
Merton’s Jump-Diffusion Model

• Empirically, stock returns tend to have fat tails,

inconsistent with the Black-Scholes model’s assumptions.

• Stochastic volatility and jump processes have been

proposed to address this problem.

• Merton’s (1976) jump-diffusion model is our focus.

c©2018 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 759



Merton’s Jump-Diffusion Model (continued)

• This model superimposes a jump component on a

diffusion component.

• The diffusion component is the familiar geometric

Brownian motion.

• The jump component is composed of lognormal jumps

driven by a Poisson process.

– It models the rare but large changes in the stock price

because of the arrival of important new information.
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Merton’s Jump-Diffusion Model (continued)

• Let St be the stock price at time t.

• The risk-neutral jump-diffusion process for the stock

price follows

dSt

St
= (r − λk̄) dt+ σ dWt + k dqt. (101)

• Above, σ denotes the volatility of the diffusion

component.
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Merton’s Jump-Diffusion Model (continued)

• The jump event is governed by a compound Poisson

process qt with intensity λ, where k denotes the

magnitude of the random jump.

– The distribution of k obeys

ln(1 + k) ∼ N
(
γ, δ2

)
with mean k̄

Δ
= E (k) = eγ+δ2/2 − 1.

– Note that k > −1.

• The model with λ = 0 reduces to the Black-Scholes

model.
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Merton’s Jump-Diffusion Model (continued)

• The solution to Eq. (101) on p. 761 is

St = S0e
(r−λk̄−σ2/2) t+σWtU(n(t)), (102)

where

U(n(t)) =

n(t)∏
i=0

(1 + ki) .

– ki is the magnitude of the ith jump with

ln(1 + ki) ∼ N(γ, δ2).

– k0 = 0.

– n(t) is a Poisson process with intensity λ.
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Merton’s Jump-Diffusion Model (concluded)

• Recall that n(t) denotes the number of jumps that

occur up to time t.

• As ki > −1, stock prices will stay positive.

• The geometric Brownian motion, the lognormal jumps,

and the Poisson process are assumed to be independent.
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Tree for Merton’s Jump-Diffusion Modela

• Define the S-logarithmic return of the stock price S′ as

ln(S′/S).

• Define the logarithmic distance between stock prices S′

and S as

| ln(S′)− ln(S) | = | ln(S′/S) |.
aDai (B82506025, R86526008, D8852600), C. Wang (F95922018), Lyuu,

& Y. Liu (2010).
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Tree for Merton’s Jump-Diffusion Model (continued)

• Take the logarithm of Eq. (102) on p. 763:

Mt
Δ
= ln

(
St

S0

)
= Xt + Yt, (103)

where

Xt
Δ
=

(
r − λk̄ − σ2

2

)
t+ σWt, (104)

Yt
Δ
=

n(t)∑
i=0

ln (1 + ki) . (105)

• It decomposes the S0-logarithmic return of St into the

diffusion component Xt and the jump component Yt.
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Tree for Merton’s Jump-Diffusion Model (continued)

• Motivated by decomposition (103) on p. 766, the tree

construction divides each period into a diffusion phase

followed by a jump phase.

• In the diffusion phase, Xt is approximated by the

BOPM.

• So Xt makes an up move to Xt + σ
√
Δt with

probability pu or a down move to Xt − σ
√
Δt with

probability pd.
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Tree for Merton’s Jump-Diffusion Model (continued)

• According to BOPM,

pu =
eμΔt − d

u− d
,

pd = 1− pu,

except that μ = r − λk̄ here.

• The diffusion component gives rise to diffusion nodes.

• They are spaced at 2σ
√
Δt apart such as the white

nodes A, B, C, D, E, F, and G on p. 769.
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White nodes are diffusion nodes.

Gray nodes are jump nodes. In

the diffusion phase, the solid black

lines denote the binomial structure

of BOPM; the dashed lines denote

the trinomial structure. Only the

double-circled nodes will remain af-

ter the construction. Note that a

and b are diffusion nodes because

no jump occurs in the jump phase.
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Tree for Merton’s Jump-Diffusion Model (concluded)

• In the jump phase, Yt+Δt is approximated by moves

from each diffusion node to 2m jump nodes that match

the first 2m moments of the lognormal jump.

• The m jump nodes above the diffusion node are spaced

at h
Δ
=
√
γ2 + δ2 apart.

• The same holds for the m jump nodes below the

diffusion node.

• The gray nodes at time �Δt on p. 769 are jump nodes.

– We set m = 1 on p. 769.

• The size of the tree is O(n2.5).
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Multivariate Contingent Claims

• They depend on two or more underlying assets.

• The basket call on m assets has the terminal payoff

max

(
m∑
i=1

αiSi(τ)−X, 0

)
,

where αi is the percentage of asset i.

• Basket options are essentially options on a portfolio of

stocks; they are index options.

