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8. What’s your problem? Any moron

can understand bond pricing models.

— Top Ten Lies Finance Professors

Tell Their Students
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Introduction

• We now survey equilibrium models.

• Recall that the spot rates satisfy

r(t, T ) = − lnP (t, T )

T − t

by Eq. (129) on p. 1005.

• Hence the discount function P (t, T ) suffices to establish

the spot rate curve.

• All models to follow are short rate models.

• Unless stated otherwise, the processes are risk-neutral.
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The Vasicek Modela

• The short rate follows

dr = β(μ− r) dt+ σ dW.

• The short rate is pulled to the long-term mean level μ

at rate β.

• Superimposed on this “pull” is a normally distributed

stochastic term σ dW .

• Since the process is an Ornstein-Uhlenbeck process,

E[ r(T ) | r(t) = r ] = μ+ (r − μ) e−β(T−t)

from Eq. (78) on p. 585.
aVasicek (1977). Vasicek co-founded KMV, which was sold to

Moody’s for USD$210 million in 2002.
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The Vasicek Model (continued)

• The price of a zero-coupon bond paying one dollar at

maturity can be shown to be

P (t, T ) = A(t, T ) e−B(t,T ) r(t), (142)

where

A(t, T ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

exp

[
(B(t,T )−T+t)(β2μ−σ2/2)

β2 − σ2B(t,T )2

4β

]
if β �= 0,

exp

[
σ2(T−t)3

6

]
if β = 0.

and

B(t, T ) =

⎧⎨
⎩

1−e−β(T−t)

β if β �= 0,

T − t if β = 0.
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The Vasicek Model (concluded)

• If β = 0, then P goes to infinity as T → ∞.

• Sensibly, P goes to zero as T → ∞ if β �= 0.

• Even if β �= 0, P may exceed one for a finite T .

• The spot rate volatility structure is the curve

(∂r(t, T )/∂r)σ = σB(t, T )/(T − t).

• When β > 0, the curve tends to decline with maturity.

• The speed of mean reversion, β, controls the shape of

the curve.

• Indeed, higher β leads to greater attenuation of

volatility with maturity.
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The Vasicek Model: Options on Zerosa

• Consider a European call with strike price X expiring

at time T on a zero-coupon bond with par value $1 and

maturing at time s > T .

• Its price is given by

P (t, s)N(x)−XP (t, T )N(x− σv).

aJamshidian (1989).
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The Vasicek Model: Options on Zeros (concluded)

• Above

x
Δ
=

1

σv
ln

(
P (t, s)

P (t, T )X

)
+

σv

2
,

σv ≡ v(t, T )B(T, s),

v(t, T )2
Δ
=

⎧⎨
⎩

σ2[1−e−2β(T−t)]
2β , if β �= 0

σ2(T − t), if β = 0
.

• By the put-call parity, the price of a European put is

XP (t, T )N(−x+ σv)− P (t, s)N(−x).
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Binomial Vasicek

• Consider a binomial model for the short rate in the time

interval [ 0, T ] divided into n identical pieces.

• Let Δt
Δ
= T/n and

p(r)
Δ
=

1

2
+

β(μ− r)
√
Δt

2σ
.

• The following binomial model converges to the Vasicek

model,a

r(k + 1) = r(k) + σ
√
Δt ξ(k), 0 ≤ k < n.

aNelson & Ramaswamy (1990).
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Binomial Vasicek (continued)

• Above, ξ(k) = ±1 with

Prob[ ξ(k) = 1 ] =

⎧⎪⎪⎨
⎪⎪⎩

p(r(k)), if 0 ≤ p(r(k)) ≤ 1

0, if p(r(k)) < 0,

1, if 1 < p(r(k)).

• Observe that the probability of an up move, p, is a

decreasing function of the interest rate r.

• This is consistent with mean reversion.
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Binomial Vasicek (concluded)

• The rate is the same whether it is the result of an up

move followed by a down move or a down move followed

by an up move.

• The binomial tree combines.

• The key feature of the model that makes it happen is its

constant volatility, σ.
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The Cox-Ingersoll-Ross Modela

• It is the following square-root short rate model:

dr = β(μ− r) dt+ σ
√
r dW. (143)

• The diffusion differs from the Vasicek model by a

multiplicative factor
√
r .

