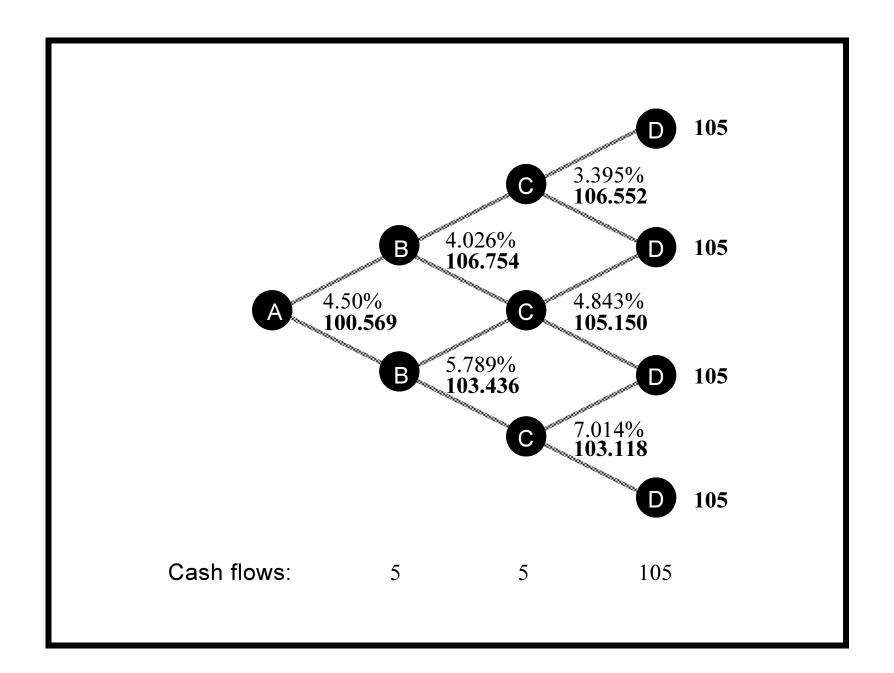
^bRall (1981).

^cWerbos (1974); Rumelhart, Hinton, & Williams (1986).

Number of	Running	Number of	Number of	Running	Number of
partitions n	time (s)	iterations	partitions	time (s)	iterations
500	7.850	5	10500	3503.410	5
1500	71.650	5	11500	4169.570	5
2500	198.770	5	12500	4912.680	5
3500	387.460	5	13500	5714.440	5
4500	641.400	5	14500	6589.360	5
5500	951.800	5	15500	7548.760	5
6500	1327.900	5	16500	8502.950	5
7500	1761.110	5	17500	9523.900	5
8500	2269.750	5	18500	10617.370	5
9500	2834.170	5			

75MHz Sun SPARCstation 20.

- Consider a three-year, 5% bond with a market price of 100.569.
- Assume the bond pays annual interest.
- The spread can be shown to be 50 basis points over the tree (p. 1017).
- Note that the idea of spread does not assume parallel shifts in the term structure.
- It also differs from the yield spread (p. 130) and static spread (p. 131) of the nonbenchmark bond over an otherwise identical benchmark bond.



More Applications of the Differential Tree: Calculating Implied Volatility (in seconds)^a

American call

American put

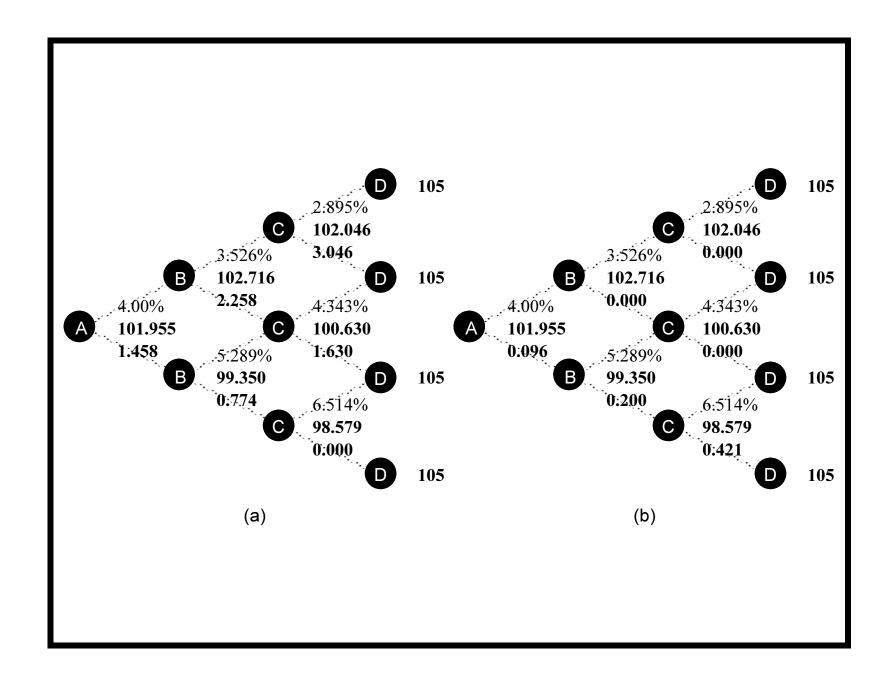
Number of	Running	Number of	Number of	Running	Number of
partitions	$_{ m time}$	iterations	partitions	$_{ m time}$	iterations
100	0.008210	2	100	0.013845	3
200	0.033310	2	200	0.036335	3
300	0.072940	2	300	0.120455	3
400	0.129180	2	400	0.214100	3
500	0.201850	2	500	0.333950	3
600	0.290480	2	600	0.323260	2
700	0.394090	2	700	0.435720	2
800	0.522040	2	800	0.569605	2

Intel 166MHz Pentium, running on Microsoft Windows 95.

