
Time-Dependent Short Rates

• Suppose the short rate (i.e., the one-period spot rate)

changes over time but otherwise predictable.

• The riskless rate r in the Black-Scholes formula should

be the spot rate with a time to maturity equal to τ .

• In other words,

r =

∑n−1
i=0 ri
τ

,

where ri is the continuously compounded short rate

measured in periods for period i.a

• Will the binomial tree fail to combine?

aThat is, one-period forward rate.
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Trading Days and Calendar Days

• Interest accrues based on the calendar day.

• But σ is usually calculated based on trading days only.

– Stock price seems to have lower volatilities when the

exchange is closed.a

• How to harmonize these two different times into the

Black-Scholes formula and binomial tree algorithms?b

aFama (1965); K. French (1980); K. French & Roll (1986).
bRecall p. 158 about dating issues.
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Trading Days and Calendar Days (continued)

• Think of σ as measuring the annualized volatility of

stock price one year from now.

• Suppose a year has m (say 253) trading days.

• We can replace σ in the Black-Scholes formula witha

σ

√
365

m
× number of trading days to expiration

number of calendar days to expiration
.

aD. French (1984).
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Trading Days and Calendar Days (concluded)

• This works only for European options.

• How about binomial tree algorithms?a

aContributed by Mr. Lu, Zheng-Liang (D00922011) in 2015.
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Options on a Stock That Pays Dividends

• Early exercise must be considered.

• Proportional dividend payout model is tractable (see

text).

– The dividend amount is a constant proportion of the

prevailing stock price.

• In general, the corporate dividend policy is a complex

issue.
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Known Dividends

• Constant dividends introduce complications.

• Use D to denote the amount of the dividend.

• Suppose an ex-dividend date falls in the first period.

• At the end of that period, the possible stock prices are

Su−D and Sd−D.

• Follow the stock price one more period.

• The number of possible stock prices is not three but

four: (Su−D)u, (Su−D) d, (Sd−D)u, (Sd−D) d.

– The binomial tree no longer combines.
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(Su−D)u

↗
Su−D

↗ ↘
(Su−D) d

S

(Sd−D)u

↘ ↗
Sd−D

↘
(Sd−D) d
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An Ad-Hoc Approximation

• Use the Black-Scholes formula with the stock price

reduced by the PV of the dividends.a

• This essentially decomposes the stock price into a

riskless one paying known dividends and a risky one.

• The riskless component at any time is the PV of future

dividends during the life of the option.

– Then, σ is the volatility of the process followed by

the risky component.

• The stock price, between two adjacent ex-dividend

dates, follows the same lognormal distribution.

aRoll (1977).
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An Ad-Hoc Approximation (concluded)

• Start with the current stock price minus the PV of

future dividends before expiration.

• Develop the binomial tree for the new stock price as if

there were no dividends.

• Then add to each stock price on the tree the PV of all

future dividends before expiration.

• American option prices can be computed as before on

this tree of stock prices.
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The Ad-Hoc Approximation vs. P. 312 (Step 1)

S −D/R

�

�

(S −D/R)u

�

�

(S −D/R)d

�

�

(S −D/R)u2

(S −D/R)ud

(S −D/R)d2
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The Ad-Hoc Approximation vs. P. 312 (Step 2)

(S −D/R) +D/R = S

�

�

(S −D/R)u

�

�

(S −D/R)d

�

�

(S −D/R)u2

(S −D/R)ud

(S −D/R)d2
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The Ad-Hoc Approximation vs. P. 312a

• The trees are different.

• The stock prices at maturity are also different.

– (Su−D)u, (Su−D) d, (Sd−D)u, (Sd−D) d

(p. 312).

– (S −D/R)u2, (S −D/R)ud, (S −D/R)d2 (ad hoc).

• Note that, as d < R < u,

(Su−D)u > (S −D/R)u2,

(Sd−D) d < (S −D/R)d2,

aContributed by Mr. Yang, Jui-Chung (D97723002) on March 18,

2009.
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The Ad-Hoc Approximation vs. P. 312 (concluded)

• So the ad hoc approximation has a smaller dynamic

range.

• This explains why in practice the volatility is usually

increased when using the ad hoc approximation.
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A General Approacha

• A new tree structure.

• No approximation assumptions are made.

• A mathematical proof that the tree can always be

constructed.

