Control Variates

- Use the analytic solution of a "similar" yet "simpler" problem to improve the solution.
- Suppose we want to estimate E[X] and there exists a random variable Y with a known mean $\mu \stackrel{\Delta}{=} E[Y]$.
- Then $W \stackrel{\Delta}{=} X + \beta(Y \mu)$ can serve as a "controlled" estimator of E[X] for any constant β .
 - However β is chosen, W remains an unbiased estimator of E[X] as

$$E[W] = E[X] + \beta E[Y - \mu] = E[X].$$

Control Variates (continued)

• Note that

$$\operatorname{Var}[W] = \operatorname{Var}[X] + \beta^{2} \operatorname{Var}[Y] + 2\beta \operatorname{Cov}[X, Y],$$
(115)

• Hence W is less variable than X if and only if $\beta^2 \operatorname{Var}[Y] + 2\beta \operatorname{Cov}[X, Y] < 0. \quad (116)$

Control Variates (concluded)

- The success of the scheme clearly depends on both β and the choice of Y.
 - American options can be priced by choosing Y to be the otherwise identical European option and μ the Black-Scholes formula.^a
 - Arithmetic Asian options can be priced by choosing Y to be the otherwise identical geometric Asian option's price and $\beta = -1$.
- This approach is much more effective than the antithetic-variates method.^b

^aHull & White (1988). ^bBoyle, Broadie, & Glasserman (1997).

Choice of Y

- In general, the choice of Y is ad hoc,^a and experiments must be performed to confirm the wisdom of the choice.
- Try to match calls with calls and puts with puts.^b
- On many occasions, Y is a discretized version of the derivative that gives μ.
 - Discretely monitored geometric Asian option vs. the continuously monitored version.^c
- The discrepancy can be large (e.g., lookback options).^d

^aBut see Dai (B82506025, R86526008, D8852600), Chiu (R94922072),
& Lyuu (2015, 2018).
^bContributed by Ms. Teng, Huei-Wen (R91723054) on May 25, 2004.
^cPriced by formulas (53) on p. 424.
^dContributed by Mr. Tsai, Hwai (R92723049) on May 12, 2004.

Optimal Choice of β

• Equation (115) on p. 856 is minimized when

$$\beta = -\operatorname{Cov}[X, Y] / \operatorname{Var}[Y].$$

- It is called beta in the book.

• For this specific β ,

$$\operatorname{Var}[W] = \operatorname{Var}[X] - \frac{\operatorname{Cov}[X,Y]^2}{\operatorname{Var}[Y]} = \left(1 - \rho_{X,Y}^2\right) \operatorname{Var}[X],$$

where $\rho_{X,Y}$ is the correlation between X and Y.

Optimal Choice of β (continued)

- Note that the variance can never be increased with the optimal choice.
- Furthermore, the stronger X and Y are correlated, the greater the reduction in variance.
- For example, if this correlation is nearly perfect (± 1) , we could control X almost exactly.

Optimal Choice of β (continued)

- Typically, neither $\operatorname{Var}[Y]$ nor $\operatorname{Cov}[X, Y]$ is known.
- Therefore, we cannot obtain the maximum reduction in variance.
- We can guess these values and hope that the resulting W does indeed have a smaller variance than X.
- A second possibility is to use the simulated data to estimate these quantities.
 - How to do it efficiently in terms of time and space?

Optimal Choice of β (concluded)

- Observe that $-\beta$ has the same sign as the correlation between X and Y.
- Hence, if X and Y are positively correlated, $\beta < 0$, then X is adjusted downward whenever $Y > \mu$ and upward otherwise.
- The opposite is true when X and Y are negatively correlated, in which case $\beta > 0$.
- Suppose a suboptimal $\beta + \epsilon$ is used instead.
- The variance increases by only $\epsilon^2 \operatorname{Var}[Y]$.^a

^aHan & Y. Lai (2010).

A Pitfall

- A potential pitfall is to sample X and Y independently.
- In this case, $\operatorname{Cov}[X, Y] = 0$.
- Equation (115) on p. 856 becomes

 $\operatorname{Var}[W] = \operatorname{Var}[X] + \beta^2 \operatorname{Var}[Y].$

- So whatever Y is, the variance is *increased*!
- Lesson: X and Y must be correlated.