• The parameter β determines the speed of adjustment.

• The short rate can reach zero only if 2βμ < σ2.

• See text for the bond pricing formula.

aCox, Ingersoll, & Ross (1985).
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Binomial CIR

• We want to approximate the short rate process in the

time interval [ 0, T ].

• Divide it into n periods of duration Δt
Δ
= T/n.

• Assume μ, β ≥ 0.

• A direct discretization of the process is problematic

because the resulting binomial tree will not combine.
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Binomial CIR (continued)

• Instead, consider the transformed process

x(r)
Δ
= 2

√
r/σ.

• By Ito’s lemma (p. 562),

dx = m(x) dt+ dW,

where

m(x)
Δ
= 2βμ/(σ2x)− (βx/2)− 1/(2x).

• This new process has a constant volatility.

• Thus its binomial tree combines.
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Binomial CIR (continued)

• Construct the combining tree for r as follows.

• First, construct a tree for x.

• Then transform each node of the tree into one for r via

the inverse transformation

r = f(x)
Δ
=

x2σ2

4

(see p. 1054).

• But when x ≈ 0 (so r ≈ 0), the moments may not be

matched well.a

aNawalkha & Beliaeva (2007).
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x + 2
√

Δt f(x + 2
√

Δt)

↗ ↗
x +

√
Δt f(x +

√
Δt)

↗ ↘ ↗ ↘
x x f(x) f(x)

↘ ↗ ↘ ↗
x − √

Δt f(x − √
Δt)

↘ ↘
x − 2

√
Δt f(x − 2

√
Δt)
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Binomial CIR (continued)

• The probability of an up move at each node r is

p(r)
Δ
=

β(μ− r)Δt+ r − r−

r+ − r−
.

– r+
Δ
= f(x+

√
Δt) denotes the result of an up move

from r.

– r− Δ
= f(x−√

Δt) the result of a down move.

• Finally, set the probability p(r) to one as r goes to zero

to make the probability stay between zero and one.
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Binomial CIR (concluded)

• It can be shown that

p(r) =

(
βμ− σ2

4

)√
Δt

r
− B

√
rΔt+ C,

for some B ≥ 0 and C > 0.a

• If βμ− (σ2/4) ≥ 0, the up-move probability p(r)

decreases if and only if short rate r increases.

• Even if βμ− (σ2/4) < 0, p(r) tends to decrease as r

increases and decrease as r declines.

• This phenomenon agrees with mean reversion.

aThanks to a lively class discussion on May 28, 2014.
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Numerical Examples

• Consider the process,

0.2 (0.04− r) dt+ 0.1
√
r dW,

for the time interval [ 0, 1 ] given the initial rate

r(0) = 0.04.

• We shall use Δt = 0.2 (year) for the binomial

approximation.

• See p. 1058(a) for the resulting binomial short rate tree

with the up-move probabilities in parentheses.
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Numerical Examples (concluded)

• Consider the node which is the result of an up move

from the root.

• Since the root has x = 2
√
r(0)/σ = 4, this particular

node’s x value equals 4 +
√
Δt = 4.4472135955.

• Use the inverse transformation to obtain the short rate

x2 × (0.1)2

4
≈ 0.0494442719102.

• Once the short rates are in place, computing the

probabilities is easy.

• Convergence is quite good (see p. 369 of the textbook).
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A General Method for Constructing Binomial Modelsa

• We are given a continuous-time process,

dy = α(y, t) dt+ σ(y, t) dW.

• Need to make sure the binomial model’s drift and

diffusion converge to the above process.

• Set the probability of an up move to

α(y, t)Δt+ y − yd
yu − yd

.

• Here yu
Δ
= y + σ(y, t)

√
Δt and yd

Δ
= y − σ(y, t)

√
Δt

represent the two rates that follow the current rate y.

aNelson & Ramaswamy (1990).
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A General Method (continued)

• The displacements are identical, at σ(y, t)
√
Δt .

• But the binomial tree may not combine as

σ(y, t)
√
Δt− σ(yu, t+Δt)

√
Δt

�= −σ(y, t)
√
Δt+ σ(yd, t+Δt)

√
Δt

in general.

• When σ(y, t) is a constant independent of y, equality

holds and the tree combines.

c©2017 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 1061



A General Method (continued)

• To achieve this, define the transformation

x(y, t)
Δ
=

∫ y

σ(z, t)−1 dz.