• The actual performance is quadratic except in

pathological cases (see pp. 750ff).

• Other approaches include adjusting σ and approximating

the known dividend with a dividend yield.b

aDai (B82506025, R86526008, D8852600) & Lyuu (2004). Also Arealy

& Rodrigues (2013).
bGeske & Shastri (1985). It works well for American options but not

European options (Dai, 2009).
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Continuous Dividend Yields

• Dividends are paid continuously.

– Approximates a broad-based stock market portfolio.

• The payment of a continuous dividend yield at rate q

reduces the growth rate of the stock price by q.

– A stock that grows from S to Sτ with a continuous

dividend yield of q would grow from S to Sτe
qτ

without the dividends.

• A European option has the same value as one on a stock

with price Se−qτ that pays no dividends.a

aIn pricing European options, only the distribution of Sτ matters.
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Continuous Dividend Yields (continued)

• So the Black-Scholes formulas hold with S replaced by

Se−qτ :a

C = Se−qτN(x)−Xe−rτN(x− σ
√
τ), (41)

P = Xe−rτN(−x+ σ
√
τ)− Se−qτN(−x),

(41′)

where

x
Δ
=

ln(S/X) +
(
r − q + σ2/2

)
τ

σ
√
τ

.

• Formulas (41) and (41′) remain valid as long as the

dividend yield is predictable.

aMerton (1973).
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Continuous Dividend Yields (continued)

• To run binomial tree algorithms, replace u with ue−qΔt

and d with de−qΔt, where Δt
Δ
= τ/n.

– The reason: The stock price grows at an expected

rate of r − q in a risk-neutral economy.

• Other than the changes, binomial tree algorithms stay

the same.

– In particular, p should use the original u and d!a

aContributed by Ms. Wang, Chuan-Ju (F95922018) on May 2, 2007.
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Continuous Dividend Yields (concluded)

• Alternatively, pick the risk-neutral probability as

e(r−q)Δt − d

u− d
, (42)

where Δt
Δ
= τ/n.

– The reason: The stock price grows at an expected

rate of r − q in a risk-neutral economy.

• The u and d remain unchanged.

• Other than the change in Eq. (42), binomial tree

algorithms stay the same as if there were no dividends.
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Exercise Boundaries of American Options (in the
Continuous-Time Model)a

• The exercise boundary is a nondecreasing function of t

for American puts (see the plot next page).

• The exercise boundary is a nonincreasing function of t

for American calls.

aSee Section 9.7 of the textbook for the tree analog.
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Risk Reversalsa

• From formulas (41) and (41′) on p. 321, one can verify

that C = P when

X = Se(r−q)τ .

• A risk reversal consists of a short out-of-the-money put

and a long out-of-the-money call with the same

maturity.b

• Furthermore, the portfolio has zero value.

• A short risk reversal position is also called a collar.c

aNeftci (2008).
bThus their strike prices must be distinct.
cBennett (2014).
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Sensitivity Analysis of Options
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Cleopatra’s nose, had it been shorter,

the whole face of the world

would have been changed.

— Blaise Pascal (1623–1662)
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Sensitivity Measures (“The Greeks”)

• How the value of a security changes relative to changes

in a given parameter is key to hedging.

– Duration, for instance.

• Let x
Δ
= ln(S/X)+(r+σ2/2) τ

σ
√
τ

(recall p. 291).

• Recall that

N ′(y) =
e−y2/2

√
2π

> 0,

the density function of standard normal distribution.
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Delta

• Defined as

Δ
Δ
=

∂f

∂S
.

– f is the price of the derivative.

– S is the price of the underlying asset.

• The delta of a portfolio of derivatives on the same

underlying asset is the sum of their individual deltas.a

• The delta used in the BOPM (p. 238) is the discrete

analog.

• The delta of a long stock is apparently 1.

aElementary calculus.
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Delta (continued)

• The delta of a European call on a non-dividend-paying

stock equals
∂C

∂S
= N(x) > 0.

• The delta of a European put equals

∂P

∂S
= N(x)− 1 = −N(−x) < 0.