• Option on the best of two risky assets and cash has a

terminal payoff of max(S1(τ), S2(τ), X).
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Multivariate Contingent Claims (concluded)a

Name Payoff

Exchange option max(S1(τ)− S2(τ), 0)

Better-off option max(S1(τ), . . . , Sk(τ), 0)

Worst-off option min(S1(τ), . . . , Sk(τ), 0)

Binary maximum option I{max(S1(τ), . . . , Sk(τ)) > X }
Maximum option max(max(S1(τ), . . . , Sk(τ))−X, 0)

Minimum option max(min(S1(τ), . . . , Sk(τ))−X, 0)

Spread option max(S1(τ)− S2(τ)−X, 0)

Basket average option max((S1(τ) + · · ·+ Sk(τ))/k −X, 0)

Multi-strike option max(S1(τ)−X1, . . . , Sk(τ)−Xk, 0)

Pyramid rainbow option max(|S1(τ)−X1 |+ · · ·+ |Sk(τ)−Xk | −X, 0)

Madonna option max(
√

(S1(τ)−X1)2 + · · ·+ (Sk(τ)−Xk)2 −X, 0)

aLyuu & Teng (R91723054) (2011).
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Correlated Trinomial Modela

• Two risky assets S1 and S2 follow

dSi

Si
= r dt+ σi dWi

in a risk-neutral economy, i = 1, 2.

• Let

Mi
Δ
= erΔt,

Vi
Δ
= M2

i (e
σ2
iΔt − 1).

– SiMi is the mean of Si at time Δt.

– S2
i Vi the variance of Si at time Δt.

aBoyle, Evnine, & Gibbs (1989).
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Correlated Trinomial Model (continued)

• The value of S1S2 at time Δt has a joint lognormal

distribution with mean S1S2M1M2e
ρσ1σ2Δt, where ρ is

the correlation between dW1 and dW2.

• Next match the 1st and 2nd moments of the

approximating discrete distribution to those of the

continuous counterpart.

• At time Δt from now, there are 5 distinct outcomes.
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Correlated Trinomial Model (continued)

• The five-point probability distribution of the asset prices

is

Probability Asset 1 Asset 2

p1 S1u1 S2u2

p2 S1u1 S2d2

p3 S1d1 S2d2

p4 S1d1 S2u2

p5 S1 S2

• As usual, impose uidi = 1.
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Correlated Trinomial Model (continued)

• The probabilities must sum to one, and the means must

be matched:

1 = p1 + p2 + p3 + p4 + p5,

S1M1 = (p1 + p2)S1u1 + p5S1 + (p3 + p4)S1d1,

S2M2 = (p1 + p4)S2u2 + p5S2 + (p2 + p3)S2d2.
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Correlated Trinomial Model (concluded)

• Let R
Δ
= M1M2e

ρσ1σ2Δt.

• Match the variances and covariance:

S2
1V1 = (p1 + p2)((S1u1)

2 − (S1M1)
2) + p5(S

2
1 − (S1M1)

2)

+(p3 + p4)((S1d1)
2 − (S1M1)

2
),

S2
2V2 = (p1 + p4)((S2u2)

2 − (S2M2)
2) + p5(S

2
2 − (S2M2)

2)

+(p2 + p3)((S2d2)
2 − (S2M2)

2
),

S1S2R = (p1u1u2 + p2u1d2 + p3d1d2 + p4d1u2 + p5)S1S2.

• The solutions appear on p. 246 of the textbook.
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Correlated Trinomial Model Simplifieda

• Let μ′
i
Δ
= r − σ2

i /2 and ui
Δ
= eλσi

√
Δt for i = 1, 2.

• The following simpler scheme is good enough:

p1 =
1

4

[
1

λ2
+

√
Δt

λ

(
μ′
1

σ1

+
μ′
2

σ2

)
+

ρ

λ2

]
,

p2 =
1

4

[
1

λ2
+

√
Δt

λ

(
μ′
1

σ1

−
μ′
2

σ2

)
−

ρ

λ2

]
,

p3 =
1

4

[
1

λ2
+

√
Δt

λ

(
−

μ′
1

σ1

−
μ′
2

σ2

)
+

ρ

λ2

]
,

p4 =
1

4

[
1

λ2
+

√
Δt

λ

(
−

μ′
1

σ1

+
μ′
2

σ2

)
−

ρ

λ2

]
,

p5 = 1 −
1

λ2
.

aMadan, Milne, & Shefrin (1989).
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Correlated Trinomial Model Simplified (continued)

• All of the probabilities lie between 0 and 1 if and only if

−1 + λ
√
Δt

∣∣∣∣ μ
′
1

σ1
+

μ′
2

σ2

∣∣∣∣ ≤ ρ ≤ 1− λ
√
Δt

∣∣∣∣ μ
′
1

σ1
− μ′

2

σ2

∣∣∣∣ ,(106)
1 ≤ λ (107)