Problems with the Monte Carlo Method

- The error bound is only probabilistic.
- The probabilistic error bound of $O(1/\sqrt{N})$ does not benefit from regularity of the integrand function.
- The requirement that the points be independent random samples are wasteful because of clustering.
- In reality, pseudorandom numbers generated by completely deterministic means are used.
- Monte Carlo simulation exhibits a great sensitivity on the seed of the pseudorandom-number generator.

Matrix Computation

To set up a philosophy against physics is rash; philosophers who have done so have always ended in disaster. — Bertrand Russell

Definitions and Basic Results

- Let $A \stackrel{\Delta}{=} [a_{ij}]_{1 \leq i \leq m, 1 \leq j \leq n}$, or simply $A \in \mathbb{R}^{m \times n}$, denote an $m \times n$ matrix.
- It can also be represented as $[a_1, a_2, \ldots, a_n]$ where $a_i \in \mathbb{R}^m$ are vectors.

- Vectors are column vectors unless stated otherwise.

- A is a square matrix when m = n.
- The rank of a matrix is the largest number of linearly independent columns.

Definitions and Basic Results (continued)

- A square matrix A is said to be symmetric if $A^{T} = A$.
- A real $n \times n$ matrix

$$A \stackrel{\Delta}{=} [a_{ij}]_{i,j}$$

is diagonally dominant if $|a_{ii}| > \sum_{j \neq i} |a_{ij}|$ for $1 \le i \le n$.

- Such matrices are nonsingular.

• The identity matrix is the square matrix

 $I \stackrel{\Delta}{=} \operatorname{diag}[1, 1, \dots, 1].$

Definitions and Basic Results (concluded)

- A matrix has full column rank if its columns are linearly independent.
- A real symmetric matrix A is positive definite if

$$x^{\mathrm{T}}Ax = \sum_{i,j} a_{ij} x_i x_j > 0$$

for any nonzero vector x.

 A matrix A is positive definite if and only if there exists a matrix W such that A = W^TW and W has full column rank.

Cholesky Decomposition

• Positive definite matrices can be factored as

$$A = LL^{\mathrm{T}},$$

called the Cholesky decomposition.

- Above, L is a lower triangular matrix.

Generation of Multivariate Distribution

• Let $\boldsymbol{x} \stackrel{\Delta}{=} [x_1, x_2, \dots, x_n]^{\mathrm{T}}$ be a vector random variable with a positive definite covariance matrix C.

• As usual, assume $E[\boldsymbol{x}] = \boldsymbol{0}$.

- This covariance structure can be matched by Py. $- y \stackrel{\Delta}{=} [y_1, y_2, \dots, y_n]^{\mathrm{T}}$ is a vector random variable
 - with a covariance matrix equal to the identity matrix.

– $C = PP^{T}$ is the Cholesky decomposition of C.^a

^aWhat if C is not positive definite? See Y. Y. Lai (R93942114) & Lyuu (2007).

Generation of Multivariate Normal Distribution

- Suppose we want to generate the multivariate normal distribution with a covariance matrix $C = PP^{T}$.
 - First, generate independent standard normal distributions y_1, y_2, \ldots, y_n .

– Then

$$P[y_1, y_2, \ldots, y_n]^{\mathrm{T}}$$

has the desired distribution.

– These steps can then be repeated.

Multivariate Derivatives Pricing

- Generating the multivariate normal distribution is essential for the Monte Carlo pricing of multivariate derivatives (pp. 772ff).
- For example, the rainbow option on k assets has payoff

$$\max(\max(S_1, S_2, \ldots, S_k) - X, 0)$$

at maturity.

• The closed-form formula is a multi-dimensional integral.^a

```
<sup>a</sup>Johnson (1987); Chen (D95723006) & Lyuu (2009).
```

Multivariate Derivatives Pricing (concluded)

- Suppose $dS_j/S_j = r dt + \sigma_j dW_j$, $1 \le j \le k$, where C is the correlation matrix for dW_1, dW_2, \ldots, dW_k .
- Let $C = PP^{\mathrm{T}}$.
- Let ξ consist of k independent random variables from N(0, 1).
- Let $\xi' = P\xi$.
- Similar to Eq. (114) on p. 816,

$$S_{i+1} = S_i e^{(r - \sigma_j^2/2)\Delta t + \sigma_j \sqrt{\Delta t} \xi_j'}, \quad 1 \le j \le k.$$

Least-Squares Problems

• The least-squares (LS) problem is concerned with

 $\min_{x \in R^n} \parallel Ax - b \parallel,$

where $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, and $m \ge n$.