• Then x follows

dx = m(y, t) dt+ dW

for some m(y, t).a

• The diffusion term is now a constant, and the binomial

tree for x combines.

aSee Exercise 25.2.13 of the textbook.
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A General Method (concluded)

• The transformation is unique.a

• The probability of an up move remains

α(y(x, t), t)Δt+ y(x, t)− yd(x, t)

yu(x, t)− yd(x, t)
,

where y(x, t) is the inverse transformation of x(y, t)

from x back to y.

• Note that

yu(x, t)
Δ
= y(x+

√
Δt, t+Δt),

yd(x, t)
Δ
= y(x−

√
Δt, t+Δt).

aChiu (R98723059) (2012).
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Examples

• The transformation is∫ r

(σ
√
z)−1 dz =

2
√
r

σ

for the CIR model.

• The transformation is∫ S

(σz)−1 dz =
lnS

σ

for the Black-Scholes model.

• The familiar BOPM and CRR in fact discretize lnS not

S.
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On One-Factor Short Rate Models

• By using only the short rate, they ignore other rates on

the yield curve.

• Such models also restrict the volatility to be a function

of interest rate levels only.

• The prices of all bonds move in the same direction at

the same time (their magnitudes may differ).

• The returns on all bonds thus become highly correlated.

• In reality, there seems to be a certain amount of

independence between short- and long-term rates.
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On One-Factor Short Rate Models (continued)

• One-factor models therefore cannot accommodate

nondegenerate correlation structures across maturities.

• Derivatives whose values depend on the correlation

structure will be mispriced.

• The calibrated models may not generate term structures

as concave as the data suggest.

• The term structure empirically changes in slope and

curvature as well as makes parallel moves.

• This is inconsistent with the restriction that all

segments of the term structure be perfectly correlated.
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On One-Factor Short Rate Models (concluded)

• Multi-factor models lead to families of yield curves that

can take a greater variety of shapes and can better

represent reality.

• But they are much harder to think about and work with.

• They also take much more computer time—the curse of

dimensionality.

• These practical concerns limit the use of multifactor

models to two- or three-factor ones.
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Options on Coupon Bondsa

• Assume the market discount function P is a

monotonically decreasing function of the short rate r.

– Such as a one-factor short rate model.

• The price of a European option on a coupon bond can

be calculated from those on zero-coupon bonds.

• Consider a European call expiring at time T on a bond

with par value $1.

• Let X denote the strike price.

aJamshidian (1989).
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Options on Coupon Bonds (continued)

• The bond has cash flows c1, c2, . . . , cn at times

t1, t2, . . . , tn, where ti > T for all i.

• The payoff for the option is

max

{[
n∑

i=1

ciP (r(T ), T, ti)

]
−X, 0

}
.

• At time T , there is a unique value r∗ for r(T ) that

renders the coupon bond’s price equal the strike price

X .
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Options on Coupon Bonds (continued)

• This r∗ can be obtained by solving

X =
n∑

i=1

ciP (r, T, ti)

numerically for r.

• Let

Xi
Δ
= P (r∗, T, ti),

the value at time T of a zero-coupon bond with par

value $1 and maturing at time ti if r(T ) = r∗.

• Note that P (r, T, ti) ≥ Xi if and only if r ≤ r∗.
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Options on Coupon Bonds (concluded)

• As X =
∑

i ciXi, the option’s payoff equals

max

{[
n∑

i=1

ciP (r(T ), T, ti)

]
−
[

n∑
i=1

ciXi

]
, 0

}

=
n∑

i=1

ci ×max(P (r(T ), T, ti)−Xi, 0).

• Thus the call is a package of n options on the

underlying zero-coupon bond.

• Why can’t we do the same thing for Asian options?a

aContributed by Mr. Yang, Jui-Chung (D97723002) on May 20, 2009.
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No-Arbitrage Term Structure Models
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How much of the structure of our theories

really tells us about things in nature,

and how much do we contribute ourselves?

— Arthur Eddington (1882–1944)
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Motivations

• Recall the difficulties facing equilibrium models

mentioned earlier.

– They usually require the estimation of the market

price of risk.

– They cannot fit the market term structure.

