Merton's Jump-Diffusion Model

- Empirically, stock returns tend to have fat tails, inconsistent with the Black-Scholes model's assumptions.
- Stochastic volatility and jump processes have been proposed to address this problem.
- Merton's (1976) jump-diffusion model is our focus.

- This model superimposes a jump component on a diffusion component.
- The diffusion component is the familiar geometric Brownian motion.
- The jump component is composed of lognormal jumps driven by a Poisson process.
 - It models the rare but large changes in the stock price because of the arrival of important new information.

- Let S_t be the stock price at time t.
- The risk-neutral jump-diffusion process for the stock price follows

$$\frac{dS_t}{S_t} = (r - \lambda \bar{k}) dt + \sigma dW_t + k dq_t.$$
(101)

• Above, σ denotes the volatility of the diffusion component.

• The jump event is governed by a compound Poisson process q_t with intensity λ , where k denotes the magnitude of the *random* jump.

– The distribution of k obeys

 $\ln(1+k) \sim N\left(\gamma, \delta^2\right)$

with mean $\bar{k} \stackrel{\Delta}{=} E(k) = e^{\gamma + \delta^2/2} - 1.$

- Note that k > -1.

• The model with $\lambda = 0$ reduces to the Black-Scholes model.

• The solution to Eq. (101) on p. 761 is

$$S_t = S_0 e^{(r - \lambda \bar{k} - \sigma^2/2)t + \sigma W_t} U(n(t)), \qquad (102)$$

where

$$U(n(t)) = \prod_{i=0}^{n(t)} (1+k_i).$$

-
$$k_i$$
 is the magnitude of the *i*th jump with
 $\ln(1+k_i) \sim N(\gamma, \delta^2).$
- $k_0 = 0.$

-n(t) is a Poisson process with intensity λ .

- Recall that n(t) denotes the number of jumps that occur up to time t.
- As $k_i > -1$, stock prices will stay positive.
- The geometric Brownian motion, the lognormal jumps, and the Poisson process are assumed to be independent.

Tree for Merton's Jump-Diffusion $\mathsf{Model}^{\mathrm{a}}$

- Define the S-logarithmic return of the stock price S' as $\ln(S'/S)$.
- Define the logarithmic distance between stock prices S'and S as

$$|\ln(S') - \ln(S)| = |\ln(S'/S)|.$$

^aDai (B82506025, R86526008, D8852600), C. Wang (F95922018), Lyuu, & Y. Liu (2010).

• Take the logarithm of Eq. (102) on p. 763:

$$M_t \stackrel{\Delta}{=} \ln\left(\frac{S_t}{S_0}\right) = X_t + Y_t,\tag{103}$$

where

$$X_{t} \stackrel{\Delta}{=} \left(r - \lambda \bar{k} - \frac{\sigma^{2}}{2}\right) t + \sigma W_{t}, \quad (104)$$
$$Y_{t} \stackrel{\Delta}{=} \sum_{i=0}^{n(t)} \ln\left(1 + k_{i}\right). \quad (105)$$

• It decomposes the S_0 -logarithmic return of S_t into the diffusion component X_t and the jump component Y_t .

- Motivated by decomposition (103) on p. 766, the tree construction divides each period into a diffusion phase followed by a jump phase.
- In the diffusion phase, X_t is approximated by the BOPM.
- So X_t makes an up move to $X_t + \sigma \sqrt{\Delta t}$ with probability p_u or a down move to $X_t - \sigma \sqrt{\Delta t}$ with probability p_d .

• According to BOPM,

$$p_u = \frac{e^{\mu\Delta t} - d}{u - d},$$

$$p_d = 1 - p_u,$$

except that $\mu = r - \lambda \bar{k}$ here.

- The diffusion component gives rise to diffusion nodes.
- They are spaced at $2\sigma\sqrt{\Delta t}$ apart such as the white nodes A, B, C, D, E, F, and G on p. 769.

White nodes are *diffusion nodes*. Gray nodes are *jump nodes*. In the diffusion phase, the solid black lines denote the binomial structure of BOPM; the dashed lines denote the trinomial structure. Only the double-circled nodes will remain after the construction. Note that a and b are diffusion nodes because no jump occurs in the jump phase.

Tree for Merton's Jump-Diffusion Model (concluded)

- In the jump phase, $Y_{t+\Delta t}$ is approximated by moves from *each* diffusion node to 2m jump nodes that match the first 2m moments of the lognormal jump.
- The *m* jump nodes above the diffusion node are spaced at $h \stackrel{\Delta}{=} \sqrt{\gamma^2 + \delta^2}$ apart.
- The same holds for the *m* jump nodes below the diffusion node.
- The gray nodes at time $\ell \Delta t$ on p. 769 are jump nodes. - We set m = 1 on p. 769.
- The size of the tree is $O(n^{2.5})$.

Multivariate Contingent Claims

- They depend on two or more underlying assets.
- The basket call on m assets has the terminal payoff

$$\max\left(\sum_{i=1}^{m} \alpha_i S_i(\tau) - X, 0\right),\,$$

where α_i is the percentage of asset *i*.

- Basket options are essentially options on a portfolio of stocks; they are index options.
- Option on the best of two risky assets and cash has a terminal payoff of $\max(S_1(\tau), S_2(\tau), X)$.