• So the deltas of a call and an otherwise identical put

cancel each other when N(x) = 1/2, i.e., whena

X = Se(r+σ2/2) τ . (43)

aThe straddle (p. 206) C + P then has zero delta!

c©2018 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 331



0 50 100 150 200 250 300 350

Time to expiration (days)

0

0.2

0.4

0.6

0.8

1

 

Delta (call)

 

0 50 100 150 200 250 300 350

Time to expiration (days)

-1

-0.8

-0.6

-0.4

-0.2

0

 

Delta (put)

 

0 20 40 60 80

Stock price

0

0.2

0.4

0.6

0.8

1

 

Delta (call)

 

0 20 40 60 80

Stock price

-1

-0.8

-0.6

-0.4

-0.2

0

 

Delta (put)

 

Dotted curve: in-the-money call or out-of-the-money put.

Solid curves: at-the-money options.

Dashed curves: out-of-the-money calls or in-the-money puts.

c©2018 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 332



Delta (continued)

• Suppose the stock pays a continuous dividend yield of q.

• Let

x
Δ
=

ln(S/X) +
(
r − q + σ2/2

)
τ

σ
√
τ

(44)

(recall p. 321).

• Then

∂C

∂S
= e−qτN(x) > 0,

∂P

∂S
= −e−qτN(−x) < 0.
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Delta (continued)

• Consider an X1-strike call and an X2-strike put,

X1 ≥ X2.

• They are otherwise identical.

• Let

xi
Δ
=

ln(S/Xi) +
(
r − q + σ2/2

)
τ

σ
√
τ

. (45)

• Then their deltas sum to zero when x1 = −x2.
a

• That implies

S

X1
=

X2

S
e−(2r−2q+σ2) τ . (46)

aThe strangle (p. 208) C + P then has zero delta!
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Delta (concluded)

• Suppose we demand X1 = X2 = X and have a straddle.

• Then

X = Se(r−q+σ2/2) τ

leads to a straddle with zero delta.

– This generalizes Eq. (43) on p. 331.

• When C(X1)’s delta and P (X2)’s delta sum to zero,

does the portfolio C(X1)− P (X2) have zero value?

• In general, no.
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Delta Neutrality

• A position with a total delta equal to 0 is delta-neutral.

– A delta-neutral portfolio is immune to small price

changes in the underlying asset.

• Creating one serves for hedging purposes.

– A portfolio consisting of a call and −Δ shares of

stock is delta-neutral.

– Short Δ shares of stock to hedge a long call.

– Long Δ shares of stock to hedge a short call.

• In general, hedge a position in a security with delta Δ1

by shorting Δ1/Δ2 units of a security with delta Δ2.
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Theta (Time Decay)

• Defined as the rate of change of a security’s value with

respect to time, or Θ
Δ
= −∂f/∂τ = ∂f/∂t.

• For a European call on a non-dividend-paying stock,

Θ = −SN ′(x)σ
2
√
τ

− rXe−rτN(x− σ
√
τ) < 0.

– The call loses value with the passage of time.

• For a European put,

Θ = −SN ′(x)σ
2
√
τ

+ rXe−rτN(−x+ σ
√
τ).

– Can be negative or positive.
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Theta (concluded)

• Suppose the stock pays a continuous dividend yield of q.

• Define x as in Eq. (44) on p. 333.

• For a European call, add an extra term to the earlier

formula for the theta:

Θ = −SN ′(x)σ
2
√
τ

− rXe−rτN(x− σ
√
τ) + qSe−qτ N(x).

• For a European put, add an extra term to the earlier

formula for the theta:

Θ = −SN ′(x)σ
2
√
τ

+rXe−rτN(−x+σ
√
τ)−qSe−qτ N(−x).
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Gamma

• Defined as the rate of change of its delta with respect to

the price of the underlying asset, or Γ
Δ
= ∂2Π/∂S2.

• Measures how sensitive delta is to changes in the price of

the underlying asset.

• In practice, a portfolio with a high gamma needs be

rebalanced more often to maintain delta neutrality.

• Roughly, delta ∼ duration, and gamma ∼ convexity.

• The gamma of a European call or put on a

non-dividend-paying stock is

N ′(x)/(Sσ
√
τ) > 0.
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Vegaa (Lambda, Kappa, Sigma)

• Defined as the rate of change of a security’s value with

respect to the volatility of the underlying asset

Λ
Δ
=

∂f

∂σ
.

• Volatility often changes over time.

• A security with a high vega is very sensitive to small

changes or estimation error in volatility.

• The vega of a European call or put on a

non-dividend-paying stock is S
√
τ N ′(x) > 0.