• We call a multivariate tree (correlation-) optimal if it

guarantees valid probabilities as long as

−1 +O(
√
Δt) < ρ < 1−O(

√
Δt),

such as the above one.a

aW. Kao (R98922093) (2011); W. Kao (R98922093), Lyuu, & Wen

(D94922003) (2014).
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Correlated Trinomial Model Simplified (continued)

• But this model cannot price 2-asset 2-barrier options

accurately.a

• Few multivariate trees are both optimal and able to

handle multiple barriers.b

• An alternative is to use orthogonalization.c

aSee Y. Chang (B89704039, R93922034), Hsu (R7526001, D89922012),

& Lyuu (2006); W. Kao (R98922093), Lyuu, & Wen (D94922003) (2014)

for solutions.
bSee W. Kao (R98922093), Lyuu, & Wen (D94922003) (2014) for one.
cHull & White (1990); Dai (B82506025, R86526008, D8852600), C.

Wang (F95922018), & Lyuu (2013).
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Correlated Trinomial Model Simplified (concluded)

• Suppose we allow each asset’s volatility to be a function

of time.a

• There are k assets.

• Can you build an optimal multivariate tree that can

handle a barrier on each asset in time O(nk+1)?b

aRecall p. 303.
bSee Y. Zhang (R05922052) (2018) for a complete solution.
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Extrapolation

• It is a method to speed up numerical convergence.

• Say f(n) converges to an unknown limit f at rate of

1/n:

f(n) = f +
c

n
+ o

(
1

n

)
. (108)

• Assume c is an unknown constant independent of n.

– Convergence is basically monotonic and smooth.
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Extrapolation (concluded)

• From two approximations f(n1) and f(n2) and

ignoring the smaller terms,

f(n1) = f +
c

n1
,

f(n2) = f +
c

n2
.

• A better approximation to the desired f is

f =
n1f(n1)− n2f(n2)

n1 − n2
. (109)

• This estimate should converge faster than 1/n.a

• The Richardson extrapolation uses n2 = 2n1.
aIt is identical to the forward rate formula (22) on p. 147!
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Improving BOPM with Extrapolation

• Consider standard European options.

• Denote the option value under BOPM using n time

periods by f(n).

• It is known that BOPM convergences at the rate of 1/n,

consistent with Eq. (108) on p. 782.

• The plots on p. 294 (redrawn on next page) show that

convergence to the true option value oscillates with n.

• Extrapolation is inapplicable at this stage.
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Improving BOPM with Extrapolation (concluded)

• Take the at-the-money option in the left plot on p. 785.

• The sequence with odd n turns out to be monotonic

and smooth (see the left plot on p. 787).a

• Apply extrapolation (109) on p. 783 with n2 = n1 + 2,

where n1 is odd.

• Result is shown in the right plot on p. 787.

• The convergence rate is amazing.

• See Exercise 9.3.8 of the text (p. 111) for ideas in the

general case.

aThis can be proved (L. Chang & Palmer, 2007).
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Numerical Methods
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All science is dominated

by the idea of approximation.

— Bertrand Russell
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Finite-Difference Methods

• Place a grid of points on the space over which the

desired function takes value.

• Then approximate the function value at each of these

points (p. 791).

• Solve the equation numerically by introducing difference

equations in place of derivatives.

c©2018 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 790



0 0.05 0.1 0.15 0.2 0.25
80

85

90

95

100

105

110

115

c©2018 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 791



Example: Poisson’s Equation

• It is ∂2θ/∂x2 + ∂2θ/∂y2 = −ρ(x, y), which describes the

electrostatic field.

• Replace second derivatives with finite differences

through central difference.

• Introduce evenly spaced grid points with distance of Δx

along the x axis and Δy along the y axis.

• The finite difference form is

−ρ(xi, yj) =
θ(xi+1, yj)− 2θ(xi, yj) + θ(xi−1, yj)

(Δx)2

+
θ(xi, yj+1)− 2θ(xi, yj) + θ(xi, yj−1)

(Δy)2
.
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Example: Poisson’s Equation (concluded)

• In the above, Δx
Δ
= xi − xi−1 and Δy

Δ
= yj − yj−1 for

i, j = 1, 2, . . . .

• When the grid points are evenly spaced in both axes so

that Δx = Δy = h, the difference equation becomes

−h2ρ(xi, yj) = θ(xi+1, yj) + θ(xi−1, yj)

+θ(xi, yj+1) + θ(xi, yj−1)− 4θ(xi, yj).

• Given boundary values, we can solve for the xis and the

yjs within the square [±L,±L ].

• From now on, θi,j will denote the finite-difference

approximation to the exact θ(xi, yj).
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Explicit Methods

• Consider the diffusion equation

D(∂2θ/∂x2)− (∂θ/∂t) = 0, D > 0.

• Use evenly spaced grid points (xi, tj) with distances

Δx and Δt, where Δx
Δ
= xi+1 − xi and Δt

Δ
= tj+1 − tj .