Multivariate Contingent Claims (concluded) a

Name	Payoff	
Exchange option	$\max(S_1(\tau) - S_2(\tau), 0)$	
Better-off option	$\max(S_1(\tau),\ldots,S_k(\tau),0)$	
Worst-off option	$\min(S_1(\tau),\ldots,S_k(\tau),0)$	
Binary maximum option	$I\{\max(S_1(\tau),\ldots,S_k(\tau))>X\}$	
Maximum option	$\max(\max(S_1(\tau),\ldots,S_k(\tau))-X,0)$	
Minimum option	$\max(\min(S_1(\tau),\ldots,S_k(\tau))-X,0)$	
Spread option	$\max(S_1(\tau) - S_2(\tau) - X, 0)$	
Basket average option	$\max((S_1(\tau) + \dots + S_k(\tau))/k - X, 0)$	
Multi-strike option	$\max(S_1(\tau) - X_1, \dots, S_k(\tau) - X_k, 0)$	
Pyramid rainbow option	$\max(S_1(\tau) - X_1 + \dots + S_k(\tau) - X_k - X$	0)
Madonna option	$\max(\sqrt{(S_1(\tau) - X_1)^2 + \dots + (S_k(\tau) - X_k)^2})$	-X, 0)
^a Lyuu & Teng (R91723054) (2011).		

Correlated Trinomial Model^{\rm a}

• Two risky assets S_1 and S_2 follow

$$\frac{dS_i}{S_i} = r \, dt + \sigma_i \, dW_i$$

in a risk-neutral economy, i = 1, 2.

• Let

$$M_i \stackrel{\Delta}{=} e^{r\Delta t},$$
$$V_i \stackrel{\Delta}{=} M_i^2 (e^{\sigma_i^2 \Delta t} - 1).$$

 $-S_iM_i$ is the mean of S_i at time Δt .

 $-S_i^2 V_i$ the variance of S_i at time Δt .

^aBoyle, Evnine, & Gibbs (1989).

Correlated Trinomial Model (continued)

- The value of S_1S_2 at time Δt has a joint lognormal distribution with mean $S_1S_2M_1M_2e^{\rho\sigma_1\sigma_2\Delta t}$, where ρ is the correlation between dW_1 and dW_2 .
- Next match the 1st and 2nd moments of the approximating discrete distribution to those of the continuous counterpart.
- At time Δt from now, there are 5 distinct outcomes.

Correlated Trinomial Model (continued)

• The five-point probability distribution of the asset prices is

Probability	Asset 1	Asset 2
p_1	S_1u_1	$S_2 u_2$
p_2	S_1u_1	$S_2 d_2$
p_3	S_1d_1	$S_2 d_2$
p_4	$S_1 d_1$	$S_2 u_2$
p_5	S_1	S_2

• As usual, impose $u_i d_i = 1$.

Correlated Trinomial Model (continued)

• The probabilities must sum to one, and the means must be matched:

$$1 = p_1 + p_2 + p_3 + p_4 + p_5,$$

$$S_1 M_1 = (p_1 + p_2) S_1 u_1 + p_5 S_1 + (p_3 + p_4) S_1 d_1,$$

$$S_2 M_2 = (p_1 + p_4) S_2 u_2 + p_5 S_2 + (p_2 + p_3) S_2 d_2.$$

Correlated Trinomial Model (concluded)

- Let $R \stackrel{\Delta}{=} M_1 M_2 e^{\rho \sigma_1 \sigma_2 \Delta t}$.
- Match the variances and covariance:

$$S_{1}^{2}V_{1} = (p_{1} + p_{2})((S_{1}u_{1})^{2} - (S_{1}M_{1})^{2}) + p_{5}(S_{1}^{2} - (S_{1}M_{1})^{2}) + (p_{3} + p_{4})((S_{1}d_{1})^{2} - (S_{1}M_{1})^{2}),$$

$$S_{2}^{2}V_{2} = (p_{1} + p_{4})((S_{2}u_{2})^{2} - (S_{2}M_{2})^{2}) + p_{5}(S_{2}^{2} - (S_{2}M_{2})^{2}) + (p_{2} + p_{3})((S_{2}d_{2})^{2} - (S_{2}M_{2})^{2}),$$

$$S_{1}S_{2}R = (p_{1}u_{1}u_{2} + p_{2}u_{1}d_{2} + p_{3}d_{1}d_{2} + p_{4}d_{1}u_{2} + p_{5})S_{1}S_{2}$$

$$S_1 S_2 n = (p_1 a_1 a_2 + p_2 a_1 a_2 + p_3 a_1 a_2 + p_4 a_1 a_2 + p_5) S_1 S_2$$

• The solutions appear on p. 246 of the textbook.

^aMadan, Milne, & Shefrin (1989).

Correlated Trinomial Model Simplified (continued)

• All of the probabilities lie between 0 and 1 if and only if

$$-1 + \lambda \sqrt{\Delta t} \left| \frac{\mu_1'}{\sigma_1} + \frac{\mu_2'}{\sigma_2} \right| \le \rho \le 1 - \lambda \sqrt{\Delta t} \left| \frac{\mu_1'}{\sigma_1} - \frac{\mu_2'}{\sigma_2} \right| (106)$$

$$1 \le \lambda \qquad (107)$$

• We call a multivariate tree (correlation-) optimal if it guarantees valid probabilities as long as

$$-1 + O(\sqrt{\Delta t}) < \rho < 1 - O(\sqrt{\Delta t}),$$

such as the above one.^a

^aW. Kao (**R98922093**) (2011); W. Kao (**R98922093**), Lyuu, & Wen (**D94922003**) (2014).