– But consistency with the market is often mandatory

in practice.
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No-Arbitrage Modelsa

• No-arbitrage models utilize the full information of the

term structure.

• They accept the observed term structure as consistent

with an unobserved and unspecified equilibrium.

• From there, arbitrage-free movements of interest rates or

bond prices over time are modeled.

• By definition, the market price of risk must be reflected

in the current term structure; hence the resulting

interest rate process is risk-neutral.

aHo & Lee (1986). Thomas Lee is a “billionaire founder” of Thomas

H. Lee Partners LP, according to Bloomberg on May 26, 2012.
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No-Arbitrage Models (concluded)

• No-arbitrage models can specify the dynamics of

zero-coupon bond prices, forward rates, or the short rate.

• Bond price and forward rate models are usually

non-Markovian (path dependent).

• In contrast, short rate models are generally constructed

to be explicitly Markovian (path independent).

• Markovian models are easier to handle computationally.
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The Ho-Lee Modela

• The short rates at any given time are evenly spaced.

• Let p denote the risk-neutral probability that the short

rate makes an up move.

• We shall adopt continuous compounding.

aHo & Lee (1986).
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↗
r3

↗ ↘
r2

↗ ↘ ↗
r1 r3 + v3

↘ ↗ ↘
r2 + v2

↘ ↗
r3 + 2v3

↘
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The Ho-Lee Model (continued)

• The Ho-Lee model starts with zero-coupon bond prices

P (t, t+ 1), P (t, t+ 2), . . . at time t identified with the

root of the tree.

• Let the discount factors in the next period be

Pd(t+ 1, t+ 2), Pd(t+ 1, t+ 3), . . . , if short rate moves down,

Pu(t+ 1, t+ 2), Pu(t+ 1, t+ 3), . . . , if short rate moves up.

• By backward induction, it is not hard to see that for

n ≥ 2,

Pu(t+ 1, t+ n) = Pd(t+ 1, t+ n) e−(v2+···+vn)

(144)

(see p. 376 of the textbook).
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The Ho-Lee Model (continued)

• It is also not hard to check that the n-period

zero-coupon bond has yields

yd(n)
Δ
= − lnPd(t+ 1, t+ n)

n− 1

yu(n)
Δ
= − lnPu(t+ 1, t+ n)

n− 1
= yd(n) +

v2 + · · ·+ vn
n− 1

• The volatility of the yield to maturity for this bond is

therefore

κn
Δ
=

√
pyu(n)2 + (1− p) yd(n)2 − [ pyu(n) + (1− p) yd(n) ]2

=
√

p(1− p) (yu(n)− yd(n))

=
√

p(1− p)
v2 + · · ·+ vn

n− 1
.
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The Ho-Lee Model (concluded)

• In particular, the short rate volatility is determined by

taking n = 2:

σ =
√
p(1− p) v2. (145)

• The variance of the short rate therefore equals

p(1− p)(ru − rd)
2,

where ru and rd are the two successor rates.a

aContrast this with the lognormal model (122) on p. 946.
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The Ho-Lee Model: Volatility Term Structure

• The volatility term structure is composed of

κ2, κ3, . . . .

– It is independent of

r2, r3, . . . .

• It is easy to compute the vis from the volatility

structure, and vice versa (review p. 1080).

• The ris can be computed by forward induction.

• The volatility structure is supplied by the market.
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The Ho-Lee Model: Bond Price Process

• In a risk-neutral economy, the initial discount factors

satisfy

P (t, t+n) = [ pPu(t+1, t+n)+(1−p)Pd(t+1, t+n) ]P (t, t+1).

• Combine the above with Eq. (144) on p. 1079 and

assume p = 1/2 to obtaina

Pd(t+ 1, t+ n) =
P (t, t+ n)

P (t, t+ 1)

2× exp[ v2 + · · ·+ vn ]

1 + exp[ v2 + · · ·+ vn ]
,

Pu(t+ 1, t+ n) =
P (t, t+ n)

P (t, t+ 1)

2

1 + exp[ v2 + · · ·+ vn ]
.

aIn the limit, only the volatility matters; the first formula is similar

to multiple logistic regression.
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The Ho-Lee Model: Bond Price Process (concluded)

• The bond price tree combines.a

• Suppose all vi equal some constant v and δ
Δ
= ev > 0.