• Employ central difference for the second derivative and

forward difference for the time derivative to obtain

∂θ(x, t)

∂t

∣∣∣∣
t=tj

=
θ(x, tj+1)− θ(x, tj)

Δt
+ · · · , (110)

∂2θ(x, t)

∂x2

∣∣∣∣
x=xi

=
θ(xi+1, t)− 2θ(xi, t) + θ(xi−1, t)

(Δx)2
+ · · · .(111)
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Explicit Methods (continued)

• Next, assemble Eqs. (110) and (111) into a single

equation at (xi, tj).

• But we need to decide how to evaluate x in the first

equation and t in the second.

• Since central difference around xi is used in Eq. (111),

we might as well use xi for x in Eq. (110).

• Two choices are possible for t in Eq. (111).

• The first choice uses t = tj to yield the following

finite-difference equation,

θi,j+1 − θi,j
Δt

= D
θi+1,j − 2θi,j + θi−1,j

(Δx)2
.

(112)
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Explicit Methods (continued)

• The stencil of grid points involves four values, θi,j+1,

θi,j , θi+1,j, and θi−1,j.

• Rearrange Eq. (112) on p. 795 as

θi,j+1 =
DΔt

(Δx)2
θi+1,j +

(
1− 2DΔt

(Δx)2

)
θi,j +

DΔt

(Δx)2
θi−1,j .

• We can calculate θi,j+1 from θi,j , θi+1,j, θi−1,j, at the

previous time tj (see exhibit (a) on next page).
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Explicit Methods (concluded)

• Starting from the initial conditions at t0, that is,

θi,0 = θ(xi, t0), i = 1, 2, . . . , we calculate

θi,1, i = 1, 2, . . . .

• And then

θi,2, i = 1, 2, . . . .

• And so on.
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Stability

• The explicit method is numerically unstable unless

Δt ≤ (Δx)2/(2D).

– A numerical method is unstable if the solution is

highly sensitive to changes in initial conditions.

• The stability condition may lead to high running times

and memory requirements.

• For instance, halving Δx would imply quadrupling

(Δt)−1, resulting in a running time 8 times as much.
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Explicit Method and Trinomial Tree

• Recall that

θi,j+1 =
DΔt

(Δx)2
θi+1,j +

(
1− 2DΔt

(Δx)2

)
θi,j +

DΔt

(Δx)2
θi−1,j .

• When the stability condition is satisfied, the three

coefficients for θi+1,j, θi,j , and θi−1,j all lie between

zero and one and sum to one.

• They can be interpreted as probabilities.

• So the finite-difference equation becomes identical to

backward induction on trinomial trees!
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Explicit Method and Trinomial Tree (concluded)

• The freedom in choosing Δx corresponds to similar

freedom in the construction of trinomial trees.

• The explicit finite-difference equation is also identical to

backward induction on a binomial tree.a

– Let the binomial tree take 2 steps each of length

Δt/2.

– It is now a trinomial tree.

aHilliard (2014).
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Implicit Methods

• Suppose we use t = tj+1 in Eq. (111) on p. 794 instead.

• The finite-difference equation becomes

θi,j+1 − θi,j
Δt

= D
θi+1,j+1 − 2θi,j+1 + θi−1,j+1

(Δx)2
.

(113)

• The stencil involves θi,j , θi,j+1, θi+1,j+1, and θi−1,j+1.

• This method is implicit:

– The value of any one of the three quantities at tj+1

cannot be calculated unless the other two are known.

– See exhibit (b) on p. 797.
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Implicit Methods (continued)

• Equation (113) can be rearranged as

θi−1,j+1 − (2 + γ) θi,j+1 + θi+1,j+1 = −γθi,j,

where γ
Δ
= (Δx)2/(DΔt).

• This equation is unconditionally stable.

• Suppose the boundary conditions are given at x = x0

and x = xN+1.

• After θi,j has been calculated for i = 1, 2, . . . , N , the

values of θi,j+1 at time tj+1 can be computed as the

solution to the following tridiagonal linear system,
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Implicit Methods (continued)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a 1 0 · · · · · · · · · 0

1 a 1 0 · · · · · · 0

0 1 a 1 0 · · · 0

.

.

.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.

.

.

.

.

.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.

.

.

0 · · · · · · 0 1 a 1

0 · · · · · · · · · 0 1 a

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

θ1,j+1

θ2,j+1

θ3,j+1

.

.

.

.

.

.

.

.

.

θN,j+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−γθ1,j − θ0,j+1

−γθ2,j

−γθ3,j

.

.

.

.

.

.

−γθN−1,j

−γθN,j − θN+1,j+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where a
Δ
= −2− γ.
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Implicit Methods (concluded)

• Tridiagonal systems can be solved in O(N) time and

O(N) space.

– Never invert a matrix to solve a tridiagonal system.

• The matrix above is nonsingular when γ ≥ 0.