– So higher volatility always increases the option value.

aVega is not Greek.
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Vega (continued)

• Note thata

Λ = τσS2Γ.

• If the stock pays a continuous dividend yield of q, then

Λ = Se−qτ
√
τ N ′(x),

where x is defined in Eq. (44) on p. 333.

• Vega is maximized when x = 0, i.e., when

S = Xe−(r−q+σ2/2) τ .

• Vega declines very fast as S moves away from that peak.

aReiss & Wystup (2001).
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Vega (continued)

• Now consider a portfolio consisting of an X1-strike call

C and a short X2-strike put P , X1 ≥ X2.

• The options’ vegas cancel out when

x1 = −x2,

where xi are defined in Eq. (45) on p. 334.

• This leads to Eq. (46) on p. 334.

– Recall the same condition led to zero delta for the

strangle C + P (p. 334).
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Vega (concluded)

• Note that if S �= X , τ → 0 implies

Λ → 0

(which answers the question on p. 296 for the

Black-Scholes model).

• The Black-Scholes formula (p. 291) implies

C → S,

P → Xe−rτ ,

as σ → ∞.

• These boundary conditions may be handy for certain

numerical methods.
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Variance Vegaa

• Defined as the rate of change of a security’s value with

respect to the variance (square of volatility) of the

underlying asset

V
Δ
=

∂f

∂σ2
.

• It is easy to verify that

V =
Λ

2σ
.

aDemeterfi, Derman, Kamal, & Zou (1999).
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Rho

• Defined as the rate of change in its value with respect to

interest rates

ρ
Δ
=

∂f

∂r
.

• The rho of a European call on a non-dividend-paying

stock is

Xτe−rτN(x− σ
√
τ) > 0.

• The rho of a European put on a non-dividend-paying

stock is

−Xτe−rτN(−x+ σ
√
τ) < 0.
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Numerical Greeks

• Needed when closed-form formulas do not exist.

• Take delta as an example.

• A standard method computes the finite difference,

f(S +ΔS)− f(S −ΔS)

2ΔS
.

• The computation time roughly doubles that for

evaluating the derivative security itself.
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An Alternative Numerical Deltaa

• Use intermediate results of the binomial tree algorithm.

• When the algorithm reaches the end of the first period,

fu and fd are computed.

• These values correspond to derivative values at stock

prices Su and Sd, respectively.

• Delta is approximated by

fu − fd
Su− Sd

. (47)

• Almost zero extra computational effort.

aPelsser & Vorst (1994).
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Sdd

Sddd/u
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Numerical Gamma

• At the stock price (Suu+ Sud)/2, delta is

approximately (fuu − fud)/(Suu− Sud).

• At the stock price (Sud+ Sdd)/2, delta is

approximately (fud − fdd)/(Sud− Sdd).

• Gamma is the rate of change in deltas between

(Suu+ Sud)/2 and (Sud+ Sdd)/2, that is,

fuu−fud

Suu−Sud − fud−fdd
Sud−Sdd

(Suu− Sdd)/2
. (48)

• Alternative formulas exist (p. 654).
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Finite Difference Fails for Numerical Gamma

• Numerical differentiation gives

f(S +ΔS)− 2f(S) + f(S −ΔS)

(ΔS)2
.

• It does not work (see text for the reason).

• In general, calculating gamma is a hard problem

numerically.

• But why did the binomial tree version work?
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Other Numerical Greeks

• The theta can be computed as

fud − f

2(τ/n)
.

– In fact, the theta of a European option can be

derived from delta and gamma (p. 653).

• The vega of a European option can be derived from

gamma (p. 343).

• For rho, there seems no alternative but to run the

binomial tree algorithm twice.a

aBut see p. 822 and pp. 1004ff.
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Extensions of Options Theory
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Data! data! data!

— The Adventures of Sherlock Holmes (1892)

As I never learnt mathematics,

so I have had to think.

— Joan Robinson (1903–1983)

c©2018 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 357



Pricing Corporate Securitiesa

• Interpret the underlying asset as the total value of the

firm.

• The option pricing methodology can be applied to price

corporate securities.

– The result is called the structural model.

• Assumptions:

– A firm can finance payouts by the sale of assets.

– If a promised payment to an obligation other than

stock is missed, the claim holders take ownership of

the firm and the stockholders get nothing.

aBlack & Scholes (1973); Merton (1974).
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Risky Zero-Coupon Bonds and Stock

• Consider XYZ.com.