- The LS problem is called regression analysis in statistics and is equivalent to minimizing the mean-square error.
- Often written as

$$Ax = b.$$

Polynomial Regression

- In polynomial regression, $x_0 + x_1x + \cdots + x_nx^n$ is used to fit the data $\{(a_1, b_1), (a_2, b_2), \ldots, (a_m, b_m)\}.$
- This leads to the LS problem,

$$\begin{bmatrix} 1 & a_1 & a_1^2 & \cdots & a_1^n \\ 1 & a_2 & a_2^2 & \cdots & a_2^n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & a_m & a_m^2 & \cdots & a_m^n \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$

• Consult p. 273 of the textbook for solutions.

American Option Pricing by Simulation

- The continuation value of an American option is the conditional expectation of the payoff from keeping the option alive now.
- The option holder must compare the immediate exercise value and the continuation value.
- In standard Monte Carlo simulation, each path is treated independently of other paths.
- But the decision to exercise the option cannot be reached by looking at one path alone.

The Least-Squares Monte Carlo Approach

- The continuation value can be estimated from the cross-sectional information in the simulation by using least squares.^a
- The result is a function (of the state) for estimating the continuation values.
- Use the function to estimate the continuation value for each path to determine its cash flow.
- This is called the least-squares Monte Carlo (LSM) approach.

^aLongstaff & Schwartz (2001).

The Least-Squares Monte Carlo Approach (concluded)

- The LSM is provably convergent.^a
- The LSM can be easily parallelized.^b
 - Partition the paths into subproblems and perform LSM on each of them independently.
 - The speedup is close to linear (i.e., proportional to the number of cores).
- Surprisingly, accuracy is not affected.

^aClément, Lamberton, & Protter (2002); Stentoft (2004). ^bK. Huang (B96902079, R00922018) (2013); C. W. Chen (B97902046, R01922005) (2014); C. W. Chen (B97902046, R01922005), K. Huang (B96902079, R00922018) & Lyuu (2015).

A Numerical Example

- Consider a 3-year American put on a non-dividend-paying stock.
- The put is exercisable at years 0, 1, 2, and 3.
- The strike price X = 105.
- The annualized riskless rate is r = 5%.
 - The annual discount factor hence equals 0.951229.
- The current stock price is 101.
- We use only 8 price paths to illustrate the algorithm.

Stock price paths								
Path	Year 0	Year 1	Year 2	Year 3				
1	101	97.6424	92.5815	107.5178				
2	101	101.2103	105.1763	102.4524				
3	101	105.7802	103.6010	124.5115				
4	101	96.4411	98.7120	108.3600				
5	101	124.2345	101.0564	104.5315				
6	101	95.8375	93.7270	99.3788				
7	101	108.9554	102.4177	100.9225				
8	101	104.1475	113.2516	115.0994				

- We use the basis functions $1, x, x^2$.
 - Other basis functions are possible.^a
- The plot next page shows the final estimated optimal exercise strategy given by LSM.
- We now proceed to tackle our problem.
- The idea is to calculate the cash flow along each path, using information from *all* paths.

^aLaguerre polynomials, Hermite polynomials, Legendre polynomials, Chebyshev polynomials, Gedenbauer polynomials, and Jacobi polynomials.

ΑN	A Numerical Example (continued)						
	Cash flows at year 3						
Path	Year 0	Year 1	Year 2	Year 3			
1				0			
2				2.5476			
3				0			
4				0			
5				0.4685			
6				5.6212			
7				4.0775			
8				0			

- The cash flows at year 3 are the exercise value if the put is in the money.
- Only 4 paths are in the money: 2, 5, 6, 7.
- Some of the cash flows may not occur if the put is exercised earlier, which we will find out step by step.
- Incidentally, the *European* counterpart has a value of

$$0.951229^3 \times \frac{2.5476 + 0.4685 + 5.6212 + 4.0775}{8} = 1.3680.$$

- We move on to year 2.
- For each state that is in the money at year 2, we must decide whether to exercise it.
- There are 6 paths for which the put is in the money: 1, 3, 4, 5, 6, 7 (p. 882).
- Only in-the-money paths will be used in the regression because they are where early exercise is relevant.
 - If there were none, we would move on to year 1.

- Let x denote the stock prices at year 2 for those 6 paths.
- Let y denote the corresponding discounted future cash flows (at year 3) if the put is not exercised at year 2.