– A square matrix is nonsingular if its inverse exists.
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Crank-Nicolson Method
• Take the average of explicit method (112) on p. 795 and
implicit method (113) on p. 802:

θi,j+1 − θi,j

Δt

=
1

2

(
D

θi+1,j − 2θi,j + θi−1,j

(Δx)2
+ D

θi+1,j+1 − 2θi,j+1 + θi−1,j+1

(Δx)2

)
.

• After rearrangement,

γθi,j+1 −
θi+1,j+1 − 2θi,j+1 + θi−1,j+1

2
= γθi,j +

θi+1,j − 2θi,j + θi−1,j

2
.

• This is an unconditionally stable implicit method with

excellent rates of convergence.

c©2018 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 806



Stencil

tj tj+1

xi

xi+1

xi+1
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Numerically Solving the Black-Scholes PDE (86) on p.
651

• See text.

• Brennan and Schwartz (1978) analyze the stability of

the implicit method.
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Monte Carlo Simulationa

• Monte Carlo simulation is a sampling scheme.

• In many important applications within finance and

without, Monte Carlo is one of the few feasible tools.

• When the time evolution of a stochastic process is not

easy to describe analytically, Monte Carlo may very well

be the only strategy that succeeds consistently.

aA top 10 algorithm (Dongarra & Sullivan, 2000).
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The Big Idea

• Assume X1, X2, . . . , Xn have a joint distribution.

• θ
Δ
= E[ g(X1, X2, . . . , Xn) ] for some function g is

desired.

• We generate(
x
(i)
1 , x

(i)
2 , . . . , x(i)

n

)
, 1 ≤ i ≤ N

independently with the same joint distribution as

(X1, X2, . . . , Xn).

• Set

Yi
Δ
= g

(
x
(i)
1 , x

(i)
2 , . . . , x(i)

n

)
.
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The Big Idea (concluded)

• Y1, Y2, . . . , YN are independent and identically

distributed random variables.

• Each Yi has the same distribution as

Y
Δ
= g(X1, X2, . . . , Xn).

• Since the average of these N random variables, Y ,

satisfies E[Y ] = θ, it can be used to estimate θ.

• The strong law of large numbers says that this

procedure converges almost surely.

• The number of replications (or independent trials), N , is

called the sample size.
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Accuracy

• The Monte Carlo estimate and true value may differ

owing to two reasons:

1. Sampling variation.

2. The discreteness of the sample paths.a

• The first can be controlled by the number of replications.

• The second can be controlled by the number of

observations along the sample path.

aThis may not be an issue if the financial derivative only requires

discrete sampling along the time dimension, such as the discrete barrier

option.
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Accuracy and Number of Replications

• The statistical error of the sample mean Y of the

random variable Y grows as 1/
√
N .

– Because Var[Y ] = Var[Y ]/N .

• In fact, this convergence rate is asymptotically optimal.a

• So the variance of the estimator Y can be reduced by a

factor of 1/N by doing N times as much work.

• This is amazing because the same order of convergence

holds independently of the dimension n.

aThe Berry-Esseen theorem.
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Accuracy and Number of Replications (concluded)

• In contrast, classic numerical integration schemes have

an error bound of O(N−c/n) for some constant c > 0.

– n is the dimension.

• The required number of evaluations thus grows

exponentially in n to achieve a given level of accuracy.

– The curse of dimensionality.

• The Monte Carlo method is more efficient than

alternative procedures for multivariate derivatives when

n is large.
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Monte Carlo Option Pricing

• For the pricing of European options on a

dividend-paying stock, we may proceed as follows.

• Assume
dS

S
= μ dt+ σ dW.

• Stock prices S1, S2, S3, . . . at times Δt, 2Δt, 3Δt, . . .

can be generated via

Si+1 = Sie
(μ−σ2/2)Δt+σ

√
Δt ξ, ξ ∼ N(0, 1).

(114)
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Monte Carlo Option Pricing (continued)

• If we discretize dS/S = μ dt+ σ dW directly, we will

obtain

Si+1 = Si + SiμΔt+ Siσ
√
Δt ξ.

• But this is locally normally distributed, not lognormally,

hence biased.a

• In practice, this is not expected to be a major problem

as long as Δt is sufficiently small.

aContributed by Mr. Tai, Hui-Chin (R97723028) on April 22, 2009.
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Monte Carlo Option Pricing (continued)

Non-dividend-paying stock prices in a risk-neutral economy

can be generated by setting μ = r and Δt = T .

1: C := 0; {Accumulated terminal option value.}
2: for i = 1, 2, 3, . . . , N do

3: P := S × e(r−σ2/2)T+σ
√
T ξ, ξ ∼ N(0, 1);

4: C := C +max(P −X, 0);

5: end for

6: return Ce−rT /N ;
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Monte Carlo Option Pricing (concluded)

Pricing Asian options is also easy.

1: C := 0;

2: for i = 1, 2, 3, . . . , N do

3: P := S; M := S;

4: for j = 1, 2, 3, . . . , n do

5: P := P × e(r−σ2/2)(T/n)+σ
√

T/n ξ;

6: M := M + P ;

7: end for

8: C := C +max(M/(n+ 1)−X, 0);

9: end for

10: return Ce−rT /N ;
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How about American Options?