^aLyuu (1999).

Fixed-Income Options

- Consider a 2-year 99 European call on the 3-year, 5% Treasury.
- Assume the Treasury pays annual interest.
- From p. 1020 the 3-year Treasury's price minus the \$5 interest at year 2 could be \$102.046, \$100.630, or \$98.579 two years from now.
 - The accrued interest is *not* included as it belongs to the original bondholder.
- Now compare the strike price against the bond prices.
- The call is in the money in the first two scenarios out of the money in the third.



Fixed-Income Options (continued)

- The option value is calculated to be \$1.458 on p. 1020(a).
- European interest rate puts can be valued similarly.
- Consider a two-year 99 European put on the same security.
- At expiration, the put is in the money only when the Treasury is worth \$98.579 without the accrued interest.
- The option value is computed to be \$0.096 on p. 1020(b).

Fixed-Income Options (concluded)

- The present value of the strike price is $PV(X) = 99 \times 0.92101 = 91.18$.
- The Treasury is worth B = 101.955.
- The present value of the interest payments during the life of the options is

$$PV(I) = 5 \times 0.96154 + 5 \times 0.92101 = 9.41275.$$

- The call and the put are worth C = 1.458 and P = 0.096, respectively.
- Hence the put-call parity is preserved:

$$C = P + B - PV(I) - PV(X).$$

Delta or Hedge Ratio

- How much does the option price change in response to changes in the *price* of the underlying bond?
- This relation is called delta (or hedge ratio) defined as

$$\frac{O_{\rm h} - O_{\ell}}{P_{\rm h} - P_{\ell}}.$$

- In the above P_h and P_ℓ denote the bond prices if the short rate moves up and down, respectively.
- Similarly, O_h and O_ℓ denote the option values if the short rate moves up and down, respectively.

Delta or Hedge Ratio (concluded)

- Delta measures the sensitivity of the option value to changes in the underlying bond price.
- So it shows how to hedge one with the other.
- Take the call and put on p. 1020 as examples.
- Their deltas are

$$\frac{0.774 - 2.258}{99.350 - 102.716} = 0.441,$$

$$\frac{0.200 - 0.000}{99.350 - 102.716} = -0.059,$$

respectively.

Volatility Term Structures

- The binomial interest rate tree can be used to calculate the yield volatility of zero-coupon bonds.
- Consider an *n*-period zero-coupon bond.
- First find its yield to maturity y_h (y_ℓ , respectively) at the end of the initial period if the short rate rises (declines, respectively).
- The yield volatility for our model is defined as

$$\frac{1}{2} \ln \left(\frac{y_{\rm h}}{y_{\ell}} \right). \tag{133}$$

Volatility Term Structures (continued)

- For example, based on the tree on p. 1003, the two-year zero's yield at the end of the first period is 5.289% if the rate rises and 3.526% if the rate declines.
- Its yield volatility is therefore

$$\frac{1}{2} \ln \left(\frac{0.05289}{0.03526} \right) = 20.273\%.$$

Volatility Term Structures (continued)

- Consider the three-year zero-coupon bond.
- If the short rate rises, the price of the zero one year from now will be

$$\frac{1}{2} \times \frac{1}{1.05289} \times \left(\frac{1}{1.04343} + \frac{1}{1.06514}\right) = 0.90096.$$

- Thus its yield is $\sqrt{\frac{1}{0.90096}} 1 = 0.053531$.
- If the short rate declines, the price of the zero one year from now will be

$$\frac{1}{2} \times \frac{1}{1.03526} \times \left(\frac{1}{1.02895} + \frac{1}{1.04343}\right) = 0.93225.$$

Volatility Term Structures (continued)

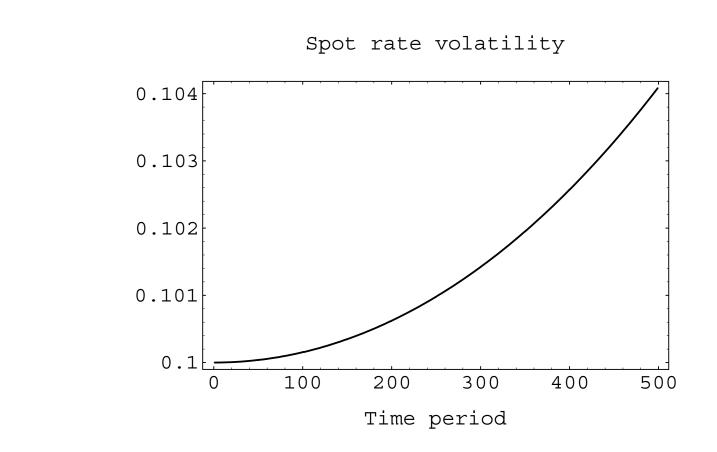
- Thus its yield is $\sqrt{\frac{1}{0.93225}} 1 = 0.0357$.
- The yield volatility is hence

$$\frac{1}{2}\ln\left(\frac{0.053531}{0.0357}\right) = 20.256\%,$$

slightly less than the one-year yield volatility.

- This is consistent with the reality that longer-term bonds typically have lower yield volatilities than shorter-term bonds.^a
- The procedure can be repeated for longer-term zeros to obtain their yield volatilities.

^aThe relation is reversed for *price* volatilities (duration).



Short rate volatility given flat %10 volatility term structure.

Volatility Term Structures (concluded)

- We started with v_i and then derived the volatility term structure.
- In practice, the steps are reversed.
- The volatility term structure is supplied by the user along with the term structure.
- The v_i —hence the short rate volatilities via Eq. (128) on p. 981—and the r_i are then simultaneously determined.
- The result is the Black-Derman-Toy model of Goldman Sachs.^a

^aBlack, Derman, & Toy (1990).