Control Variates

- Use the analytic solution of a "similar" yet "simpler" problem to improve the solution.
- Suppose we want to estimate $E[X]$ and there exists a random variable Y with a known mean $\mu \triangleq E[Y]$.
- Then $W \triangleq X+\beta(Y-\mu)$ can serve as a "controlled" estimator of $E[X]$ for any constant β.
- However β is chosen, W remains an unbiased estimator of $E[X]$ as

$$
E[W]=E[X]+\beta E[Y-\mu]=E[X]
$$

Control Variates (continued)

- Note that

$$
\begin{equation*}
\operatorname{Var}[W]=\operatorname{Var}[X]+\beta^{2} \operatorname{Var}[Y]+2 \beta \operatorname{Cov}[X, Y] \tag{115}
\end{equation*}
$$

- Hence W is less variable than X if and only if

$$
\begin{equation*}
\beta^{2} \operatorname{Var}[Y]+2 \beta \operatorname{Cov}[X, Y]<0 \tag{116}
\end{equation*}
$$

Control Variates (concluded)

- The success of the scheme clearly depends on both β and the choice of Y.
- American options can be priced by choosing Y to be the otherwise identical European option and μ the Black-Scholes formula. ${ }^{\text {a }}$
- Arithmetic Asian options can be priced by choosing Y to be the otherwise identical geometric Asian option's price and $\beta=-1$.
- This approach is much more effective than the antithetic-variates method. ${ }^{\text {b }}$

[^0]
Choice of Y

- In general, the choice of Y is ad hoc, ${ }^{\text {a }}$ and experiments must be performed to confirm the wisdom of the choice.
- Try to match calls with calls and puts with puts. ${ }^{\text {b }}$
- On many occasions, Y is a discretized version of the derivative that gives μ.
- Discretely monitored geometric Asian option vs. the continuously monitored version. ${ }^{\text {c }}$
- The discrepancy can be large (e.g., lookback options). ${ }^{\text {d }}$
${ }^{\text {a }}$ But see Dai (B82506025, R86526008, D8852600), Chiu (R94922072), \& Lyuu (2015, 2018).
${ }^{\mathrm{b}}$ Contributed by Ms. Teng, Huei-Wen (R91723054) on May 25, 2004.
${ }^{\text {c }}$ Priced by formulas (53) on p. 424.
${ }^{\mathrm{d}}$ Contributed by Mr. Tsai, Hwai (R92723049) on May 12, 2004.

Optimal Choice of β

- Equation (115) on p. 856 is minimized when

$$
\beta=-\operatorname{Cov}[X, Y] / \operatorname{Var}[Y]
$$

- It is called beta in the book.
- For this specific β,
$\operatorname{Var}[W]=\operatorname{Var}[X]-\frac{\operatorname{Cov}[X, Y]^{2}}{\operatorname{Var}[Y]}=\left(1-\rho_{X, Y}^{2}\right) \operatorname{Var}[X]$, where $\rho_{X, Y}$ is the correlation between X and Y.

Optimal Choice of β (continued)

- Note that the variance can never be increased with the optimal choice.
- Furthermore, the stronger X and Y are correlated, the greater the reduction in variance.
- For example, if this correlation is nearly perfect (± 1), we could control X almost exactly.

Optimal Choice of β (continued)

- Typically, neither $\operatorname{Var}[Y]$ nor $\operatorname{Cov}[X, Y]$ is known.
- Therefore, we cannot obtain the maximum reduction in variance.
- We can guess these values and hope that the resulting W does indeed have a smaller variance than X.
- A second possibility is to use the simulated data to estimate these quantities.
- How to do it efficiently in terms of time and space?

Optimal Choice of β (concluded)

- Observe that $-\beta$ has the same sign as the correlation between X and Y.
- Hence, if X and Y are positively correlated, $\beta<0$, then X is adjusted downward whenever $Y>\mu$ and upward otherwise.
- The opposite is true when X and Y are negatively correlated, in which case $\beta>0$.
- Suppose a suboptimal $\beta+\epsilon$ is used instead.
- The variance increases by only $\epsilon^{2} \operatorname{Var}[Y]$. ${ }^{\text {a }}$

[^1]
A Pitfall

- A potential pitfall is to sample X and Y independently.
- In this case, $\operatorname{Cov}[X, Y]=0$.
- Equation (115) on p. 856 becomes

$$
\operatorname{Var}[W]=\operatorname{Var}[X]+\beta^{2} \operatorname{Var}[Y] .
$$

- So whatever Y is, the variance is increased!
- Lesson: X and Y must be correlated.

Problems with the Monte Carlo Method

- The error bound is only probabilistic.
- The probabilistic error bound of $O(1 / \sqrt{N})$ does not benefit from regularity of the integrand function.
- The requirement that the points be independent random samples are wasteful because of clustering.
- In reality, pseudorandom numbers generated by completely deterministic means are used.
- Monte Carlo simulation exhibits a great sensitivity on the seed of the pseudorandom-number generator.

Matrix Computation

To set up a philosophy against physics is rash; philosophers who have done so have always ended in disaster.

- Bertrand Russell

Definitions and Basic Results

- Let $A \triangleq\left[a_{i j}\right]_{1 \leq i \leq m, 1 \leq j \leq n}$, or simply $A \in \boldsymbol{R}^{m \times n}$, denote an $m \times n$ matrix.
- It can also be represented as $\left[a_{1}, a_{2}, \ldots, a_{n}\right]$ where $a_{i} \in \boldsymbol{R}^{m}$ are vectors.
- Vectors are column vectors unless stated otherwise.
- A is a square matrix when $m=n$.
- The rank of a matrix is the largest number of linearly independent columns.