• Standard Monte Carlo simulation is inappropriate for

American options because of early exercise.

– Given a sample path S0, S1, . . . , Sn, how to decide

which Si is an early-exercise point?

– What is the option price at each Si if the option is

not exercised?

• It is difficult to determine the early-exercise point based

on one single path.

• But Monte Carlo simulation can be modified to price

American options with small biases (pp. 876ff).a

aLongstaff & Schwartz (2001).
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Delta and Common Random Numbers

• In estimating delta, it is natural to start with the

finite-difference estimate

e−rτ E[P (S + ε) ]− E[P (S − ε) ]

2ε
.

– P (x) is the terminal payoff of the derivative security

when the underlying asset’s initial price equals x.

• Use simulation to estimate E[P (S + ε) ] first.

• Use another simulation to estimate E[P (S − ε) ].

• Finally, apply the formula to approximate the delta.

• This is also called the bump-and-revalue method.
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Delta and Common Random Numbers (concluded)

• This method is not recommended because of its high

variance.

• A much better approach is to use common random

numbers to lower the variance:

e−rτ E

[
P (S + ε)− P (S − ε)

2ε

]
.

• Here, the same random numbers are used for P (S + ε)

and P (S − ε).

• This holds for gamma and cross gamma.a

aFor multivariate derivatives.
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Problems with the Bump-and-Revalue Method

• Consider the binary option with payoff⎧⎨
⎩ 1, if S(T ) > X,

0, otherwise.

• Then

P (S+ε)−P (S−ε) =

⎧⎨
⎩ 1, if S + ε > X and S − ε < X,

0, otherwise.

• So the finite-difference estimate per run for the

(undiscounted) delta is 0 or O(1/ε).

• This means high variance.
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Problems with the Bump-and-Revalue Method
(concluded)

• The price of the binary option equals

e−rτN(x− σ
√
τ).

– It equals minus the derivative of the European call

with respect to X .

– It also equals Xτ times the rho of a European call (p.

348).

• Its delta is
N ′ (x− σ

√
τ)

Sσ
√
τ

.
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Gamma

• The finite-difference formula for gamma is

e−rτ E

[
P (S + ε)− 2× P (S) + P (S − ε)

ε2

]
.

• For a correlation option with multiple underlying assets,

the finite-difference formula for the cross gamma

∂2P (S1, S2, . . . )/(∂S1∂S2) is:

e−rτ E

[
P (S1 + ε1, S2 + ε2)− P (S1 − ε1, S2 + ε2)

4ε1ε2

−P (S1 + ε1, S2 − ε2) + P (S1 − ε1, S2 − ε2)
]
.

c©2018 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 824



Gamma (continued)

• Choosing an ε of the right magnitude can be

challenging.

– If ε is too large, inaccurate Greeks result.

– If ε is too small, unstable Greeks result.

• This phenomenon is sometimes called the curse of

differentiation.a

aAı̈t-Sahalia & Lo (1998); Bondarenko (2003).
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Gamma (continued)

• In general, suppose

∂i

∂θi
e−rτE[P (S) ] = e−rτE

[
∂iP (S)

∂θi

]

holds for all i > 0, where θ is a parameter of interest.a

– A common requirement is Lipschitz continuity.b

• Then Greeks become integrals.

• As a result, we avoid ε, finite differences, and

resimulation.

a∂iP (S)/∂θi may not be partial differentiation in the classic sense.
bBroadie & Glasserman (1996).
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Gamma (continued)

• This is indeed possible for a broad class of payoff

functions.a

– Roughly speaking, any payoff function that is equal

to a sum of products of differentiable functions and

indicator functions with the right kind of support.

– For example, the payoff of a call is

max(S(T )−X, 0) = (S(T )−X)I{S(T )−X≥0 }.

– The results are too technical to cover here (see next

page).

aTeng (R91723054) (2004); Lyuu & Teng (R91723054) (2011).
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Gamma (continued)

• Suppose h(θ, x) ∈ H with pdf f(x) for x and gj(θ, x) ∈ G
for j ∈ B, a finite set of natural numbers.

• Then
∂

∂θ

∫
�

h(θ, x)
∏

j∈B
1{gj (θ,x)>0}(x) f(x) dx

=

∫
�

hθ(θ, x)
∏

j∈B
1{gj (θ,x)>0}(x) f(x) dx

+
∑

l∈B

⎡
⎢⎣h(θ, x)Jl(θ, x)

∏
j∈B\l

1{gj (θ, x)>0}(x) f(x)

⎤
⎥⎦
x=χl(θ)

,

where
Jl(θ, x) = sign

(
∂gl(θ, x)

∂xk

)
∂gl(θ, x)/∂θ

∂gl(θ, x)/∂x
for l ∈ B.
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Gamma (concluded)

• Similar results have been derived for Levy processes.a

• Formulas are also recently obtained for credit

derivatives.b

• In queueing networks, this is called infinitesimal

perturbation analysis (IPA).c

aLyuu, Teng (R91723054), & S. Wang (2013).
bLyuu, Teng (R91723054), & Tseng (2014, 2018).
cCao (1985); Y. C. Ho & Cao (1985).
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Biases in Pricing Continuously Monitored Options
with Monte Carlo

• We are asked to price a continuously monitored

up-and-out call with barrier H.