• Then

Pd(t+ 1, t+ n) =
P (t, t+ n)

P (t, t+ 1)

2δn−1

1 + δn−1
,

Pu(t+ 1, t+ n) =
P (t, t+ n)

P (t, t+ 1)

2

1 + δn−1
.

• Short rate volatility σ = v/2 by Eq. (145) on p. 1081.

• Price derivatives by taking expectations under the

risk-neutral probability.

aSee Exercise 26.2.3 of the textbook.
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Calibration

• The Ho-Lee model can be calibrated in O(n2) time using

state prices.

• But it can actually be calibrated in O(n) time.

– Derive the vi’s in linear time.

– Derive the ri’s in linear time.a

aSee Programming Assignment 26.2.6 of the textbook.
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The Ho-Lee Model: Yields and Their Covariances

• The one-period rate of return of an n-period

zero-coupon bond is

r(t, t+ n)
Δ
= ln

(
P (t+ 1, t+ n)

P (t, t+ n)

)
.

• Its two possible value are

ln
Pd(t+ 1, t+ n)

P (t, t+ n)
and ln

Pu(t+ 1, t+ n)

P (t, t+ n)
.

• Thus the variance of return is

Var[ r(t, t+ n) ] = p(1− p)((n− 1) v)2 = (n− 1)2σ2.

c©2017 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 1086



The Ho-Lee Model: Yields and Their Covariances
(concluded)

• The covariance between r(t, t+ n) and r(t, t+m) isa

(n− 1)(m− 1)σ2.

• As a result, the correlation between any two one-period

rates of return is one.

• Strong correlation between rates is inherent in all

one-factor Markovian models.

aSee Exercise 26.2.7 of the textbook.
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The Ho-Lee Model: Short Rate Process

• The continuous-time limit of the Ho-Lee model isa

dr = θ(t) dt+ σ dW.

• This is Vasicek’s model with the mean-reverting drift

replaced by a deterministic, time-dependent drift.

• A nonflat term structure of volatilities can be achieved if

the short rate volatility is also made time varying,

dr = θ(t) dt+ σ(t) dW.

• This corresponds to the discrete-time model in which vi

are not all identical.
aSee Exercise 26.2.10 of the textbook.
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The Ho-Lee Model: Some Problems

• Future (nominal) interest rates may be negative.

• The short rate volatility is independent of the rate level.
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Problems with No-Arbitrage Models in General

• Interest rate movements should reflect shifts in the

model’s state variables (factors) not its parameters.

• Model parameters, such as the drift θ(t) in the

continuous-time Ho-Lee model, should be stable over

time.

• But in practice, no-arbitrage models capture yield curve

shifts through the recalibration of parameters.

– A new model is thus born everyday.
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Problems with No-Arbitrage Models in General
(concluded)

• This in effect says the model estimated at some time

does not describe the term structure of interest rates

and their volatilities at other times.

• Consequently, a model’s intertemporal behavior is

suspect, and using it for hedging and risk management

may be unreliable.
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The Black-Derman-Toy Modela

• This model is extensively used by practitioners.

• The BDT short rate process is the lognormal binomial

interest rate process described on pp. 942ff.b

• The volatility structure is given by the market.

• From it, the short rate volatilities (thus vi) are

determined together with ri.

aBlack, Derman, & Toy (BDT) (1990), but essentially finished in 1986

according to Mehrling (2005).
bRepeated on next page.
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r4

↗
r3

↗ ↘
r2 r4v4

↗ ↘ ↗
r1 r3v3

↘ ↗ ↘
r2v2 r4v24

↘ ↗
r3v23

↘
r4v34
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The Black-Derman-Toy Model (concluded)

• Our earlier binomial interest rate tree, in contrast,

assumes vi are given a priori.

• Lognormal models preclude negative short rates.
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The BDT Model: Volatility Structure

• The volatility structure defines the yield volatilities of

zero-coupon bonds of various maturities.

• Let the yield volatility of the i-period zero-coupon bond

be denoted by κi.

• Pu is the price of the i-period zero-coupon bond one

period from now if the short rate makes an up move.

• Pd is the price of the i-period zero-coupon bond one

period from now if the short rate makes a down move.

c©2017 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 1095



The BDT Model: Volatility Structure (concluded)

• Corresponding to these two prices are the following

yields to maturity,

yu
Δ
= P−1/(i−1)

u − 1,

yd
Δ
= P

−1/(i−1)
d − 1.