Definitions and Basic Results (continued)

- A square matrix A is said to be symmetric if $A^{\mathrm{T}}=A$.
- A real $n \times n$ matrix

$$
A \triangleq\left[a_{i j}\right]_{i, j}
$$

is diagonally dominant if $\left|a_{i i}\right|>\sum_{j \neq i}\left|a_{i j}\right|$ for $1 \leq i \leq n$.

- Such matrices are nonsingular.
- The identity matrix is the square matrix

$$
I \triangleq \operatorname{diag}[1,1, \ldots, 1]
$$

Definitions and Basic Results (concluded)

- A matrix has full column rank if its columns are linearly independent.
- A real symmetric matrix A is positive definite if

$$
x^{\mathrm{T}} A x=\sum_{i, j} a_{i j} x_{i} x_{j}>0
$$

for any nonzero vector x.

- A matrix A is positive definite if and only if there exists a matrix W such that $A=W^{\mathrm{T}} W$ and W has full column rank.

Cholesky Decomposition

- Positive definite matrices can be factored as

$$
A=L L^{\mathrm{T}},
$$

called the Cholesky decomposition.

- Above, L is a lower triangular matrix.

Generation of Multivariate Distribution

- Let $\boldsymbol{x} \triangleq\left[x_{1}, x_{2}, \ldots, x_{n}\right]^{\mathrm{T}}$ be a vector random variable with a positive definite covariance matrix C.
- As usual, assume $E[\boldsymbol{x}]=\mathbf{0}$.
- This covariance structure can be matched by $P \boldsymbol{y}$.
$-\boldsymbol{y} \triangleq\left[y_{1}, y_{2}, \ldots, y_{n}\right]^{\mathrm{T}}$ is a vector random variable with a covariance matrix equal to the identity matrix.
$-C=P P^{\mathrm{T}}$ is the Cholesky decomposition of C. ${ }^{\text {a }}$

[^2]
Generation of Multivariate Distribution (concluded)

- For example, suppose

$$
C=\left[\begin{array}{ll}
1 & \rho \\
\rho & 1
\end{array}\right] .
$$

- Then

$$
P=\left[\begin{array}{cc}
1 & 0 \\
\rho & \sqrt{1-\rho^{2}}
\end{array}\right]
$$

as $P P^{\mathrm{T}}=C$. ${ }^{\mathrm{a}}$
${ }^{\text {a }}$ Recall Eq. (27) on p. 174.

Generation of Multivariate Normal Distribution

- Suppose we want to generate the multivariate normal distribution with a covariance matrix $C=P P^{\mathrm{T}}$.
- First, generate independent standard normal distributions $y_{1}, y_{2}, \ldots, y_{n}$.
- Then

$$
P\left[y_{1}, y_{2}, \ldots, y_{n}\right]^{\mathrm{T}}
$$

has the desired distribution.

- These steps can then be repeated.

Multivariate Derivatives Pricing

- Generating the multivariate normal distribution is essential for the Monte Carlo pricing of multivariate derivatives (pp. 772ff).
- For example, the rainbow option on k assets has payoff

$$
\max \left(\max \left(S_{1}, S_{2}, \ldots, S_{k}\right)-X, 0\right)
$$

at maturity.

- The closed-form formula is a multi-dimensional integral. ${ }^{\text {a }}$

[^3]
Multivariate Derivatives Pricing (concluded)

- Suppose $d S_{j} / S_{j}=r d t+\sigma_{j} d W_{j}, 1 \leq j \leq k$, where C is the correlation matrix for $d W_{1}, d W_{2}, \ldots, d W_{k}$.
- Let $C=P P^{\mathrm{T}}$.
- Let ξ consist of k independent random variables from $N(0,1)$.
- Let $\xi^{\prime}=P \xi$.
- Similar to Eq. (114) on p. 816,

$$
S_{i+1}=S_{i} e^{\left(r-\sigma_{j}^{2} / 2\right) \Delta t+\sigma_{j} \sqrt{\Delta t} \xi_{j}^{\prime}}, \quad 1 \leq j \leq k .
$$

Least-Squares Problems

- The least-squares (LS) problem is concerned with

$$
\min _{x \in R^{n}}\|A x-b\|,
$$

where $A \in \boldsymbol{R}^{m \times n}, b \in \boldsymbol{R}^{m}$, and $m \geq n$.

- The LS problem is called regression analysis in statistics and is equivalent to minimizing the mean-square error.
- Often written as

$$
A x=b .
$$

Polynomial Regression

- In polynomial regression, $x_{0}+x_{1} x+\cdots+x_{n} x^{n}$ is used to fit the data $\left\{\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right), \ldots,\left(a_{m}, b_{m}\right)\right\}$.
- This leads to the LS problem,

$$
\left[\begin{array}{ccccc}
1 & a_{1} & a_{1}^{2} & \cdots & a_{1}^{n} \\
1 & a_{2} & a_{2}^{2} & \cdots & a_{2}^{n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & a_{m} & a_{m}^{2} & \cdots & a_{m}^{n}
\end{array}\right]\left[\begin{array}{c}
x_{0} \\
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{m}
\end{array}\right] .
$$

- Consult p. 273 of the textbook for solutions.

American Option Pricing by Simulation

- The continuation value of an American option is the conditional expectation of the payoff from keeping the option alive now.
- The option holder must compare the immediate exercise value and the continuation value.
- In standard Monte Carlo simulation, each path is treated independently of other paths.
- But the decision to exercise the option cannot be reached by looking at one path alone.