• The Monte Carlo method samples the stock price at n

discrete time points t1, t2, . . . , tn.

• A sample path

S(t0), S(t1), . . . , S(tn)

is produced.

– Here, t0 = 0 is the current time, and tn = T is the

expiration time of the option.
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Biases in Pricing Continuously Monitored Options
with Monte Carlo (continued)

• If all of the sampled prices are below the barrier, this

sample path pays max(S(tn)−X, 0).

• Repeating these steps and averaging the payoffs yield a

Monte Carlo estimate.
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1: C := 0;

2: for i = 1, 2, 3, . . . , N do

3: P := S; hit := 0;

4: for j = 1, 2, 3, . . . , n do

5: P := P × e(r−σ2/2) (T/n)+σ
√

(T/n) ξ;

6: if P ≥ H then

7: hit := 1;

8: break;

9: end if

10: end for

11: if hit = 0 then

12: C := C +max(P −X, 0);

13: end if

14: end for

15: return Ce−rT /N ;
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Biases in Pricing Continuously Monitored Options
with Monte Carlo (continued)

• This estimate is biased.a

– Suppose none of the sampled prices on a sample path

equals or exceeds the barrier H.

– It remains possible for the continuous sample path

that passes through them to hit the barrier between

sampled time points (see plot on next page).

aShevchenko (2003).
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H

c©2018 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 834



Biases in Pricing Continuously Monitored Options
with Monte Carlo (concluded)

• The bias can certainly be lowered by increasing the

number of observations along the sample path.

• However, even daily sampling may not suffice.

• The computational cost also rises as a result.
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Brownian Bridge Approach to Pricing Barrier Options

• We desire an unbiased estimate which can be calculated

efficiently.

• The above-mentioned payoff should be multiplied by the

probability p that a continuous sample path does not

hit the barrier conditional on the sampled prices.

• This methodology is called the Brownian bridge

approach.

• Formally, we have

p
Δ
= Prob[S(t) < H, 0 ≤ t ≤ T |S(t0), S(t1), . . . , S(tn) ].

c©2018 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 836



Brownian Bridge Approach to Pricing Barrier Options
(continued)

• As a barrier is hit over a time interval if and only if the

maximum stock price over that period is at least H,

p = Prob

[
max
0≤t≤T

S(t) < H |S(t0), S(t1), . . . , S(tn)
]
.

• Luckily, the conditional distribution of the maximum

over a time interval given the beginning and ending

stock prices is known.
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Brownian Bridge Approach to Pricing Barrier Options
(continued)

Lemma 21 Assume S follows dS/S = μdt+ σ dW and define

ζ(x)
Δ
= exp

[
−2 ln(x/S(t)) ln(x/S(t+Δt))

σ2Δt

]
.

(1) If H > max(S(t), S(t+Δt)), then

Prob

[
max

t≤u≤t+Δt
S(u) < H

∣∣∣∣ S(t), S(t+Δt)

]
= 1− ζ(H).

(2) If h < min(S(t), S(t+Δt)), then

Prob

[
min

t≤u≤t+Δt
S(u) > h

∣∣∣∣ S(t), S(t+Δt)

]
= 1− ζ(h).

c©2018 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 838



Brownian Bridge Approach to Pricing Barrier Options
(continued)

• Lemma 21 gives the probability that the barrier is not

hit in a time interval, given the starting and ending

stock prices.

• For our up-and-out call,a choose n = 1.

• As a result,

p =

⎧⎨
⎩

1− exp
[
− 2 ln(H/S(0)) ln(H/S(T ))

σ2T

]
, if H > max(S(0), S(T )),

0, otherwise.

aSo S(0) < H.

c©2018 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 839



Brownian Bridge Approach to Pricing Barrier Options
(continued)

The following algorithm works for up-and-out and

down-and-out calls.

1: C := 0;

2: for i = 1, 2, 3, . . . , N do

3: P := S × e(r−q−σ2/2)T+σ
√
T ξ( );

4: if (S < H and P < H) or (S > H and P > H) then

5: C := C+max(P−X, 0)×
{
1− exp

[
− 2 ln(H/S)×ln(H/P )

σ2T

]}
;

6: end if

7: end for

8: return Ce−rT /N ;
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Brownian Bridge Approach to Pricing Barrier Options
(concluded)

• The idea can be generalized.

• For example, we can handle more complex barrier

options.

• Consider an up-and-out call with barrier Hi for the

time interval (ti, ti+1 ], 0 ≤ i < n.