Regression at year 2					
Y	x	Path			
0 imes 0.951229	92.5815	1			
		2			
0 imes 0.951229	103.6010	3			
0 imes 0.951229	98.7120	4			
0.4685×0.951229	101.0564	5			
5.6212×0.951229	93.7270	6			
4.0775×0.951229	102.4177	7			
		8			
- We regress y on 1, x, and x^2 .
- The result is

 $f(x) = 22.08 - 0.313114 \times x + 0.00106918 \times x^2.$

- f(x) estimates the continuation value conditional on the stock price at year 2.
- We next compare the immediate exercise value and the continuation value.^a

^aThe f(102.4177) entry on the next page was corrected by Mr. Tu, Yung-Szu (B79503054, R83503086) on May 25, 2017.

ercise decision at year 2	al early exe	Optim
Continuation	Exercise	Path
f(92.5815) = 2.2558	12.4185	1
		2
f(103.6010) = 1.1168	1.3990	3
f(98.7120) = 1.5901	6.2880	4
f(101.0564) = 1.3568	3.9436	5
f(93.7270) = 2.1253	11.2730	6
f(102.4177) = 1.2266	2.5823	7
		8

- Amazingly, the put should be exercised in all 6 paths: 1, 3, 4, 5, 6, 7.
- Now, any positive cash flow at year 3 should be set to zero or overridden for these paths as the put is exercised before year 3 (p. 882).

- They are paths 5, 6, 7.

• The cash flows on p. 886 become the ones on next slide.

А	A Numerical Example (continued)						
	Cash flows at years 2 & 3						
Path	Year 0	Year 1	Year 2	Year 3			
1			12.4185	0			
2			0	2.5476			
3			1.3990	0			
4			6.2880	0			
5			3.9436	0			
6			11.2730	0			
7			2.5823	0			
8			0	0			

- We move on to year 1.
- For each state that is in the money at year 1, we must decide whether to exercise it.
- There are 5 paths for which the put is in the money: 1, 2, 4, 6, 8 (p. 882).
- Only in-the-money paths will be used in the regression because they are where early exercise is relevant.
 - If there were none, we would move on to year 0.

- Let x denote the stock prices at year 1 for those 5 paths.
- Let y denote the corresponding discounted future cash flows if the put is not exercised at year 1.
- From p. 894, we have the following table.

A Numerical Example (continued)						
Regression at year 1Path x						
12.4185×0.951229	97.6424	1				
2.5476×0.951229^2	101.2103	2				
		3				
6.2880 imes 0.951229	96.4411	4				
		5				
11.2730×0.951229	95.8375	6				
		7				
0	104.1475	8				

- We regress y on 1, x, and x^2 .
- The result is

 $f(x) = -420.964 + 9.78113 \times x - 0.0551567 \times x^2.$

- f(x) estimates the continuation value conditional on the stock price at year 1.
- We next compare the immediate exercise value and the continuation value.

Continuation	Exercise	Path
f(97.6424) = 8.2230	7.3576	1
f(101.2103) = 3.9882	3.7897	2
		3
f(96.4411) = 9.3329	8.5589	4
		5
f(95.8375) = 9.83042	9.1625	6
		7
f(104.1475) = -0.551885	0.8525	8

Optimal early exercise decision at year 1

- The put should be exercised for 1 path only: 8.
 - Note that f(104.1475) < 0.
- Now, any positive future cash flow should be set to zero or overridden for this path.
 - But there is none.
- The cash flows on p. 894 become the ones on next slide.
- They also confirm the plot on p. 885.

A Numerical Example (continued)							
	Cash flows at years 1, 2, & 3						
Path	Year 0	Year 1	Year 2	Year 3			
1		0	12.4185	0			
2		0	0	2.5476			
3		0	1.3990	0			
4		0	6.2880	0			
5		0	3.9436	0			
6		0	11.2730	0			
7		0	2.5823	0			
8		0.8525	0	0			

- We move on to year 0.
- The continuation value is, from p 901,

 $(12.4185 \times 0.951229^{2} + 2.5476 \times 0.951229^{3} + 1.3990 \times 0.951229^{2} + 6.2880 \times 0.951229^{2} + 3.9436 \times 0.951229^{2} + 11.2730 \times 0.951229^{2} + 2.5823 \times 0.951229^{2} + 0.8525 \times 0.951229)/8$

= 4.66263.

• As this is larger than the immediate exercise value of

105 - 101 = 4,

the put should not be exercised at year 0.

- Hence the put's value is estimated to be 4.66263.
- Compare this with the European put's value of 1.3680 (p. 887).