Correlated Trinomial Model Simplified (continued)

- But this model cannot price 2-asset 2-barrier options accurately.^a
- Few multivariate trees are both optimal and able to handle multiple barriers.^b
- An alternative is to use orthogonalization.^c

^aSee Y. Chang (B89704039, R93922034), Hsu (R7526001, D89922012), & Lyuu (2006); W. Kao (R98922093), Lyuu, & Wen (D94922003) (2014) for solutions.

^bSee W. Kao (R98922093), Lyuu, & Wen (D94922003) (2014) for one. ^cHull & White (1990); Dai (B82506025, R86526008, D8852600), C. Wang (F95922018), & Lyuu (2013).

Correlated Trinomial Model Simplified (concluded)

- Suppose we allow each asset's volatility to be a function of time.^a
- There are k assets.
- Can you build an optimal multivariate tree that can handle a barrier on each asset in time $O(n^{k+1})$?^b

^aRecall p. 303. ^bSee Y. Zhang (R05922052) (2018) for a complete solution.

Extrapolation

- It is a method to speed up numerical convergence.
- Say f(n) converges to an unknown limit f at rate of 1/n:

$$f(n) = f + \frac{c}{n} + o\left(\frac{1}{n}\right). \tag{108}$$

• Assume c is an unknown constant independent of n.

- Convergence is basically monotonic and smooth.

Extrapolation (concluded)

• From two approximations $f(n_1)$ and $f(n_2)$ and ignoring the smaller terms,

$$f(n_1) = f + \frac{c}{n_1},$$

$$f(n_2) = f + \frac{c}{n_2}.$$

• A better approximation to the desired f is

$$f = \frac{n_1 f(n_1) - n_2 f(n_2)}{n_1 - n_2}.$$
 (109)

- This estimate should converge faster than 1/n.^a
- The Richardson extrapolation uses $n_2 = 2n_1$.

^aIt is identical to the forward rate formula (22) on p. 147!

Improving BOPM with Extrapolation

- Consider standard European options.
- Denote the option value under BOPM using n time periods by f(n).
- It is known that BOPM convergences at the rate of 1/n, consistent with Eq. (108) on p. 782.
- The plots on p. 294 (redrawn on next page) show that convergence to the true option value oscillates with n.
- Extrapolation is inapplicable at this stage.

Improving BOPM with Extrapolation (concluded)

- Take the at-the-money option in the left plot on p. 785.
- The sequence with odd n turns out to be monotonic and smooth (see the left plot on p. 787).^a
- Apply extrapolation (109) on p. 783 with $n_2 = n_1 + 2$, where n_1 is odd.
- Result is shown in the right plot on p. 787.
- The convergence rate is amazing.
- See Exercise 9.3.8 of the text (p. 111) for ideas in the general case.

^aThis can be proved (L. Chang & Palmer, 2007).

Numerical Methods

All science is dominated by the idea of approximation. — Bertrand Russell

Finite-Difference Methods

- Place a grid of points on the space over which the desired function takes value.
- Then approximate the function value at each of these points (p. 791).
- Solve the equation numerically by introducing difference equations in place of derivatives.

Example: Poisson's Equation

- It is $\partial^2 \theta / \partial x^2 + \partial^2 \theta / \partial y^2 = -\rho(x, y)$, which describes the electrostatic field.
- Replace second derivatives with finite differences through central difference.
- Introduce evenly spaced grid points with distance of Δx along the x axis and Δy along the y axis.
- The finite difference form is

$$-\rho(x_i, y_j) = \frac{\theta(x_{i+1}, y_j) - 2\theta(x_i, y_j) + \theta(x_{i-1}, y_j)}{(\Delta x)^2} + \frac{\theta(x_i, y_{j+1}) - 2\theta(x_i, y_j) + \theta(x_i, y_{j-1})}{(\Delta y)^2}.$$

Example: Poisson's Equation (concluded)

- In the above, $\Delta x \stackrel{\Delta}{=} x_i x_{i-1}$ and $\Delta y \stackrel{\Delta}{=} y_j y_{j-1}$ for $i, j = 1, 2, \dots$
- When the grid points are evenly spaced in both axes so that $\Delta x = \Delta y = h$, the difference equation becomes

$$-h^{2}\rho(x_{i}, y_{j}) = \theta(x_{i+1}, y_{j}) + \theta(x_{i-1}, y_{j}) + \theta(x_{i}, y_{j+1}) + \theta(x_{i}, y_{j-1}) - 4\theta(x_{i}, y_{j}).$$

- Given boundary values, we can solve for the x_i s and the y_j s within the square $[\pm L, \pm L]$.
- From now on, $\theta_{i,j}$ will denote the finite-difference approximation to the exact $\theta(x_i, y_j)$.