• The yield volatility is defined as

κi
Δ
=

ln(yu/yd)

2

(recall Eq. (128) on p. 992).
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The BDT Model: Calibration

• The inputs to the BDT model are riskless zero-coupon

bond yields and their volatilities.

• For economy of expression, all numbers are period based.

• Suppose inductively that we have calculated

(r1, v1), (r2, v2), . . . , (ri−1, vi−1).

– They define the binomial tree up to period i− 1.

• We now proceed to calculate ri and vi to extend the

tree to period i.
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The BDT Model: Calibration (continued)

• Assume the price of the i-period zero can move to Pu

or Pd one period from now.

• Let y denote the current i-period spot rate, which is

known.

• In a risk-neutral economy,

Pu + Pd

2(1 + r1)
=

1

(1 + y)i
. (146)

• Obviously, Pu and Pd are functions of the unknown ri

and vi.
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The BDT Model: Calibration (continued)

• Viewed from now, the future (i− 1)-period spot rate at

time 1 is uncertain.

• Recall that yu and yd represent the spot rates at the

up node and the down node, respectively (p. 1096).

• With κ2
i denoting their variance, we have

κi =
1

2
ln

(
Pu

−1/(i−1) − 1

Pd
−1/(i−1) − 1

)
. (147)

• Solving Eqs. (146)–(147) for r and v with backward

induction takes O(i2) time.

– That leads to a cubic-time algorithm.
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The BDT Model: Calibration (continued)

• We next employ forward induction to derive a

quadratic-time calibration algorithm.a

• Recall that forward induction inductively figures out, by

moving forward in time, how much $1 at a node

contributes to the price.b

• This number is called the state price and is the price of

the claim that pays $1 at that node and zero elsewhere.

aW. J. Chen (R84526007) & Lyuu (1997); Lyuu (1999).
bReview p. 969(a).

c©2017 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 1100



The BDT Model: Calibration (continued)

• Let the unknown baseline rate for period i be ri = r.

• Let the unknown multiplicative ratio be vi = v.

• Let the state prices at time i− 1 be

P1, P2, . . . , Pi.

• They correspond to rates

r, rv, . . . , rvi−1

for period i, respectively.

• One dollar at time i has a present value of

f(r, v)
Δ
=

P1

1 + r
+

P2

1 + rv
+

P3

1 + rv2
+ · · ·+ Pi

1 + rvi−1
.
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The BDT Model: Calibration (continued)

• By Eq. (147) on p. 1099, the yield volatility is

g(r, v)
Δ
=

1

2
ln

⎛
⎜⎝

(
Pu,1

1+rv
+

Pu,2

1+rv2 + · · ·+ Pu,i−1

1+rvi−1

)−1/(i−1) − 1

(
Pd,1

1+r
+

Pd,2

1+rv
+ · · ·+ Pd,i−1

1+rvi−2

)−1/(i−1) − 1

⎞
⎟⎠ .

• Above, Pu,1, Pu,2, . . . denote the state prices at time

i− 1 of the subtree rooted at the up node (like r2v2 on

p. 1093).

• And Pd,1, Pd,2, . . . denote the state prices at time i− 1

of the subtree rooted at the down node (like r2 on

p. 1093).
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The BDT Model: Calibration (concluded)

• Note that every node maintains three state prices:

Pi, Pu,i, Pd,i.

• Now solve

f(r, v) =
1

(1 + y)i
,

g(r, v) = κi,

for r = ri and v = vi.

• This O(n2)-time algorithm appears on p. 382 of the

textbook.
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Calibrating the BDT Model with the Differential Tree
(in seconds)a

Number Running Number Running Number Running

of years time of years time of years time

3000 398.880 39000 8562.640 75000 26182.080

6000 1697.680 42000 9579.780 78000 28138.140

9000 2539.040 45000 10785.850 81000 30230.260

12000 2803.890 48000 11905.290 84000 32317.050

15000 3149.330 51000 13199.470 87000 34487.320

18000 3549.100 54000 14411.790 90000 36795.430

21000 3990.050 57000 15932.370 120000 63767.690

24000 4470.320 60000 17360.670 150000 98339.710

27000 5211.830 63000 19037.910 180000 140484.180

30000 5944.330 66000 20751.100 210000 190557.420

33000 6639.480 69000 22435.050 240000 249138.210

36000 7611.630 72000 24292.740 270000 313480.390

75MHz Sun SPARCstation 20, one period per year.

aLyuu (1999).
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The BDT Model: Continuous-Time Limit

• The continuous-time limit of the BDT model isa

d ln r =

(
θ(t) +

σ′(t)
σ(t)

ln r

)
dt+ σ(t) dW.