Time Series Analysis

The historian is a prophet in reverse. — Friedrich von Schlegel (1772–1829)

$\mathsf{GARCH}\ \mathsf{Option}\ \mathsf{Pricing}^{\mathrm{a}}$

- Options can be priced when the underlying asset's return follows a GARCH process.
- Let S_t denote the asset price at date t.
- Let h_t^2 be the *conditional* variance of the return over the period [t, t+1] given the information at date t.
 - "One day" is merely a convenient term for any elapsed time Δt .

^aARCH (autoregressive conditional heteroskedastic) is due to Engle (1982), co-winner of the 2003 Nobel Prize in Economic Sciences. GARCH (generalized ARCH) is due to Bollerslev (1986) and Taylor (1986). A Bloomberg quant said to me on Feb 29, 2008, that GARCH is seldom used in trading.

GARCH Option Pricing (continued)

• Adopt the following risk-neutral process for the price dynamics:^a

$$\ln \frac{S_{t+1}}{S_t} = r - \frac{h_t^2}{2} + h_t \epsilon_{t+1}, \qquad (117)$$

where

$$h_{t+1}^{2} = \beta_{0} + \beta_{1}h_{t}^{2} + \beta_{2}h_{t}^{2}(\epsilon_{t+1} - c)^{2}, \qquad (118)$$

$$\epsilon_{t+1} \sim N(0, 1) \text{ given information at date } t,$$

$$r = \text{ daily riskless return,}$$

$$c \geq 0.$$

^aDuan (1995).

GARCH Option Pricing (continued)

- The five unknown parameters of the model are c, h_0, β_0, β_1 , and β_2 .
- It is postulated that $\beta_0, \beta_1, \beta_2 \ge 0$ to make the conditional variance positive.
- There are other inequalities to satisfy (see text).
- The above process is called the nonlinear asymmetric GARCH (or NGARCH) model.

GARCH Option Pricing (continued)

- It captures the volatility clustering in asset returns first noted by Mandelbrot (1963).^a
 - When c = 0, a large ϵ_{t+1} results in a large h_{t+1} , which in turns tends to yield a large h_{t+2} , and so on.
- It also captures the negative correlation between the asset return and changes in its (conditional) volatility.^b
 - For c > 0, a positive ϵ_{t+1} (good news) tends to decrease h_{t+1} , whereas a negative ϵ_{t+1} (bad news) tends to do the opposite.

^a"... large changes tend to be followed by large changes—of either sign—and small changes tend to be followed by small changes"

^bNoted by Black (1976): Volatility tends to rise in response to "bad news" and fall in response to "good news."

GARCH Option Pricing (concluded)

• With $y_t \stackrel{\Delta}{=} \ln S_t$ denoting the logarithmic price, the model becomes

$$y_{t+1} = y_t + r - \frac{h_t^2}{2} + h_t \epsilon_{t+1}.$$
 (119)

- The pair (y_t, h_t^2) completely describes the current state.
- The conditional mean and variance of y_{t+1} are clearly

$$E[y_{t+1} | y_t, h_t^2] = y_t + r - \frac{h_t^2}{2}, \qquad (120)$$

Var $[y_{t+1} | y_t, h_t^2] = h_t^2. \qquad (121)$

GARCH Model: Inferences

- Suppose the parameters c, h_0, β_0, β_1 , and β_2 are given.
- Then we can recover h_1, h_2, \ldots, h_n and $\epsilon_1, \epsilon_2, \ldots, \epsilon_n$ from the prices

$$S_0, S_1, \ldots, S_n$$

under the GARCH model (117) on p. 907.

• This property is useful in statistical inferences.

The Ritchken-Trevor (RT) Algorithm $^{\rm a}$

- The GARCH model is a continuous-state model.
- To approximate it, we turn to trees with *discrete* states.
- Path dependence in GARCH makes the tree for asset prices explode exponentially (why?).
- We need to mitigate this combinatorial explosion.

^aRitchken & Trevor (1999).

- Partition a day into n periods.
- Three states follow each state (y_t, h_t^2) after a period.
- As the trinomial model combines, each state at date t is followed by 2n + 1 states at date t + 1 (recall p. 703).
- These 2n + 1 values must approximate the distribution of (y_{t+1}, h_{t+1}^2) .
- So the conditional moments (120)–(121) at date t + 1 on p. 910 must be matched by the trinomial model to guarantee convergence to the continuous-state model.