The Least-Squares Monte Carlo Approach

- The continuation value can be estimated from the cross-sectional information in the simulation by using least squares. ${ }^{\text {a }}$
- The result is a function (of the state) for estimating the continuation values.
- Use the function to estimate the continuation value for each path to determine its cash flow.
- This is called the least-squares Monte Carlo (LSM) approach.

[^4]
The Least-Squares Monte Carlo Approach (concluded)

- The LSM is provably convergent. ${ }^{a}$
- The LSM can be easily parallelized. ${ }^{\text {b }}$
- Partition the paths into subproblems and perform LSM on each of them independently.
- The speedup is close to linear (i.e., proportional to the number of cores).
- Surprisingly, accuracy is not affected.

[^5]
A Numerical Example

- Consider a 3 -year American put on a non-dividend-paying stock.
- The put is exercisable at years $0,1,2$, and 3 .
- The strike price $X=105$.
- The annualized riskless rate is $r=5 \%$.
- The annual discount factor hence equals 0.951229 .
- The current stock price is 101 .
- We use only 8 price paths to illustrate the algorithm.

A Numerical Example (continued)

Stock price paths

Path	Year 0	Year 1	Year 2	Year 3
1	$\mathbf{1 0 1}$	$\mathbf{9 7 . 6 4 2 4}$	$\mathbf{9 2 . 5 8 1 5}$	107.5178
2	$\mathbf{1 0 1}$	$\mathbf{1 0 1 . 2 1 0 3}$	105.1763	$\mathbf{1 0 2 . 4 5 2 4}$
3	$\mathbf{1 0 1}$	105.7802	$\mathbf{1 0 3 . 6 0 1 0}$	124.5115
4	$\mathbf{1 0 1}$	$\mathbf{9 6 . 4 4 1 1}$	$\mathbf{9 8 . 7 1 2 0}$	108.3600
5	$\mathbf{1 0 1}$	124.2345	$\mathbf{1 0 1 . 0 5 6 4}$	$\mathbf{1 0 4 . 5 3 1 5}$
6	$\mathbf{1 0 1}$	$\mathbf{9 5 . 8 3 7 5}$	$\mathbf{9 3 . 7 2 7 0}$	$\mathbf{9 9 . 3 7 8 8}$
7	$\mathbf{1 0 1}$	108.9554	$\mathbf{1 0 2 . 4 1 7 7}$	$\mathbf{1 0 0 . 9 2 2 5}$
8	$\mathbf{1 0 1}$	$\mathbf{1 0 4 . 1 4 7 5}$	113.2516	115.0994

A Numerical Example (continued)

- We use the basis functions $1, x, x^{2}$.
- Other basis functions are possible. ${ }^{\text {a }}$
- The plot next page shows the final estimated optimal exercise strategy given by LSM.
- We now proceed to tackle our problem.
- The idea is to calculate the cash flow along each path, using information from all paths.

[^6]

A Numerical Example (continued)

Cash flows at year 3				
Path	Year 0	Year 1	Year 2	Year 3
1	-	-	-	0
2	-	-	-	2.5476
3	-	-	-	0
4	-	-	-	0
5	-	-	-	0.4685
6	-	-	-	5.6212
7	-	-	-	4.0775
8	-	-	-	0

A Numerical Example (continued)

- The cash flows at year 3 are the exercise value if the put is in the money.
- Only 4 paths are in the money: $2,5,6,7$.
- Some of the cash flows may not occur if the put is exercised earlier, which we will find out step by step.
- Incidentally, the European counterpart has a value of

$$
0.951229^{3} \times \frac{2.5476+0.4685+5.6212+4.0775}{8}=1.3680
$$

A Numerical Example (continued)

- We move on to year 2 .
- For each state that is in the money at year 2, we must decide whether to exercise it.
- There are 6 paths for which the put is in the money: 1 , $3,4,5,6,7$ (p. 882).
- Only in-the-money paths will be used in the regression because they are where early exercise is relevant.
- If there were none, we would move on to year 1.

A Numerical Example (continued)

- Let x denote the stock prices at year 2 for those 6 paths.
- Let y denote the corresponding discounted future cash flows (at year 3) if the put is not exercised at year 2 .

A Numerical Example (continued)

Regression at year 2

Path	x	y
1	92.5815	0×0.951229
2	-	-
3	103.6010	0×0.951229
4	98.7120	0×0.951229
5	101.0564	0.4685×0.951229
6	93.7270	5.6212×0.951229
7	102.4177	4.0775×0.951229
8	-	-

A Numerical Example (continued)

- We regress y on $1, x$, and x^{2}.
- The result is

$$
f(x)=22.08-0.313114 \times x+0.00106918 \times x^{2} .
$$

- $f(x)$ estimates the continuation value conditional on the stock price at year 2 .
- We next compare the immediate exercise value and the continuation value. ${ }^{\text {a }}$

[^7]
A Numerical Example (continued)

Optimal early exercise decision at year 2

Path	Exercise	Continuation
1	12.4185	$f(92.5815)=2.2558$
2	-	-
3	1.3990	$f(103.6010)=1.1168$
4	6.2880	$f(98.7120)=1.5901$
5	3.9436	$f(101.0564)=1.3568$
6	11.2730	$f(93.7270)=2.1253$
7	2.5823	$f(102.4177)=1.2266$
8	-	-

A Numerical Example (continued)

- Amazingly, the put should be exercised in all 6 paths: 1 , $3,4,5,6,7$.
- Now, any positive cash flow at year 3 should be set to zero or overridden for these paths as the put is exercised before year 3 (p. 882).
- They are paths 5, 6, 7.
- The cash flows on p. 886 become the ones on next slide.