Explicit Methods

- Consider the diffusion equation $D(\partial^2 \theta / \partial x^2) - (\partial \theta / \partial t) = 0, D > 0.$
- Use evenly spaced grid points (x_i, t_j) with distances Δx and Δt , where $\Delta x \stackrel{\Delta}{=} x_{i+1} x_i$ and $\Delta t \stackrel{\Delta}{=} t_{j+1} t_j$.
- Employ central difference for the second derivative and forward difference for the time derivative to obtain

$$\frac{\partial \theta(x,t)}{\partial t}\Big|_{t=t_{j}} = \frac{\theta(x,t_{j+1}) - \theta(x,t_{j})}{\Delta t} + \cdots, \qquad (110)$$

$$\frac{\partial^2 \theta(x,t)}{\partial x^2}\Big|_{x=x_i} = \frac{\theta(x_{i+1},t) - 2\theta(x_i,t) + \theta(x_{i-1},t)}{(\Delta x)^2} + \cdots (111)$$
Explicit Methods (continued)

- Next, assemble Eqs. (110) and (111) into a single equation at (x_i, t_j) .
- But we need to decide how to evaluate x in the first equation and t in the second.
- Since central difference around x_i is used in Eq. (111), we might as well use x_i for x in Eq. (110).
- Two choices are possible for t in Eq. (111).
- The first choice uses $t = t_j$ to yield the following finite-difference equation,

$$\frac{\theta_{i,j+1} - \theta_{i,j}}{\Delta t} = D \frac{\theta_{i+1,j} - 2\theta_{i,j} + \theta_{i-1,j}}{(\Delta x)^2}.$$
(112)

Explicit Methods (continued)

- The stencil of grid points involves four values, $\theta_{i,j+1}$, $\theta_{i,j}$, $\theta_{i+1,j}$, and $\theta_{i-1,j}$.
- Rearrange Eq. (112) on p. 795 as

$$\theta_{i,j+1} = \frac{D\Delta t}{(\Delta x)^2} \,\theta_{i+1,j} + \left(1 - \frac{2D\Delta t}{(\Delta x)^2}\right) \theta_{i,j} + \frac{D\Delta t}{(\Delta x)^2} \,\theta_{i-1,j}.$$

• We can calculate $\theta_{i,j+1}$ from $\theta_{i,j}, \theta_{i+1,j}, \theta_{i-1,j}$, at the previous time t_j (see exhibit (a) on next page).

Explicit Methods (concluded)

• Starting from the initial conditions at t_0 , that is, $\theta_{i,0} = \theta(x_i, t_0), i = 1, 2, \dots$, we calculate

$$\theta_{i,1}, \quad i=1,2,\ldots$$

• And then

$$\theta_{i,2}, \quad i=1,2,\ldots$$

• And so on.

Stability

• The explicit method is numerically unstable unless

 $\Delta t \le (\Delta x)^2 / (2D).$

- A numerical method is unstable if the solution is highly sensitive to changes in initial conditions.
- The stability condition may lead to high running times and memory requirements.
- For instance, halving Δx would imply quadrupling $(\Delta t)^{-1}$, resulting in a running time 8 times as much.

Explicit Method and Trinomial Tree

• Recall that

$$\theta_{i,j+1} = \frac{D\Delta t}{(\Delta x)^2} \,\theta_{i+1,j} + \left(1 - \frac{2D\Delta t}{(\Delta x)^2}\right) \theta_{i,j} + \frac{D\Delta t}{(\Delta x)^2} \,\theta_{i-1,j}.$$

- When the stability condition is satisfied, the three coefficients for $\theta_{i+1,j}$, $\theta_{i,j}$, and $\theta_{i-1,j}$ all lie between zero and one and sum to one.
- They can be interpreted as probabilities.
- So the finite-difference equation becomes identical to backward induction on trinomial trees!

Explicit Method and Trinomial Tree (concluded)

- The freedom in choosing Δx corresponds to similar freedom in the construction of trinomial trees.
- The explicit finite-difference equation is also identical to backward induction on a binomial tree.^a
 - Let the binomial tree take 2 steps each of length $\Delta t/2.$
 - It is now a trinomial tree.

^aHilliard (2014).

Implicit Methods

- Suppose we use $t = t_{j+1}$ in Eq. (111) on p. 794 instead.
- The finite-difference equation becomes

$$\frac{\theta_{i,j+1} - \theta_{i,j}}{\Delta t} = D \, \frac{\theta_{i+1,j+1} - 2\theta_{i,j+1} + \theta_{i-1,j+1}}{(\Delta x)^2}.$$
(113)

- The stencil involves $\theta_{i,j}$, $\theta_{i,j+1}$, $\theta_{i+1,j+1}$, and $\theta_{i-1,j+1}$.
- This method is implicit:
 - The value of any one of the three quantities at t_{j+1} cannot be calculated unless the other two are known.
 - See exhibit (b) on p. 797.

Implicit Methods (continued)

• Equation (113) can be rearranged as

$$\theta_{i-1,j+1} - (2+\gamma)\,\theta_{i,j+1} + \theta_{i+1,j+1} = -\gamma\theta_{i,j},$$

where $\gamma \stackrel{\Delta}{=} (\Delta x)^2 / (D\Delta t)$.

- This equation is unconditionally stable.
- Suppose the boundary conditions are given at $x = x_0$ and $x = x_{N+1}$.
- After $\theta_{i,j}$ has been calculated for i = 1, 2, ..., N, the values of $\theta_{i,j+1}$ at time t_{j+1} can be computed as the solution to the following tridiagonal linear system,

Implicit Methods (concluded)

• Tridiagonal systems can be solved in O(N) time and O(N) space.

- Never invert a matrix to solve a tridiagonal system.

- The matrix above is nonsingular when $\gamma \geq 0$.
 - A square matrix is nonsingular if its inverse exists.