- It remains to pick the jump size and the three branching probabilities.
- The role of σ in the Black-Scholes option pricing model is played by h_t in the GARCH model.
- As a jump size proportional to σ/\sqrt{n} is picked in the BOPM, a comparable magnitude will be chosen here.
- Define $\gamma \stackrel{\Delta}{=} h_0$, though other multiples of h_0 are possible, and

$$\gamma_n \stackrel{\Delta}{=} \frac{\gamma}{\sqrt{n}}$$

- The jump size will be some integer multiple η of γ_n .
- We call η the jump parameter (see next page).
- Obviously, the magnitude of η grows with h_t .
- The middle branch does not change the underlying asset's price.

• The probabilities for the up, middle, and down branches are

$$p_u = \frac{h_t^2}{2\eta^2 \gamma^2} + \frac{r - (h_t^2/2)}{2\eta\gamma\sqrt{n}},$$
 (122)

$$p_m = 1 - \frac{h_t^2}{\eta^2 \gamma^2},$$
 (123)

$$p_d = \frac{h_t^2}{2\eta^2 \gamma^2} - \frac{r - (h_t^2/2)}{2\eta\gamma\sqrt{n}}.$$
 (124)

- It can be shown that:
 - The trinomial model takes on 2n + 1 values at date t + 1 for y_{t+1} .
 - These values have a matching mean for y_{t+1} .
 - These values have an asymptotically matching variance for y_{t+1} .
- The central limit theorem guarantees convergence as n increases.^a

^aAssume the probabilities are valid.

- We can dispense with the intermediate nodes *between* dates to create a (2n + 1)-nomial tree (p. 920).
- The resulting model is multinomial with 2n + 1branches from any state (y_t, h_t^2) .
- There are two reasons behind this manipulation.
 - Interdate nodes are created merely to approximate the continuous-state model after one day.
 - Keeping the interdate nodes results in a tree that can be n times larger.^a

^aContrast it with the case on p. 391.

• A node with logarithmic price $y_t + \ell \eta \gamma_n$ at date t + 1 follows the current node at date t with price y_t , where

$$-n \le \ell \le n.$$

- To reach that price in n periods, the number of up moves must exceed that of down moves by exactly ℓ .
- The probability that this happens is

$$P(\ell) \stackrel{\Delta}{=} \sum_{j_u, j_m, j_d} \frac{n!}{j_u! j_m! j_d!} p_u^{j_u} p_m^{j_m} p_d^{j_d},$$

with
$$j_u, j_m, j_d \ge 0, \ n = j_u + j_m + j_d$$
, and $\ell = j_u - j_d$.

• A particularly simple way to calculate the $P(\ell)$ s starts by noting that

$$(p_u x + p_m + p_d x^{-1})^n = \sum_{\ell=-n}^n P(\ell) x^{\ell}.$$
(125)

- Convince yourself that this trick does the "accounting" correctly.
- So we expand $(p_u x + p_m + p_d x^{-1})^n$ and retrieve the probabilities by reading off the coefficients.
- It can be computed in $O(n^2)$ time, if not less.

- The updating rule (118) on p. 907 must be modified to account for the adoption of the discrete-state model.
- The logarithmic price $y_t + \ell \eta \gamma_n$ at date t + 1 following state (y_t, h_t^2) is associated with this variance:

$$h_{t+1}^2 = \beta_0 + \beta_1 h_t^2 + \beta_2 h_t^2 (\epsilon_{t+1}' - c)^2, \qquad (126)$$

– Above,

$$\epsilon'_{t+1} = \frac{\ell \eta \gamma_n - (r - h_t^2/2)}{h_t}, \quad \ell = 0, \pm 1, \pm 2, \dots, \pm n,$$

is a discrete random variable with 2n + 1 values.

- Different conditional variances h_t^2 may require different η so that the probabilities calculated by Eqs. (122)–(124) on p. 917 lie between 0 and 1.
- This implies varying jump sizes.
- The necessary requirement $p_m \ge 0$ implies $\eta \ge h_t/\gamma$.
- Hence we try

$$\eta = \lceil h_t / \gamma \rceil, \lceil h_t / \gamma \rceil + 1, \lceil h_t / \gamma \rceil + 2, \dots$$

until valid probabilities are obtained or until their nonexistence is confirmed.