A Numerical Example (continued)

Cash flows at years $2 \& 3$

Path	Year 0	Year 1	Year 2	Year 3
1	-	-	12.4185	0
2	-	-	0	2.5476
3	-	-	1.3990	0
4	-	-	6.2880	0
5	-	-	3.9436	0
6	-	-	11.2730	0
7	-	-	2.5823	0
8	-	-	0	0

A Numerical Example (continued)

- We move on to year 1 .
- For each state that is in the money at year 1, we must decide whether to exercise it.
- There are 5 paths for which the put is in the money: 1 , $2,4,6,8$ (p. 882).
- Only in-the-money paths will be used in the regression because they are where early exercise is relevant.
- If there were none, we would move on to year 0 .

A Numerical Example (continued)

- Let x denote the stock prices at year 1 for those 5 paths.
- Let y denote the corresponding discounted future cash flows if the put is not exercised at year 1 .
- From p. 894, we have the following table.

A Numerical Example (continued)

Regression at year 1

Path	x	y
1	97.6424	12.4185×0.951229
2	101.2103	$2.5476 \times 0.951229^{2}$
3	-	-
4	96.4411	6.2880×0.951229
5	-	-
6	95.8375	11.2730×0.951229
7	-	-
8	104.1475	0

A Numerical Example (continued)

- We regress y on $1, x$, and x^{2}.
- The result is

$$
f(x)=-420.964+9.78113 \times x-0.0551567 \times x^{2} .
$$

- $f(x)$ estimates the continuation value conditional on the stock price at year 1 .
- We next compare the immediate exercise value and the continuation value.

A Numerical Example (continued)

Optimal early exercise decision at year 1

Path	Exercise	Continuation
1	7.3576	$f(97.6424)=8.2230$
2	3.7897	$f(101.2103)=3.9882$
3	-	-
4	8.5589	$f(96.4411)=9.3329$
5	-	
6	9.1625	$f(95.8375)=9.83042$
7	-	
8	0.8525	$f(104.1475)=-0.551885$

A Numerical Example (continued)

- The put should be exercised for 1 path only: 8 .
- Note that $f(104.1475)<0$.
- Now, any positive future cash flow should be set to zero or overridden for this path.
- But there is none.
- The cash flows on p. 894 become the ones on next slide.
- They also confirm the plot on p. 885.

A Numerical Example (continued)

Cash flows at years 1, 2, \& 3				
Path	Year 0	Year 1	Year 2	Year 3
1	-	0	12.4185	0
2	-	0	0	2.5476
3	-	0	1.3990	0
4	-	0	6.2880	0
5	-	0	3.9436	0
6	-	0	11.2730	0
7	-	0	2.5823	0
8	-	0.8525	0	0

A Numerical Example (continued)

- We move on to year 0 .
- The continuation value is, from p 901,

$$
\begin{aligned}
& \left(12.4185 \times 0.951229^{2}+2.5476 \times 0.951229^{3}\right. \\
& +1.3990 \times 0.951229^{2}+6.2880 \times 0.951229^{2} \\
& +3.9436 \times 0.951229^{2}+11.2730 \times 0.951229^{2} \\
& \left.+2.5823 \times 0.951229^{2}+0.8525 \times 0.951229\right) / 8 \\
= & 4.66263
\end{aligned}
$$

A Numerical Example (concluded)

- As this is larger than the immediate exercise value of

$$
105-101=4
$$

the put should not be exercised at year 0 .

- Hence the put's value is estimated to be 4.66263 .
- Compare this with the European put's value of 1.3680 (p. 887).

Time Series Analysis

The historian is a prophet in reverse.

- Friedrich von Schlegel (1772-1829)

GARCH Option Pricing ${ }^{\text {a }}$

- Options can be priced when the underlying asset's return follows a GARCH process.
- Let S_{t} denote the asset price at date t.
- Let h_{t}^{2} be the conditional variance of the return over the period $[t, t+1]$ given the information at date t.
- "One day" is merely a convenient term for any elapsed time Δt.

[^8]
GARCH Option Pricing (continued)

- Adopt the following risk-neutral process for the price dynamics: ${ }^{a}$

$$
\begin{equation*}
\ln \frac{S_{t+1}}{S_{t}}=r-\frac{h_{t}^{2}}{2}+h_{t} \epsilon_{t+1} \tag{117}
\end{equation*}
$$

where

$$
\begin{aligned}
h_{t+1}^{2} & =\beta_{0}+\beta_{1} h_{t}^{2}+\beta_{2} h_{t}^{2}\left(\epsilon_{t+1}-c\right)^{2} \\
\epsilon_{t+1} & \sim N(0,1) \text { given information at date } t \\
r & =\text { daily riskless return } \\
c & \geq 0
\end{aligned}
$$

[^9]
GARCH Option Pricing (continued)

- The five unknown parameters of the model are c, h_{0}, β_{0}, β_{1}, and β_{2}.
- It is postulated that $\beta_{0}, \beta_{1}, \beta_{2} \geq 0$ to make the conditional variance positive.
- There are other inequalities to satisfy (see text).
- The above process is called the nonlinear asymmetric GARCH (or NGARCH) model.