Crank-Nicolson Method

• Take the average of explicit method (112) on p. 795 and implicit method (113) on p. 802:

$$= \frac{\frac{\theta_{i,j+1} - \theta_{i,j}}{\Delta t}}{\left(D \frac{\theta_{i+1,j} - 2\theta_{i,j} + \theta_{i-1,j}}{(\Delta x)^2} + D \frac{\theta_{i+1,j+1} - 2\theta_{i,j+1} + \theta_{i-1,j+1}}{(\Delta x)^2}\right)$$

• After rearrangement,

$$\gamma \theta_{i,j+1} - \frac{\theta_{i+1,j+1} - 2\theta_{i,j+1} + \theta_{i-1,j+1}}{2} = \gamma \theta_{i,j} + \frac{\theta_{i+1,j} - 2\theta_{i,j} + \theta_{i-1,j}}{2}.$$

• This is an unconditionally stable implicit method with excellent rates of convergence.

Numerically Solving the Black-Scholes PDE (86) on p. 651

- See text.
- Brennan and Schwartz (1978) analyze the stability of the implicit method.

Monte Carlo Simulation $^{\rm a}$

- Monte Carlo simulation is a sampling scheme.
- In many important applications within finance and without, Monte Carlo is one of the few feasible tools.
- When the time evolution of a stochastic process is not easy to describe analytically, Monte Carlo may very well be the only strategy that succeeds consistently.

^aA top 10 algorithm (Dongarra & Sullivan, 2000).

The Big Idea

- Assume X_1, X_2, \ldots, X_n have a joint distribution.
- $\theta \stackrel{\Delta}{=} E[g(X_1, X_2, \dots, X_n)]$ for some function g is desired.
- We generate

$$\left(x_1^{(i)}, x_2^{(i)}, \dots, x_n^{(i)}\right), \quad 1 \le i \le N$$

independently with the same joint distribution as (X_1, X_2, \ldots, X_n) .

• Set

$$Y_i \stackrel{\Delta}{=} g\left(x_1^{(i)}, x_2^{(i)}, \dots, x_n^{(i)}\right).$$

The Big Idea (concluded)

- Y_1, Y_2, \ldots, Y_N are independent and identically distributed random variables.
- Each Y_i has the same distribution as

$$Y \stackrel{\Delta}{=} g(X_1, X_2, \dots, X_n).$$

- Since the average of these N random variables, \overline{Y} , satisfies $E[\overline{Y}] = \theta$, it can be used to estimate θ .
- The strong law of large numbers says that this procedure converges almost surely.
- The number of replications (or independent trials), N, is called the sample size.

Accuracy

- The Monte Carlo estimate and true value may differ owing to two reasons:
 - 1. Sampling variation.
 - 2. The discreteness of the sample paths.^a
- The first can be controlled by the number of replications.
- The second can be controlled by the number of observations along the sample path.

^aThis may not be an issue if the financial derivative only requires discrete sampling along the time dimension, such as the *discrete* barrier option.

Accuracy and Number of Replications

- The statistical error of the sample mean \overline{Y} of the random variable Y grows as $1/\sqrt{N}$.
 - Because $\operatorname{Var}[\overline{Y}] = \operatorname{Var}[Y]/N$.
- In fact, this convergence rate is asymptotically optimal.^a
- So the variance of the estimator \overline{Y} can be reduced by a factor of 1/N by doing N times as much work.
- This is amazing because the same order of convergence holds independently of the dimension *n*.

^aThe Berry-Esseen theorem.

Accuracy and Number of Replications (concluded)

- In contrast, classic numerical integration schemes have an error bound of O(N^{-c/n}) for some constant c > 0.
 - n is the dimension.
- The required number of evaluations thus grows exponentially in n to achieve a given level of accuracy.
 The curse of dimensionality.
- The Monte Carlo method is more efficient than alternative procedures for multivariate derivatives when *n* is large.

Monte Carlo Option Pricing

- For the pricing of European options on a dividend-paying stock, we may proceed as follows.
- Assume

$$\frac{dS}{S} = \mu \, dt + \sigma \, dW.$$

• Stock prices S_1, S_2, S_3, \ldots at times $\Delta t, 2\Delta t, 3\Delta t, \ldots$ can be generated via

$$S_{i+1} = S_i e^{(\mu - \sigma^2/2) \Delta t + \sigma \sqrt{\Delta t} \xi}, \quad \xi \sim N(0, 1).$$
(114)

Monte Carlo Option Pricing (continued)

• If we discretize $dS/S = \mu dt + \sigma dW$ directly, we will obtain

$$S_{i+1} = S_i + S_i \mu \,\Delta t + S_i \sigma \sqrt{\Delta t} \,\xi.$$

- But this is locally normally distributed, not lognormally, hence biased.^a
- In practice, this is not expected to be a major problem as long as Δt is sufficiently small.

^aContributed by Mr. Tai, Hui-Chin (R97723028) on April 22, 2009.

Monte Carlo Option Pricing (continued)

Non-dividend-paying stock prices in a risk-neutral economy can be generated by setting $\mu = r$ and $\Delta t = T$.

1:
$$C := 0$$
; {Accumulated terminal option value.}
2: for $i = 1, 2, 3, ..., N$ do
3: $P := S \times e^{(r - \sigma^2/2)T + \sigma\sqrt{T} \xi}, \xi \sim N(0, 1);$
4: $C := C + \max(P - X, 0);$
5: end for
6: return $Ce^{-rT}/N;$

Monte Carlo Option Pricing (concluded)

Pricing Asian options is also easy.

1:
$$C := 0;$$

2: for $i = 1, 2, 3, ..., N$ do
3: $P := S; M := S;$
4: for $j = 1, 2, 3, ..., n$ do
5: $P := P \times e^{(r - \sigma^2/2)(T/n) + \sigma \sqrt{T/n} \xi};$
6: $M := M + P;$
7: end for
8: $C := C + \max(M/(n+1) - X, 0);$
9: end for
10: return $Ce^{-rT}/N;$

How about American Options?