• The sufficient and necessary condition for valid probabilities to exist is^a

$$\frac{|r - (h_t^2/2)|}{2\eta\gamma\sqrt{n}} \le \frac{h_t^2}{2\eta^2\gamma^2} \le \min\left(1 - \frac{|r - (h_t^2/2)|}{2\eta\gamma\sqrt{n}}, \frac{1}{2}\right)$$

- The plot on p. 926 uses n = 1 to illustrate our points for a 3-day model.
- For example, node (1, 1) of date 1 and node (2, 3) of date 2 pick $\eta = 2$.

^aC. Wu (R90723065) (2003); Lyuu & C. Wu (R90723065) (2003, 2005).

The RT Algorithm (continued)

- The topology of the tree is not a standard combining multinomial tree.
- For example, a few nodes on p. 926 such as nodes (2,0) and (2,-1) have *multiple* jump sizes.
- The reason is path dependency of the model.
 - Two paths can reach node (2,0) from the root node, each with a different variance for the node.
 - One variance results in $\eta = 1$.
 - The other results in $\eta = 2$.

The RT Algorithm (concluded)

- The number of possible values of h_t^2 at a node can be exponential.
 - Because each path brings a different variance h_t^2 .
- To address this problem, we record only the maximum and minimum h_t^2 at each node.^a
- Therefore, each node on the tree contains only two states (y_t, h_{max}^2) and (y_t, h_{min}^2) .
- Each of (y_t, h_{\max}^2) and (y_t, h_{\min}^2) carries its own η and set of 2n + 1 branching probabilities.

^aCakici & Topyan (2000). But see p. 963 for a potential problem.

Negative Aspects of the Ritchken-Trevor Algorithm $^{\rm a}$

- A small n may yield inaccurate option prices.
- But the tree will grow exponentially if n is large enough. - Specifically, $n > (1 - \beta_1)/\beta_2$ when r = c = 0.
- A large *n* has another serious problem: The tree cannot grow beyond a certain date.
- Thus the choice of n may be quite limited in practice.
- The RT algorithm can be modified to be free of shortened maturity and exponential complexity.^b

^aLyuu & C. Wu (**R90723065**) (2003, 2005). ^bIts size is only $O(n^2)$ if $n \leq (\sqrt{(1-\beta_1)/\beta_2} - c)^2!$

Numerical Examples

• A daily variance of 0.0001096 corresponds to an annual volatility of

 $\sqrt{365 \times 0.0001096} \approx 20\%.$

- Let $h^2(i,j)$ denote the variance at node (i,j).
- Initially, $h^2(0,0) = h_0^2 = 0.0001096$.

- Let $h_{\max}^2(i,j)$ denote the maximum variance at node (i,j).
- Let $h_{\min}^2(i, j)$ denote the minimum variance at node (i, j).
- Initially, $h_{\max}^2(0,0) = h_{\min}^2(0,0) = h_0^2$.
- The resulting 3-day tree is depicted on p. 933.

- A top number inside a gray box refers to the minimum variance h_{\min}^2 for the node.
- A bottom number inside a gray box refers to the maximum variance h_{max}^2 for the node.
- Variances are multiplied by 100,000 for readability.
- The top number inside a white box refers to the η for h_{\min}^2 .
- The bottom number inside a white box refers to the η for $h_{\rm max}^2$.

- Let us see how the numbers are calculated.
- Start with the root node, node (0,0).
- Try $\eta = 1$ in Eqs. (122)–(124) on p. 917 first to obtain

 $p_u = 0.4974,$ $p_m = 0,$ $p_d = 0.5026.$

• As they are valid probabilities, the three branches from the root node use single jumps.

- Move on to node (1,1).
- It has one predecessor node—node (0,0)—and it takes an up move to reach the current node.
- So apply updating rule (126) on p. 923 with $\ell = 1$ and $h_t^2 = h^2(0,0)$.
- The result is $h^2(1,1) = 0.000109645$.

• Because $\lceil h(1,1)/\gamma \rceil = 2$, we try $\eta = 2$ in Eqs. (122)–(124) on p. 917 first to obtain

$$p_u = 0.1237,$$

 $p_m = 0.7499,$
 $p_d = 0.1264.$

• As they are valid probabilities, the three branches from node (1,1) use double jumps.