GARCH Option Pricing (continued)

- It captures the volatility clustering in asset returns first noted by Mandelbrot (1963). ${ }^{\text {a }}$
- When $c=0$, a large ϵ_{t+1} results in a large h_{t+1}, which in turns tends to yield a large h_{t+2}, and so on.
- It also captures the negative correlation between the asset return and changes in its (conditional) volatility. ${ }^{\text {b }}$
- For $c>0$, a positive ϵ_{t+1} (good news) tends to decrease h_{t+1}, whereas a negative ϵ_{t+1} (bad news) tends to do the opposite.

[^10]
GARCH Option Pricing (concluded)

- With $y_{t} \triangleq \ln S_{t}$ denoting the logarithmic price, the model becomes

$$
\begin{equation*}
y_{t+1}=y_{t}+r-\frac{h_{t}^{2}}{2}+h_{t} \epsilon_{t+1} \tag{119}
\end{equation*}
$$

- The pair $\left(y_{t}, h_{t}^{2}\right)$ completely describes the current state.
- The conditional mean and variance of y_{t+1} are clearly

$$
\begin{align*}
E\left[y_{t+1} \mid y_{t}, h_{t}^{2}\right] & =y_{t}+r-\frac{h_{t}^{2}}{2}, \tag{120}\\
\operatorname{Var}\left[y_{t+1} \mid y_{t}, h_{t}^{2}\right] & =h_{t}^{2} . \tag{121}
\end{align*}
$$

GARCH Model: Inferences

- Suppose the parameters $c, h_{0}, \beta_{0}, \beta_{1}$, and β_{2} are given.
- Then we can recover $h_{1}, h_{2}, \ldots, h_{n}$ and $\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{n}$ from the prices

$$
S_{0}, S_{1}, \ldots, S_{n}
$$

under the GARCH model (117) on p. 907.

- This property is useful in statistical inferences.

The Ritchken-Trevor (RT) Algorithm ${ }^{\text {a }}$

- The GARCH model is a continuous-state model.
- To approximate it, we turn to trees with discrete states.
- Path dependence in GARCH makes the tree for asset prices explode exponentially (why?).
- We need to mitigate this combinatorial explosion.

[^11]
The RT Algorithm (continued)

- Partition a day into n periods.
- Three states follow each state $\left(y_{t}, h_{t}^{2}\right)$ after a period.
- As the trinomial model combines, each state at date t is followed by $2 n+1$ states at date $t+1$ (recall p. 703).
- These $2 n+1$ values must approximate the distribution of $\left(y_{t+1}, h_{t+1}^{2}\right)$.
- So the conditional moments (120)-(121) at date $t+1$ on p. 910 must be matched by the trinomial model to guarantee convergence to the continuous-state model.

The RT Algorithm (continued)

- It remains to pick the jump size and the three branching probabilities.
- The role of σ in the Black-Scholes option pricing model is played by h_{t} in the GARCH model.
- As a jump size proportional to σ / \sqrt{n} is picked in the BOPM, a comparable magnitude will be chosen here.
- Define $\gamma \triangleq h_{0}$, though other multiples of h_{0} are possible, and

$$
\gamma_{n} \triangleq \frac{\gamma}{\sqrt{n}}
$$

The RT Algorithm (continued)

- The jump size will be some integer multiple η of γ_{n}.
- We call η the jump parameter (see next page).
- Obviously, the magnitude of η grows with h_{t}.
- The middle branch does not change the underlying asset's price.

The seven values on the right approximate the distribution of logarithmic price y_{t+1}.

The RT Algorithm (continued)

- The probabilities for the up, middle, and down branches are

$$
\begin{align*}
p_{u} & =\frac{h_{t}^{2}}{2 \eta^{2} \gamma^{2}}+\frac{r-\left(h_{t}^{2} / 2\right)}{2 \eta \gamma \sqrt{n}} \tag{122}\\
p_{m} & =1-\frac{h_{t}^{2}}{\eta^{2} \gamma^{2}} \tag{123}\\
p_{d} & =\frac{h_{t}^{2}}{2 \eta^{2} \gamma^{2}}-\frac{r-\left(h_{t}^{2} / 2\right)}{2 \eta \gamma \sqrt{n}} \tag{124}
\end{align*}
$$

The RT Algorithm (continued)

- It can be shown that:
- The trinomial model takes on $2 n+1$ values at date $t+1$ for y_{t+1}.
- These values have a matching mean for y_{t+1}.
- These values have an asymptotically matching variance for y_{t+1}.
- The central limit theorem guarantees convergence as n increases. ${ }^{\text {a }}$

[^12]
The RT Algorithm (continued)

- We can dispense with the intermediate nodes between dates to create a $(2 n+1)$-nomial tree (p. 920).
- The resulting model is multinomial with $2 n+1$
branches from any state $\left(y_{t}, h_{t}^{2}\right)$.
- There are two reasons behind this manipulation.
- Interdate nodes are created merely to approximate the continuous-state model after one day.
- Keeping the interdate nodes results in a tree that can be n times larger. ${ }^{\text {a }}$

[^13]

This heptanomial tree is the outcome of the trinomial tree on p. 916 after its intermediate nodes are removed.

The RT Algorithm (continued)

- A node with logarithmic price $y_{t}+\ell \eta \gamma_{n}$ at date $t+1$ follows the current node at date t with price y_{t}, where

$$
-n \leq \ell \leq n
$$

- To reach that price in n periods, the number of up moves must exceed that of down moves by exactly ℓ.
- The probability that this happens is

$$
P(\ell) \triangleq \sum_{j_{u}, j_{m}, j_{d}} \frac{n!}{j_{u}!j_{m}!j_{d}!} p_{u}^{j_{u}} p_{m}^{j_{m}} p_{d}^{j_{d}}
$$

with $j_{u}, j_{m}, j_{d} \geq 0, n=j_{u}+j_{m}+j_{d}$, and $\ell=j_{u}-j_{d}$.