- Standard Monte Carlo simulation is inappropriate for American options because of early exercise.
 - Given a sample path S_0, S_1, \ldots, S_n , how to decide which S_i is an early-exercise point?
 - What is the option price at each S_i if the option is not exercised?
- It is difficult to determine the early-exercise point based on one single path.
- But Monte Carlo simulation can be modified to price American options with small biases (pp. 876ff).^a

^aLongstaff & Schwartz (2001).

Delta and Common Random Numbers

• In estimating delta, it is natural to start with the finite-difference estimate

$$e^{-r\tau} \frac{E[P(S+\epsilon)] - E[P(S-\epsilon)]}{2\epsilon}$$

- -P(x) is the terminal payoff of the derivative security when the underlying asset's initial price equals x.
- Use simulation to estimate $E[P(S + \epsilon)]$ first.
- Use another simulation to estimate $E[P(S \epsilon)]$.
- Finally, apply the formula to approximate the delta.
- This is also called the bump-and-revalue method.

Delta and Common Random Numbers (concluded)

- This method is not recommended because of its high variance.
- A much better approach is to use common random numbers to lower the variance:

$$e^{-r\tau} E\left[\frac{P(S+\epsilon) - P(S-\epsilon)}{2\epsilon}\right]$$

- Here, the same random numbers are used for $P(S + \epsilon)$ and $P(S - \epsilon)$.
- This holds for gamma and cross gamma.^a

^aFor multivariate derivatives.

Problems with the Bump-and-Revalue Method (concluded)

• The price of the binary option equals

$$e^{-r\tau}N(x-\sigma\sqrt{\tau}).$$

- It equals minus the derivative of the European call with respect to X.
- It also equals $X\tau$ times the rho of a European call (p. 348).
- Its delta is

$$\frac{N'\left(x-\sigma\sqrt{\tau}\right)}{S\sigma\sqrt{\tau}}.$$

Gamma

• The finite-difference formula for gamma is

$$e^{-r\tau} E\left[\frac{P(S+\epsilon) - 2 \times P(S) + P(S-\epsilon)}{\epsilon^2}\right]$$

• For a correlation option with multiple underlying assets, the finite-difference formula for the cross gamma $\partial^2 P(S_1, S_2, \dots)/(\partial S_1 \partial S_2)$ is:

$$e^{-r\tau} E\left[\frac{P(S_1+\epsilon_1, S_2+\epsilon_2) - P(S_1-\epsilon_1, S_2+\epsilon_2)}{4\epsilon_1\epsilon_2} - P(S_1+\epsilon_1, S_2-\epsilon_2) + P(S_1-\epsilon_1, S_2-\epsilon_2)\right].$$

- Choosing an ϵ of the right magnitude can be challenging.
 - If ϵ is too large, inaccurate Greeks result.
 - If ϵ is too small, unstable Greeks result.
- This phenomenon is sometimes called the curse of differentiation.^a

^aAït-Sahalia & Lo (1998); Bondarenko (2003).

• In general, suppose

$$\frac{\partial^{i}}{\partial\theta^{i}}e^{-r\tau}E[P(S)] = e^{-r\tau}E\left[\frac{\partial^{i}P(S)}{\partial\theta^{i}}\right]$$

holds for all i > 0, where θ is a parameter of interest.^a

– A common requirement is Lipschitz continuity.^b

- Then Greeks become integrals.
- As a result, we avoid ϵ , finite differences, and resimulation.

 $^{{}^{\}mathrm{a}}\partial^{i}P(S)/\partial\theta^{i}$ may not be partial differentiation in the classic sense. ${}^{\mathrm{b}}$ Broadie & Glasserman (1996).

- This is indeed possible for a broad class of payoff functions.^a
 - Roughly speaking, any payoff function that is equal to a sum of products of differentiable functions and indicator functions with the right kind of support.
 - For example, the payoff of a call is

 $\max(S(T) - X, 0) = (S(T) - X)I_{\{S(T) - X \ge 0\}}.$

The results are too technical to cover here (see next page).

^aTeng (**R91723054**) (2004); Lyuu & Teng (**R91723054**) (2011).

- Suppose $h(\theta, x) \in \mathcal{H}$ with pdf f(x) for x and $g_j(\theta, x) \in \mathcal{G}$ for $j \in \mathcal{B}$, a finite set of natural numbers.
- Then

$$\begin{split} & \frac{\partial}{\partial \theta} \int_{\Re} h(\theta, x) \prod_{j \in \mathcal{B}} \mathbf{1}_{\{g_{j}(\theta, x) > 0\}}(x) f(x) dx \\ = & \int_{\Re} h_{\theta}(\theta, x) \prod_{j \in \mathcal{B}} \mathbf{1}_{\{g_{j}(\theta, x) > 0\}}(x) f(x) dx \\ & + \sum_{l \in \mathcal{B}} \left[h(\theta, x) J_{l}(\theta, x) \prod_{j \in \mathcal{B} \setminus l} \mathbf{1}_{\{g_{j}(\theta, x) > 0\}}(x) f(x) \right]_{x = \chi_{l}(\theta)}, \end{split}$$

where

$$J_l(\theta, x) = \operatorname{sign}\left(\frac{\partial g_l(\theta, x)}{\partial x_k}\right) \frac{\partial g_l(\theta, x) / \partial \theta}{\partial g_l(\theta, x) / \partial x} \text{ for } l \in \mathcal{B}.$$

Gamma (concluded)

- Similar results have been derived for Levy processes.^a
- Formulas are also recently obtained for credit derivatives.^b
- In queueing networks, this is called infinitesimal perturbation analysis (IPA).^c

^aLyuu, Teng (**R91723054**), & S. Wang (2013). ^bLyuu, Teng (**R91723054**), & Tseng (2014, 2018). ^cCao (1985); Y. C. Ho & Cao (1985).