- Carry out similar calculations for node (1,0) with $\ell = 0$ in updating rule (126) on p. 923.
- Carry out similar calculations for node (1, -1) with $\ell = -1$ in updating rule (126).
- Single jump $\eta = 1$ works for both nodes.
- The resulting variances are

 $h^2(1,0) = 0.000105215,$ $h^2(1,-1) = 0.000109553.$

- Node (2,0) has 2 predecessor nodes, (1,0) and (1,-1).
- Both have to be considered in deriving the variances.
- Let us start with node (1,0).
- Because it takes a middle move to reach the current node, we apply updating rule (126) on p. 923 with $\ell = 0$ and $h_t^2 = h^2(1,0)$.
- The result is $h_{t+1}^2 = 0.000101269$.

- Now move on to the other predecessor node (1, -1).
- Because it takes an up move to reach the current node, apply updating rule (126) on p. 923 with $\ell = 1$ and $h_t^2 = h^2(1, -1)$.
- The result is $h_{t+1}^2 = 0.000109603$.
- We hence record

$$h_{\min}^2(2,0) = 0.000101269,$$

 $h_{\max}^2(2,0) = 0.000109603.$

- Consider state $h_{\max}^2(2,0)$ first.
- Because $\lceil h_{\max}(2,0)/\gamma \rceil = 2$, we first try $\eta = 2$ in Eqs. (122)–(124) on p. 917 to obtain

 $p_u = 0.1237,$ $p_m = 0.7500,$ $p_d = 0.1263.$

• As they are valid probabilities, the three branches from node (2,0) with the maximum variance use double jumps.

- Now consider state $h_{\min}^2(2,0)$.
- Because $\lceil h_{\min}(2,0)/\gamma \rceil = 1$, we first try $\eta = 1$ in Eqs. (122)–(124) on p. 917 to obtain

 $p_u = 0.4596,$ $p_m = 0.0760,$ $p_d = 0.4644.$

• As they are valid probabilities, the three branches from node (2,0) with the minimum variance use single jumps.

- Node (2, -1) has 3 predecessor nodes.
- Start with node (1,1).
- Because it takes *one* down move to reach the current node, we apply updating rule (126) on p. 923 with $\ell = -1$ and $h_t^2 = h^2(1, 1)$.^a
- The result is $h_{t+1}^2 = 0.0001227$.

^aNote that it is not $\ell = -2$. The reason is that h(1,1) has $\eta = 2$ (p. 937).

- Now move on to predecessor node (1, 0).
- Because it also takes a down move to reach the current node, we apply updating rule (126) on p. 923 with $\ell = -1$ and $h_t^2 = h^2(1,0)$.
- The result is $h_{t+1}^2 = 0.000105609$.

- Finally, consider predecessor node (1, -1).
- Because it takes a middle move to reach the current node, we apply updating rule (126) on p. 923 with $\ell = 0$ and $h_t^2 = h^2(1, -1)$.
- The result is $h_{t+1}^2 = 0.000105173$.
- We hence record

$$h_{\min}^2(2,-1) = 0.000105173,$$

 $h_{\max}^2(2,-1) = 0.0001227.$

- Consider state $h_{\max}^2(2,-1)$.
- Because $\lceil h_{\max}(2,-1)/\gamma \rceil = 2$, we first try $\eta = 2$ in Eqs. (122)–(124) on p. 917 to obtain

 $p_u = 0.1385,$ $p_m = 0.7201,$ $p_d = 0.1414.$

 As they are valid probabilities, the three branches from node (2,-1) with the maximum variance use double jumps.

- Next, consider state $h_{\min}^2(2,-1)$.
- Because $\lceil h_{\min}(2,-1)/\gamma \rceil = 1$, we first try $\eta = 1$ in Eqs. (122)–(124) on p. 917 to obtain

 $p_u = 0.4773,$ $p_m = 0.0404,$ $p_d = 0.4823.$

 As they are valid probabilities, the three branches from node (2,-1) with the minimum variance use single jumps.

Numerical Examples (concluded)

- Other nodes at dates 2 and 3 can be handled similarly.
- In general, if a node has k predecessor nodes, then up to 2k variances will be calculated using the updating rule.
 - This is because each predecessor node keeps two variance numbers.
- But only the maximum and minimum variances will be kept.

Negative Aspects of the RT Algorithm Revisited $^{\rm a}$

- Recall the problems mentioned on p. 929.
- In our case, combinatorial explosion occurs when

$$n > \frac{1 - \beta_1}{\beta_2} = \frac{1 - 0.9}{0.04} = 2.5$$

(see the next plot).

- Suppose we are willing to accept the exponential running time and pick n = 100 to seek accuracy.
- But the problem of shortened maturity forces the tree to stop at date 9!

^aLyuu & C. Wu (**R90723065**) (2003, 2005).