• Capital structure:

– n shares of its own common stock, S.

– Zero-coupon bonds with an aggregate par value of X .

• What is the value of the bonds, B?

• What is the value of the XYZ.com stock?
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Risky Zero-Coupon Bonds and Stock (continued)

• On the bonds’ maturity date, suppose the total value of

the firm V ∗ is less than the bondholders’ claim X .

• Then the firm declares bankruptcy, and the stock

becomes worthless.

• If V ∗ > X , then the bondholders obtain X and the

stockholders V ∗ −X .

V ∗ ≤ X V ∗ > X

Bonds V ∗ X

Stock 0 V ∗ −X
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Risky Zero-Coupon Bonds and Stock (continued)

• The stock has the same payoff as a call!

• It is a call on the total value of the firm with a strike

price of X and an expiration date equal to the bonds’.

– This call provides the limited liability for the

stockholders.

• The bonds are a covered calla on the total value of the

firm.

• Let V stand for the total value of the firm.

• Let C stand for a call on V .

aSee p. 197.
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Risky Zero-Coupon Bonds and Stock (continued)

• Thus

nS = C,

B = V − C.

• Knowing C amounts to knowing how the value of the

firm is divided between stockholders and bondholders.

• Whatever the value of C, the total value of the stock

and bonds at maturity remains V ∗.

• The relative size of debt and equity is irrelevant to the

firm’s current value V .
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Risky Zero-Coupon Bonds and Stock (continued)

• From Theorem 10 (p. 291) and the put-call parity,a

nS = V N(x)−Xe−rτN(x− σ
√
τ), (49)

B = V N(−x) +Xe−rτN(x− σ
√
τ). (50)

– Above,

x
Δ
=

ln(V/X) + (r + σ2/2)τ

σ
√
τ

.

• The continuously compounded yield to maturity of the

firm’s bond is
ln(X/B)

τ
.

aMerton (1974).
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Risky Zero-Coupon Bonds and Stock (continued)

• Define the credit spread or default premium as the yield

difference between risky and riskless bonds,

ln(X/B)

τ
− r

= −1

τ
ln

(
N(−z) +

1

ω
N(z − σ

√
τ)

)
.

– ω
Δ
= Xe−rτ/V .

– z
Δ
= (lnω)/(σ

√
τ) + (1/2)σ

√
τ = −x+ σ

√
τ .

– Note that ω is the debt-to-total-value ratio.
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Risky Zero-Coupon Bonds and Stock (concluded)

• In general, suppose the firm has a dividend yield at rate

q and the bankruptcy costs are a constant proportion α

of the remaining firm value.

• Then Eqs. (49)–(50) on p. 363 become, respectively,

nS = V e−qτN(x)−Xe−rτN(x− σ
√
τ),

B = (1− α)V e−qτN(−x) +Xe−rτN(x− σ
√
τ).

– Above,

x
Δ
=

ln(V/X) + (r − q + σ2/2)τ

σ
√
τ

.
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A Numerical Example

• XYZ.com’s assets consist of 1,000 shares of Merck as of

March 20, 1995.

– Merck’s market value per share is $44.5.

• XYZ.com’s securities consist of 1,000 shares of common

stock and 30 zero-coupon bonds maturing on July 21,

1995.

• Each bond promises to pay $1,000 at maturity.

• n = 1, 000, V = 44.5× n = 44, 500, and

X = 30× 1, 000 = 30, 000.
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—Call— —Put—

Option Strike Exp. Vol. Last Vol. Last

Merck 30 Jul 328 151/4 . . . . . .

441/2 35 Jul 150 91/2 10 1/16

441/2 40 Apr 887 43/4 136 1/16

441/2 40 Jul 220 51/2 297 1/4

441/2 40 Oct 58 6 10 1/2

441/2 45 Apr 3050 7/8 100 11/8

441/2 45 May 462 13/8 50 13/8

441/2 45 Jul 883 115/16 147 13/4

441/2 45 Oct 367 23/4 188 21/16
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A Numerical Example (continued)

• The Merck option relevant for pricing is the July call

with a strike price of X/n = 30 dollars.

• Such a call is selling for $15.25.

• So XYZ.com’s stock is worth 15.25×n = 15, 250 dollars.

• The entire bond issue is worth

B = 44, 500− 15, 250 = 29, 250

dollars.