Biases in Pricing Continuously Monitored Options with Monte Carlo

- We are asked to price a continuously monitored up-and-out call with barrier *H*.
- The Monte Carlo method samples the stock price at n discrete time points t_1, t_2, \ldots, t_n .
- A sample path

$$S(t_0), S(t_1), \ldots, S(t_n)$$

is produced.

- Here, $t_0 = 0$ is the current time, and $t_n = T$ is the expiration time of the option.
Biases in Pricing Continuously Monitored Options with Monte Carlo (continued)

- If all of the sampled prices are below the barrier, this sample path pays $\max(S(t_n) X, 0)$.
- Repeating these steps and averaging the payoffs yield a Monte Carlo estimate.

1:
$$C := 0;$$

2: for $i = 1, 2, 3, ..., N$ do
3: $P := S;$ hit $:= 0;$
4: for $j = 1, 2, 3, ..., n$ do
5: $P := P \times e^{(r - \sigma^2/2) (T/n) + \sigma \sqrt{(T/n)} \xi};$
6: if $P \ge H$ then
7: hit $:= 1;$
8: break;
9: end if
10: end for
11: if hit = 0 then
12: $C := C + \max(P - X, 0);$
13: end if
14: end for
15: return $Ce^{-rT}/N;$

Biases in Pricing Continuously Monitored Options with Monte Carlo (continued)

- This estimate is biased.^a
 - Suppose none of the sampled prices on a sample path equals or exceeds the barrier H.
 - It remains possible for the continuous sample path that passes through them to hit the barrier *between* sampled time points (see plot on next page).

^aShevchenko (2003).

Biases in Pricing Continuously Monitored Options with Monte Carlo (concluded)

- The bias can certainly be lowered by increasing the number of observations along the sample path.
- However, even daily sampling may not suffice.
- The computational cost also rises as a result.

Brownian Bridge Approach to Pricing Barrier Options

- We desire an unbiased estimate which can be calculated efficiently.
- The above-mentioned payoff should be multiplied by the probability *p* that a *continuous* sample path does *not* hit the barrier conditional on the sampled prices.
- This methodology is called the Brownian bridge approach.
- Formally, we have

$$p \stackrel{\Delta}{=} \operatorname{Prob}[S(t) < H, 0 \le t \le T \mid S(t_0), S(t_1), \dots, S(t_n)].$$

• As a barrier is hit over a time interval if and only if the maximum stock price over that period is at least H,

$$p = \operatorname{Prob}\left[\max_{0 \le t \le T} S(t) < H \,|\, S(t_0), S(t_1), \dots, S(t_n)\right].$$

• Luckily, the conditional distribution of the maximum over a time interval given the beginning and ending stock prices is known.

Lemma 21 Assume S follows $dS/S = \mu dt + \sigma dW$ and define $\zeta(x) \stackrel{\Delta}{=} \exp\left[-\frac{2\ln(x/S(t))\ln(x/S(t+\Delta t))}{\sigma^2 \Delta t}\right].$

(1) If $H > \max(S(t), S(t + \Delta t))$, then $\operatorname{Prob}\left[\max_{\substack{t \le u \le t + \Delta t}} S(u) < H \mid S(t), S(t + \Delta t)\right] = 1 - \zeta(H).$ (2) If $h < \min(S(t), S(t + \Delta t))$, then $\operatorname{Prob}\left[\min_{\substack{t \le u \le t + \Delta t}} S(u) > h \mid S(t), S(t + \Delta t)\right] = 1 - \zeta(h).$

- Lemma 21 gives the probability that the barrier is not hit in a time interval, given the starting and ending stock prices.
- For our up-and-out call,^a choose n = 1.
- As a result,

$$p = \begin{cases} 1 - \exp\left[-\frac{2\ln(H/S(0))\ln(H/S(T))}{\sigma^2 T}\right], & \text{if } H > \max(S(0), S(T)), \\ 0, & \text{otherwise.} \end{cases}$$
$$aSo \ S(0) < H.$$

The following algorithm works for up-and-out *and* down-and-out calls.

1:
$$C := 0;$$

2: for $i = 1, 2, 3, ..., N$ do
3: $P := S \times e^{(r-q-\sigma^2/2)T+\sigma\sqrt{T}\xi()};$
4: if $(S < H \text{ and } P < H)$ or $(S > H \text{ and } P > H)$ then
5: $C := C + \max(P - X, 0) \times \left\{1 - \exp\left[-\frac{2\ln(H/S) \times \ln(H/P)}{\sigma^2 T}\right]\right\};$
6: end if
7: end for
8: return $Ce^{-rT}/N;$

- The idea can be generalized.
- For example, we can handle more complex barrier options.
- Consider an up-and-out call with barrier H_i for the time interval $(t_i, t_{i+1}], 0 \le i < n$.
- This option thus contains n barriers.
- Multiply the probabilities for the *n* time intervals to obtain the desired probability adjustment term.