• This option thus contains n barriers.

• Multiply the probabilities for the n time intervals to

obtain the desired probability adjustment term.
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Brownian Bridge Approach to Pricing Lookback
Optionsa

• By Lemma 21(1) (p. 838),

Fmax(y)
Δ
= Prob

[
max
0≤t≤T

S(t) < y |S(0), S(T )
]

= 1− exp

[
−2 ln(y/S(0)) ln(y/S(T ))

σ2T

]
.

• So Fmax is the conditional distribution function of the

maximum stock price.

• A random variable with that distribution can be

generated by F−1
max(x), where x is uniformly distributed

over (0, 1).
aEl Babsiri & Noel (1998).
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Brownian Bridge Approach to Pricing Lookback
Options (continued)

• In other words,

x = 1− exp

[
−2 ln(y/S(0)) ln(y/S(T ))

σ2T

]
.

• Equivalently,

ln(1− x) = −2 ln(y/S(0)) ln(y/S(T ))

σ2T

= − 2

σ2T
{ [ ln(y)− lnS(0) ] [ ln(y)− lnS(T ) ] }.
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Brownian Bridge Approach to Pricing Lookback
Options (continued)

• There are two solutions for ln y.

• But only one is consistent with y ≥ max(S(0), S(T )):

ln y =
ln(S(0)S(T )) +

√(
ln S(T )

S(0)

)2
− 2σ2T ln(1− x)

2
.
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Brownian Bridge Approach to Pricing Lookback
Options (concluded)

The following algorithm works for the lookback put on the

maximum.

1: C := 0;

2: for i = 1, 2, 3, . . . , N do

3: P := S × e(r−q−σ2/2)T+σ
√
T ξ( );

4: Y := exp

[
ln(SP )+

√
(ln P

S )
2−2σ2T ln[ 1−U(0,1) ]

2

]
;

5: C := C + (Y − P );

6: end for

7: return Ce−rT /N ;
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Variance Reduction

• The statistical efficiency of Monte Carlo simulation can

be measured by the variance of its output.

• If this variance can be lowered without changing the

expected value, fewer replications are needed.

• Methods that improve efficiency in this manner are

called variance-reduction techniques.

• Such techniques become practical when the added costs

are outweighed by the reduction in sampling.
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Variance Reduction: Antithetic Variates

• We are interested in estimating E[ g(X1, X2, . . . , Xn) ].

• Let Y1 and Y2 be random variables with the same

distribution as g(X1, X2, . . . , Xn).

• Then

Var

[
Y1 + Y2

2

]
=

Var[Y1 ]

2
+

Cov[Y1, Y2 ]

2
.

– Var[Y1 ]/2 is the variance of the Monte Carlo

method with two independent replications.

• The variance Var[ (Y1 + Y2)/2 ] is smaller than

Var[Y1 ]/2 when Y1 and Y2 are negatively correlated.
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Variance Reduction: Antithetic Variates (continued)

• For each simulated sample path X , a second one is

obtained by reusing the random numbers on which the

first path is based.

• This yields a second sample path Y .

• Two estimates are then obtained: One based on X and

the other on Y .

• If N independent sample paths are generated, the

antithetic-variates estimator averages over 2N

estimates.
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Variance Reduction: Antithetic Variates (continued)

• Consider process dX = at dt+ bt
√
dt ξ.

• Let g be a function of n samples X1, X2, . . . , Xn on

the sample path.

• We are interested in E[ g(X1, X2, . . . , Xn) ].

• Suppose one simulation run has realizations

ξ1, ξ2, . . . , ξn for the normally distributed fluctuation

term ξ.

• This generates samples x1, x2, . . . , xn.

• The estimate is then g(x), where x
Δ
= (x1, x2 . . . , xn).
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Variance Reduction: Antithetic Variates (concluded)

• The antithetic-variates method does not sample n more

numbers from ξ for the second estimate g(x′).

• Instead, generate the sample path x′ Δ
= (x′

1, x
′
2 . . . , x

′
n)

from −ξ1,−ξ2, . . . ,−ξn.

• Compute g(x′).

• Output (g(x) + g(x′))/2.

• Repeat the above steps for as many times as required by

accuracy.
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Variance Reduction: Conditioning

• We are interested in estimating E[X ].

• Suppose here is a random variable Z such that

E[X |Z = z ] can be efficiently and precisely computed.

• E[X ] = E[E[X |Z ] ] by the law of iterated conditional

expectations.

• Hence the random variable E[X |Z ] is also an unbiased

estimator of E[X ].
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Variance Reduction: Conditioning (concluded)

• As

Var[E[X |Z ] ] ≤ Var[X ],

E[X |Z ] has a smaller variance than observing X

directly.

• First, obtain a random observation z on Z.

• Then calculate E[X |Z = z ] as our estimate.

– There is no need to resort to simulation in computing

E[X |Z = z ].

• The procedure can be repeated a few times to reduce

the variance.
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