– Or $975 per bond.
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A Numerical Example (continued)

• The XYZ.com bonds are equivalent to a default-free

zero-coupon bond with $X par value plus n written

European puts on Merck at a strike price of $30.

– By the put-call parity.a

• The difference between B and the price of the

default-free bond is the value of these puts.

• The next table shows the total market values of the

XYZ.com stock and bonds under various debt amounts

X .

aSee p. 220.

c©2018 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 369



Promised payment Current market Current market Current total

to bondholders value of bonds value of stock value of firm

X B nS V

30,000 29,250.0 15,250.0 44,500

35,000 35,000.0 9,500.0 44,500

40,000 39,000.0 5,500.0 44,500

45,000 42,562.5 1,937.5 44,500
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A Numerical Example (continued)

• Suppose the promised payment to bondholders is

$45,000.

• Then the relevant option is the July call with a strike

price of 45, 000/n = 45 dollars.

• Since that option is selling for $115/16, the market value

of the XYZ.com stock is (1 + 15/16)× n = 1, 937.5

dollars.

• The market value of the stock decreases as the

debt-equity ratio increases.
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A Numerical Example (continued)

• There are conflicts between stockholders and

bondholders.

• An option’s terms cannot be changed after issuance.

• But a firm can change its capital structure.

• There lies one key difference between options and

corporate securities.

– Parameters such volatility, dividend, and strike price

are under partial control of the stockholders or their

boards.
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A Numerical Example (continued)

• Suppose XYZ.com issues 15 more bonds with the same

terms to buy back stock.

• The total debt is now X = 45,000 dollars.

• The table on p. 370 says the total market value of the

bonds should be $42,562.5.

• The new bondholders pay

42, 562.5× (15/45) = 14, 187.5

dollars.

• The remaining stock is worth $1,937.5.
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A Numerical Example (continued)

• The stockholders therefore gain

14, 187.5 + 1, 937.5− 15, 250 = 875

dollars.

• The original bondholders lose an equal amount,

29, 250− 30

45
× 42, 562.5 = 875.

– This is called claim dilution.a

aFama & Miller (1972).
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A Numerical Example (continued)

• Suppose the stockholders sell (1/3)× n Merck shares to

fund a $14,833.3 cash dividend.

• They now have $14,833.3 in cash plus a call on

(2/3)× n Merck shares.

• The strike price remains X = 30, 000.

• This is equivalent to owning 2/3 of a call on n Merck

shares with a strike price of $45,000.

• n such calls are worth $1,937.5 (p. 370).

• So the total market value of the XYZ.com stock is

(2/3)× 1, 937.5 = 1, 291.67 dollars.
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A Numerical Example (concluded)

• The market value of the XYZ.com bonds is hence

(2/3)× n× 44.5− 1, 291.67 = 28, 375

dollars.

• Hence the stockholders gain

14, 833.3 + 1, 291.67− 15, 250 ≈ 875

dollars.

• The bondholders watch their value drop from $29,250 to

$28,375, a loss of $875.
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Further Topics

• Other Examples:

– Subordinated debts as bull call spreads.

– Warrants as calls.

– Callable bonds as American calls with 2 strike prices.

– Convertible bonds.

• Securities with a complex liability structure must be

solved by trees.a

aDai (B82506025, R86526008, D8852600), Lyuu, & C. Wang

(F95922018) (2010).
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Barrier Optionsa

• Their payoff depends on whether the underlying asset’s

price reaches a certain price level H throughout its life.

• A knock-out (KO) option is an ordinary European

option which ceases to exist if the barrier H is reached

by the price of its underlying asset.

• A call knock-out option is sometimes called a

down-and-out option if H < S.

• A put knock-out option is sometimes called an

up-and-out option when H > S.
aA former MBA student in finance told me on March 26, 2004, that

she did not understand why I covered barrier options until she started

working in a bank. She was working for Lehman Brothers in Hong Kong

as of April, 2006.
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H

Time

Price

S Barrier hit
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Barrier Options (continued)

• A knock-in (KI) option comes into existence if a certain

barrier is reached.

• A down-and-in option is a call knock-in option that

comes into existence only when the barrier is reached

and H < S.

• An up-and-in is a put knock-in option that comes into

existence only when the barrier is reached and H > S.