Brownian Bridge Approach to Pricing Lookback $$\operatorname{Options^a}$$

• By Lemma 21(1) (p. 838),

$$F_{\max}(y) \stackrel{\Delta}{=} \operatorname{Prob}\left[\max_{0 \le t \le T} S(t) < y \,|\, S(0), S(T)\right]$$
$$= 1 - \exp\left[-\frac{2\ln(y/S(0))\ln(y/S(T))}{\sigma^2 T}\right]$$

- So F_{max} is the conditional distribution function of the maximum stock price.
- A random variable with that distribution can be generated by $F_{\max}^{-1}(x)$, where x is uniformly distributed over (0, 1).

^aEl Babsiri & Noel (1998).

Brownian Bridge Approach to Pricing Lookback Options (continued)

• In other words,

$$x = 1 - \exp\left[-\frac{2\ln(y/S(0))\ln(y/S(T))}{\sigma^2 T}\right]$$

• Equivalently,

$$\ln(1-x) = -\frac{2\ln(y/S(0))\ln(y/S(T))}{\sigma^2 T}$$

= $-\frac{2}{\sigma^2 T} \{ [\ln(y) - \ln S(0)] [\ln(y) - \ln S(T)] \}.$

Brownian Bridge Approach to Pricing Lookback Options (continued)

- There are two solutions for $\ln y$.
- But only one is consistent with $y \ge \max(S(0), S(T))$:

$$\ln y = \frac{\ln(S(0) \, S(T)) + \sqrt{\left(\ln \frac{S(T)}{S(0)}\right)^2 - 2\sigma^2 T \ln(1-x)}}{2}$$

Brownian Bridge Approach to Pricing Lookback Options (concluded)

The following algorithm works for the lookback put on the maximum.

1:
$$C := 0;$$

2: for $i = 1, 2, 3, ..., N$ do
3: $P := S \times e^{(r-q-\sigma^2/2)T+\sigma\sqrt{T} \xi()};$
4: $Y := \exp\left[\frac{\ln(SP) + \sqrt{(\ln \frac{P}{S})^2 - 2\sigma^2 T \ln[1-U(0,1)]}}{2}\right];$
5: $C := C + (Y - P);$
6: end for
7: return $Ce^{-rT}/N;$

Variance Reduction

- The statistical efficiency of Monte Carlo simulation can be measured by the variance of its output.
- If this variance can be lowered without changing the expected value, fewer replications are needed.
- Methods that improve efficiency in this manner are called variance-reduction techniques.
- Such techniques become practical when the added costs are outweighed by the reduction in sampling.

Variance Reduction: Antithetic Variates

- We are interested in estimating $E[g(X_1, X_2, \ldots, X_n)]$.
- Let Y_1 and Y_2 be random variables with the same distribution as $g(X_1, X_2, \ldots, X_n)$.
- Then

$$\operatorname{Var}\left[\frac{Y_1 + Y_2}{2}\right] = \frac{\operatorname{Var}[Y_1]}{2} + \frac{\operatorname{Cov}[Y_1, Y_2]}{2}$$

- $\operatorname{Var}[Y_1]/2$ is the variance of the Monte Carlo method with two independent replications.

• The variance $\operatorname{Var}[(Y_1 + Y_2)/2]$ is smaller than $\operatorname{Var}[Y_1]/2$ when Y_1 and Y_2 are negatively correlated.

Variance Reduction: Antithetic Variates (continued)

- For each simulated sample path X, a second one is obtained by *reusing* the random numbers on which the first path is based.
- This yields a second sample path Y.
- Two estimates are then obtained: One based on X and the other on Y.
- If N independent sample paths are generated, the antithetic-variates estimator averages over 2Nestimates.

Variance Reduction: Antithetic Variates (continued)

- Consider process $dX = a_t dt + b_t \sqrt{dt} \xi$.
- Let g be a function of n samples X_1, X_2, \ldots, X_n on the sample path.
- We are interested in $E[g(X_1, X_2, \ldots, X_n)].$
- Suppose one simulation run has realizations
 ξ₁, ξ₂,..., ξ_n for the normally distributed fluctuation term ξ.
- This generates samples x_1, x_2, \ldots, x_n .
- The estimate is then $g(\boldsymbol{x})$, where $\boldsymbol{x} \stackrel{\Delta}{=} (x_1, x_2 \dots, x_n)$.

Variance Reduction: Antithetic Variates (concluded)

- The antithetic-variates method does not sample n more numbers from ξ for the second estimate $g(\mathbf{x}')$.
- Instead, generate the sample path $\mathbf{x}' \stackrel{\Delta}{=} (x'_1, x'_2 \dots, x'_n)$ from $-\xi_1, -\xi_2, \dots, -\xi_n$.
- Compute $g(\boldsymbol{x}')$.
- Output (g(x) + g(x'))/2.
- Repeat the above steps for as many times as required by accuracy.

Variance Reduction: Conditioning

- We are interested in estimating E[X].
- Suppose here is a random variable Z such that E[X | Z = z] can be efficiently and precisely computed.
- E[X] = E[E[X | Z]] by the law of iterated conditional expectations.
- Hence the random variable E[X | Z] is also an unbiased estimator of E[X].

Variance Reduction: Conditioning (concluded)

• As

```
\operatorname{Var}[E[X | Z]] \leq \operatorname{Var}[X],
```

 $E[X \mid Z]$ has a smaller variance than observing X directly.

- First, obtain a random observation z on Z.
- Then calculate E[X | Z = z] as our estimate.
 - There is no need to resort to simulation in computing E[X | Z = z].
- The procedure can be repeated a few times to reduce the variance.