The RT Algorithm (continued)

- A particularly simple way to calculate the $P(\ell)$ s starts by noting that

$$
\begin{equation*}
\left(p_{u} x+p_{m}+p_{d} x^{-1}\right)^{n}=\sum_{\ell=-n}^{n} P(\ell) x^{\ell} \tag{125}
\end{equation*}
$$

- Convince yourself that this trick does the "accounting" correctly.
- So we expand $\left(p_{u} x+p_{m}+p_{d} x^{-1}\right)^{n}$ and retrieve the probabilities by reading off the coefficients.
- It can be computed in $O\left(n^{2}\right)$ time, if not less.

The RT Algorithm (continued)

- The updating rule (118) on p. 907 must be modified to account for the adoption of the discrete-state model.
- The logarithmic price $y_{t}+\ell \eta \gamma_{n}$ at date $t+1$ following state $\left(y_{t}, h_{t}^{2}\right)$ is associated with this variance:

$$
\begin{equation*}
h_{t+1}^{2}=\beta_{0}+\beta_{1} h_{t}^{2}+\beta_{2} h_{t}^{2}\left(\epsilon_{t+1}^{\prime}-c\right)^{2}, \tag{126}
\end{equation*}
$$

- Above,

$$
\epsilon_{t+1}^{\prime}=\frac{\ell \eta \gamma_{n}-\left(r-h_{t}^{2} / 2\right)}{h_{t}}, \quad \ell=0, \pm 1, \pm 2, \ldots, \pm n
$$

is a discrete random variable with $2 n+1$ values.

The RT Algorithm (continued)

- Different conditional variances h_{t}^{2} may require different η so that the probabilities calculated by Eqs. (122)-(124) on p. 917 lie between 0 and 1.
- This implies varying jump sizes.
- The necessary requirement $p_{m} \geq 0$ implies $\eta \geq h_{t} / \gamma$.
- Hence we try

$$
\eta=\left\lceil h_{t} / \gamma\right\rceil,\left\lceil h_{t} / \gamma\right\rceil+1,\left\lceil h_{t} / \gamma\right\rceil+2, \ldots
$$

until valid probabilities are obtained or until their nonexistence is confirmed.

The RT Algorithm (continued)

- The sufficient and necessary condition for valid probabilities to exist is ${ }^{\text {a }}$

$$
\frac{\left|r-\left(h_{t}^{2} / 2\right)\right|}{2 \eta \gamma \sqrt{n}} \leq \frac{h_{t}^{2}}{2 \eta^{2} \gamma^{2}} \leq \min \left(1-\frac{\left|r-\left(h_{t}^{2} / 2\right)\right|}{2 \eta \gamma \sqrt{n}}, \frac{1}{2}\right)
$$

- The plot on p. 926 uses $n=1$ to illustrate our points for a 3-day model.
- For example, node $(1,1)$ of date 1 and node $(2,3)$ of date 2 pick $\eta=2$.

[^14]

The RT Algorithm (continued)

- The topology of the tree is not a standard combining multinomial tree.
- For example, a few nodes on p. 926 such as nodes $(2,0)$ and $(2,-1)$ have multiple jump sizes.
- The reason is path dependency of the model.
- Two paths can reach node $(2,0)$ from the root node, each with a different variance for the node.
- One variance results in $\eta=1$.
- The other results in $\eta=2$.

The RT Algorithm (concluded)

- The number of possible values of h_{t}^{2} at a node can be exponential.
- Because each path brings a different variance h_{t}^{2}.
- To address this problem, we record only the maximum and minimum h_{t}^{2} at each node. ${ }^{\text {a }}$
- Therefore, each node on the tree contains only two states $\left(y_{t}, h_{\max }^{2}\right)$ and ($y_{t}, h_{\min }^{2}$).
- Each of $\left(y_{t}, h_{\max }^{2}\right)$ and $\left(y_{t}, h_{\min }^{2}\right)$ carries its own η and set of $2 n+1$ branching probabilities.

[^15]
Negative Aspects of the Ritchken-Trevor Algorithm ${ }^{\text {a }}$

- A small n may yield inaccurate option prices.
- But the tree will grow exponentially if n is large enough.
- Specifically, $n>\left(1-\beta_{1}\right) / \beta_{2}$ when $r=c=0$.
- A large n has another serious problem: The tree cannot grow beyond a certain date.
- Thus the choice of n may be quite limited in practice.
- The RT algorithm can be modified to be free of shortened maturity and exponential complexity. ${ }^{\text {b }}$
${ }^{\text {a }}$ Lyuu \& C. Wu (R90723065) (2003, 2005).
${ }^{\mathrm{b}}$ Its size is only $O\left(n^{2}\right)$ if $n \leq\left(\sqrt{\left(1-\beta_{1}\right) / \beta_{2}}-c\right)^{2}$!

Numerical Examples

- Assume

$$
\begin{aligned}
& -S_{0}=100, y_{0}=\ln S_{0}=4.60517 \\
& -r=0 \\
& -n=1 \\
& -h_{0}^{2}=0.0001096, \gamma=h_{0}=0.010469 \\
& -\gamma_{n}=\gamma / \sqrt{n}=0.010469 \\
& -\beta_{0}=0.000006575, \beta_{1}=0.9, \beta_{2}=0.04, \text { and } c=0
\end{aligned}
$$

Numerical Examples (continued)

- A daily variance of 0.0001096 corresponds to an annual volatility of

$$
\sqrt{365 \times 0.0001096} \approx 20 \%
$$

- Let $h^{2}(i, j)$ denote the variance at node (i, j).
- Initially, $h^{2}(0,0)=h_{0}^{2}=0.0001096$.