• Formulas exist for all the possible barrier options

mentioned above.a

aHaug (2006).
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Barrier Options (concluded)

• Knock-in puts are the most popular barrier options.a

• Knock-out puts are the second most popular barrier

options.b

• Knock-out calls are the most popular among barrier call

options.c

aBennett (2014).
bBennett (2014).
cBennett (2014).
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A Formula for Down-and-In Callsa

• Assume X ≥ H.

• The value of a European down-and-in call on a stock
paying a dividend yield of q is

Se−qτ

(
H

S

)2λ

N(x)−Xe−rτ

(
H

S

)2λ−2

N(x− σ
√
τ),

(51)

– x
Δ
= ln(H2/(SX))+(r−q+σ2/2) τ

σ
√
τ

.

– λ
Δ
= (r − q + σ2/2)/σ2.

• A European down-and-out call can be priced via the

in-out parity (see text).

aMerton (1973). See Exercise 17.1.6 of the textbook for a proof.
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A Formula for Up-and-In Putsa

• Assume X ≤ H.

• The value of a European up-and-in put is

Xe−rτ

(
H

S

)2λ−2

N(−x+ σ
√
τ)− Se−qτ

(
H

S

)2λ

N(−x).

• Again, a European up-and-out put can be priced via the

in-out parity.

aMerton (1973).
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Are American Options Barrier Options?a

• American options are barrier options with the exercise

boundary as the barrier and the payoff as the rebate?

• One salient difference is that the exercise boundary must

be derived during backward induction.

• But the barrier in a barrier option is given a priori.

aContributed by Mr. Yang, Jui-Chung (D97723002) on March 25,

2009.
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Interesting Observations

• Assume H < X .

• Replace S in the Merton pricing formula Eq. (41) on p.

321 for the call with H2/S.

• Equation (51) on p. 382 for the down-and-in call

becomes Eq. (41) when r − q = σ2/2.

• Equation (51) becomes S/H times Eq. (41) when

r − q = 0.
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Interesting Observations (concluded)

• Replace S in the pricing formula for the down-and-in

call, Eq. (51), with H2/S.

• Equation (51) becomes Eq. (41) when r − q = σ2/2.

• Equation (51) becomes H/S times Eq. (41) when

r − q = 0.a

• Why?b

aContributed by Mr. Chou, Ming-Hsin (R02723073) on April 24, 2014.
bApply the reflection principle (p. 683), Eq. (40) on p. 284, and

Lemma 9 (p. 289).
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Binomial Tree Algorithms

• Barrier options can be priced by binomial tree

algorithms.

• Below is for the down-and-out option.

0 H

• Pricing down-and-in options is subtler.
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H

8

16

4

32

8

2

64

16

4

1

4.992

12.48

1.6

27.2

4.0

0

58

10

0

0

X

0.0

S = 8, X = 6, H = 4, R = 1.25, u = 2, and d = 0.5.

Backward-induction: C = (0.5× Cu + 0.5× Cd)/1.25.
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Binomial Tree Algorithms (continued)

• But convergence is erratic because H is not at a price

level on the tree (see plot on next page).a

– The barrier H is moved lower (or higher) to a closeby

node price.

– This “effective barrier” thus changes as n increases.

• In fact, the binomial tree is O(1/
√
n) convergent.b

• Solutions will be presented later.

aBoyle & Lau (1994).
bJ. Lin (R95221010) (2008).
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Binomial Tree Algorithms (concluded)a

100 150 200 250 300 350 400
#Periods

3

3.5

4

4.5

5

5.5

Down-and-in call value

aLyuu (1998).
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Daily Monitoring

• Many barrier options monitor the barrier only for daily

closing prices.

• If so, only nodes at the end of a day need to check for

the barrier condition.

• We can even remove intraday nodes to create a

multinomial tree.

– A node is then followed by d+ 1 nodes if each day is

partitioned into d periods.

• Does this save time or space?a

aContributed by Ms. Chen, Tzu-Chun (R94922003) and others on

April 12, 2006.
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A Heptanomial Tree (6 Periods Per Day)

�� 1 day
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Discrete Monitoring vs. Continuous Monitoring

• Discrete barriers are more expensive for knock-out

options than continuous ones.

• But discrete barriers are less expensive for knock-in

options than continuous ones.

• Discrete barriers are far less popular than continuous

ones for individual stocks.a

• They are equally popular for indices.b

aBennett (2014).
bBennett (2014).
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