Numerical Examples (continued)

- Let $h_{\text {max }}^{2}(i, j)$ denote the maximum variance at node (i, j).
- Let $h_{\text {min }}^{2}(i, j)$ denote the minimum variance at node (i, j).
- Initially, $h_{\text {max }}^{2}(0,0)=h_{\text {min }}^{2}(0,0)=h_{0}^{2}$.
- The resulting 3-day tree is depicted on p. 933 .

- A top number inside a gray box refers to the minimum variance $h_{\min }^{2}$ for the node.
- A bottom number inside a gray box refers to the maximum variance $h_{\max }^{2}$ for the node.
- Variances are multiplied by 100,000 for readability.
- The top number inside a white box refers to the η for $h_{\text {min }}^{2}$.
- The bottom number inside a white box refers to the η for $h_{\text {max }}^{2}$.

Numerical Examples (continued)

- Let us see how the numbers are calculated.
- Start with the root node, node $(0,0)$.
- Try $\eta=1$ in Eqs. (122)-(124) on p. 917 first to obtain

$$
\begin{aligned}
p_{u} & =0.4974 \\
p_{m} & =0 \\
p_{d} & =0.5026 .
\end{aligned}
$$

- As they are valid probabilities, the three branches from the root node use single jumps.

Numerical Examples (continued)

- Move on to node $(1,1)$.
- It has one predecessor node - node $(0,0)$-and it takes an up move to reach the current node.
- So apply updating rule (126) on p. 923 with $\ell=1$ and $h_{t}^{2}=h^{2}(0,0)$.
- The result is $h^{2}(1,1)=0.000109645$.

Numerical Examples (continued)

- Because $\lceil h(1,1) / \gamma\rceil=2$, we try $\eta=2$ in Eqs. (122)-(124) on p. 917 first to obtain

$$
\begin{aligned}
p_{u} & =0.1237, \\
p_{m} & =0.7499 \\
p_{d} & =0.1264 .
\end{aligned}
$$

- As they are valid probabilities, the three branches from node $(1,1)$ use double jumps.

Numerical Examples (continued)

- Carry out similar calculations for node $(1,0)$ with $\ell=0$ in updating rule (126) on p. 923.
- Carry out similar calculations for node $(1,-1)$ with $\ell=-1$ in updating rule (126).
- Single jump $\eta=1$ works for both nodes.
- The resulting variances are

$$
\begin{aligned}
h^{2}(1,0) & =0.000105215 \\
h^{2}(1,-1) & =0.000109553
\end{aligned}
$$

Numerical Examples (continued)

- Node $(2,0)$ has 2 predecessor nodes, $(1,0)$ and $(1,-1)$.
- Both have to be considered in deriving the variances.
- Let us start with node $(1,0)$.
- Because it takes a middle move to reach the current node, we apply updating rule (126) on p. 923 with $\ell=0$ and $h_{t}^{2}=h^{2}(1,0)$.
- The result is $h_{t+1}^{2}=0.000101269$.

Numerical Examples (continued)

- Now move on to the other predecessor node $(1,-1)$.
- Because it takes an up move to reach the current node, apply updating rule (126) on p. 923 with $\ell=1$ and $h_{t}^{2}=h^{2}(1,-1)$.
- The result is $h_{t+1}^{2}=0.000109603$.
- We hence record

$$
\begin{aligned}
h_{\min }^{2}(2,0) & =0.000101269 \\
h_{\max }^{2}(2,0) & =0.000109603
\end{aligned}
$$

Numerical Examples (continued)

- Consider state $h_{\max }^{2}(2,0)$ first.
- Because 「 $\left.h_{\max }(2,0) / \gamma\right\rceil=2$, we first try $\eta=2$ in Eqs. (122)-(124) on p. 917 to obtain

$$
\begin{aligned}
p_{u} & =0.1237, \\
p_{m} & =0.7500, \\
p_{d} & =0.1263 .
\end{aligned}
$$

- As they are valid probabilities, the three branches from node $(2,0)$ with the maximum variance use double jumps.

Numerical Examples (continued)

- Now consider state $h_{\text {min }}^{2}(2,0)$.
- Because $\left\lceil h_{\text {min }}(2,0) / \gamma\right\rceil=1$, we first try $\eta=1$ in Eqs. (122)-(124) on p. 917 to obtain

$$
\begin{aligned}
p_{u} & =0.4596 \\
p_{m} & =0.0760 \\
p_{d} & =0.4644
\end{aligned}
$$

- As they are valid probabilities, the three branches from node $(2,0)$ with the minimum variance use single jumps.

Numerical Examples (continued)

- Node $(2,-1)$ has 3 predecessor nodes.
- Start with node $(1,1)$.
- Because it takes one down move to reach the current node, we apply updating rule (126) on p. 923 with $\ell=-1$ and $h_{t}^{2}=h^{2}(1,1) .{ }^{\text {a }}$
- The result is $h_{t+1}^{2}=0.0001227$.

[^16]
Numerical Examples (continued)

- Now move on to predecessor node $(1,0)$.
- Because it also takes a down move to reach the current node, we apply updating rule (126) on p. 923 with $\ell=-1$ and $h_{t}^{2}=h^{2}(1,0)$.
- The result is $h_{t+1}^{2}=0.000105609$.

Numerical Examples (continued)

- Finally, consider predecessor node $(1,-1)$.
- Because it takes a middle move to reach the current node, we apply updating rule (126) on p. 923 with $\ell=0$ and $h_{t}^{2}=h^{2}(1,-1)$.
- The result is $h_{t+1}^{2}=0.000105173$.
- We hence record

$$
\begin{aligned}
h_{\min }^{2}(2,-1) & =0.000105173, \\
h_{\max }^{2}(2,-1) & =0.0001227 .
\end{aligned}
$$

Numerical Examples (continued)

- Consider state $h_{\max }^{2}(2,-1)$.
- Because $\left\lceil h_{\max }(2,-1) / \gamma\right\rceil=2$, we first try $\eta=2$ in Eqs. (122)-(124) on p. 917 to obtain

$$
\begin{aligned}
p_{u} & =0.1385, \\
p_{m} & =0.7201, \\
p_{d} & =0.1414 .
\end{aligned}
$$

- As they are valid probabilities, the three branches from node $(2,-1)$ with the maximum variance use double jumps.

Numerical Examples (continued)

- Next, consider state $h_{\text {min }}^{2}(2,-1)$.
- Because $\left\lceil h_{\min }(2,-1) / \gamma\right\rceil=1$, we first try $\eta=1$ in Eqs. (122)-(124) on p. 917 to obtain

$$
\begin{aligned}
p_{u} & =0.4773, \\
p_{m} & =0.0404, \\
p_{d} & =0.4823 .
\end{aligned}
$$

- As they are valid probabilities, the three branches from node $(2,-1)$ with the minimum variance use single jumps.

Numerical Examples (concluded)

- Other nodes at dates 2 and 3 can be handled similarly.
- In general, if a node has k predecessor nodes, then up to $2 k$ variances will be calculated using the updating rule.
- This is because each predecessor node keeps two variance numbers.
- But only the maximum and minimum variances will be kept.

Negative Aspects of the RT Algorithm Revisited ${ }^{\text {a }}$

- Recall the problems mentioned on p. 929.
- In our case, combinatorial explosion occurs when

$$
n>\frac{1-\beta_{1}}{\beta_{2}}=\frac{1-0.9}{0.04}=2.5
$$

(see the next plot).

- Suppose we are willing to accept the exponential running time and pick $n=100$ to seek accuracy.
- But the problem of shortened maturity forces the tree to stop at date 9 !
${ }^{\mathrm{a}}$ Lyuu \& C. Wu (R90723065) $(2003,2005)$.

Dotted line: $n=3$; dashed line: $n=4$; solid line: $n=5$.

[^0]: ${ }^{\text {a }}$ Hull \& White (1988).
 ${ }^{\text {b }}$ Boyle, Broadie, \& Glasserman (1997).

[^1]: ${ }^{\mathrm{a}}$ Han \& Y. Lai (2010).

[^2]: ${ }^{\text {a }}$ What if C is not positive definite? See Y. Y. Lai (R93942114) \& Lyuu (2007).

[^3]: ${ }^{\text {a }}$ Johnson (1987); Chen (D95723006) \& Lyuu (2009).

[^4]: ${ }^{\text {a }}$ Longstaff \& Schwartz (2001).

[^5]: ${ }^{\text {a }}$ Clément, Lamberton, \& Protter (2002); Stentoft (2004).
 ${ }^{\text {b }}$ K. Huang (B96902079, R00922018) (2013); C. W. Chen (B97902046, R01922005) (2014); C. W. Chen (B97902046, R01922005), K. Huang (B96902079, R00922018) \& Lyuu (2015).

[^6]: ${ }^{\text {a }}$ Laguerre polynomials, Hermite polynomials, Legendre polynomials, Chebyshev polynomials, Gedenbauer polynomials, and Jacobi polynomials.

[^7]: ${ }^{\text {a }}$ The $f(102.4177)$ entry on the next page was corrected by Mr. Tu, Yung-Szu (B79503054, R83503086) on May 25, 2017.

[^8]: ${ }^{\text {a }}$ ARCH (autoregressive conditional heteroskedastic) is due to Engle (1982), co-winner of the 2003 Nobel Prize in Economic Sciences. GARCH (generalized ARCH) is due to Bollerslev (1986) and Taylor (1986). A Bloomberg quant said to me on Feb 29, 2008, that GARCH is seldom used in trading.

[^9]: ${ }^{a}$ Duan (1995).

[^10]: a"... large changes tend to be followed by large changes-of either sign-and small changes tend to be followed by small changes ..."
 ${ }^{\text {b }}$ Noted by Black (1976): Volatility tends to rise in response to "bad news" and fall in response to "good news."

[^11]: ${ }^{\text {a Ritchken }} \&$ Trevor (1999).

[^12]: ${ }^{\text {a }}$ Assume the probabilities are valid.

[^13]: ${ }^{\text {a }}$ Contrast it with the case on p. 391.

[^14]: ${ }^{\mathrm{a}} \mathrm{C} . \mathrm{Wu}(\mathrm{R} 90723065)$ (2003); Lyuu \& C. Wu (R90723065) (2003, 2005).

[^15]: ${ }^{\text {a }}$ Cakici \& Topyan (2000). But see p. 963 for a potential problem.

[^16]: ${ }^{\text {a }}$ Note that it is not $\ell=-2$. The reason is that $h(1,1)$ has $\eta=2$ (p. 937).