• The short rate volatility clearly should be a declining

function of time for the model to display mean reversion.

– That makes σ′(t) < 0.

• In particular, constant volatility will not attain mean

reversion.

aJamshidian (1991).
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The Black-Karasinski Modela

• The BK model stipulates that the short rate follows

d ln r = κ(t)(θ(t)− ln r) dt+ σ(t) dW.

• This explicitly mean-reverting model depends on time

through κ( · ), θ( · ), and σ( · ).
• The BK model hence has one more degree of freedom

than the BDT model.

• The speed of mean reversion κ(t) and the short rate

volatility σ(t) are independent.

aBlack & Karasinski (1991).
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The Black-Karasinski Model: Discrete Time

• The discrete-time version of the BK model has the same

representation as the BDT model.

• To maintain a combining binomial tree, however,

requires some manipulations.

• The next plot illustrates the ideas in which

t2
Δ
= t1 +Δt1,

t3
Δ
= t2 +Δt2.
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↗
ln rd(t2)

↗ ↘
ln r(t1) ln rdu(t3) = ln rud(t3)

↘ ↗
ln ru(t2)

↘
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The Black-Karasinski Model: Discrete Time
(continued)

• Note that

ln rd(t2) = ln r(t1) + κ(t1)(θ(t1)− ln r(t1))Δt1 − σ(t1)
√

Δt1 ,

ln ru(t2) = ln r(t1) + κ(t1)(θ(t1)− ln r(t1))Δt1 + σ(t1)
√

Δt1 .

• To make sure an up move followed by a down move

coincides with a down move followed by an up move,

ln rd(t2) + κ(t2)(θ(t2)− ln rd(t2))Δt2 + σ(t2)
√
Δt2 ,

= ln ru(t2) + κ(t2)(θ(t2)− ln ru(t2))Δt2 − σ(t2)
√
Δt2 .
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The Black-Karasinski Model: Discrete Time
(continued)

• They imply

κ(t2) =
1− (σ(t2)/σ(t1))

√
Δt2/Δt1

Δt2
.

(148)

• So from Δt1, we can calculate the Δt2 that satisfies the

combining condition and then iterate.

– t0 → Δt1 → t1 → Δt2 → t2 → Δt3 → · · · → T

(roughly).a

aAs κ(t), θ(t), σ(t) are independent of r, the Δtis will not depend on

r.
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The Black-Karasinski Model: Discrete Time
(concluded)

• Unequal durations Δti are often necessary to ensure a

combining tree.a

aAmin (1991); C. Chen (R98922127) (2011); Lok (D99922028) & Lyuu

(2016, 2017).
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Problems with Lognormal Models in General

• Lognormal models such as BDT and BK share the

problem that Eπ[M(t) ] = ∞ for any finite t if they

model the continuously compounded rate.a

• So periodically compounded rates should be modeled.b

• Another issue is computational.

• Lognormal models usually do not admit of analytical

solutions to even basic fixed-income securities.

• As a result, to price short-dated derivatives on long-term

bonds, the tree has to be built over the life of the

underlying asset instead of the life of the derivative.
aHogan & Weintraub (1993).
bSandmann & Sondermann (1993).
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Problems with Lognormal Models in General
(concluded)

• This problem can be somewhat mitigated by adopting

different time steps.a

– Use a fine time step up to the maturity of the

short-dated derivative.

– Use a coarse time step beyond the maturity.

• A down side of this procedure is that it has to be

tailor-made for each derivative.

• Finally, empirically, interest rates do not follow the

lognormal distribution.

aHull & White (1993).
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The Extended Vasicek Modela

• Hull and White proposed models that extend the

Vasicek model and the CIR model.

• They are called the extended Vasicek model and the

extended CIR model.

• The extended Vasicek model adds time dependence to

the original Vasicek model,

dr = (θ(t)− a(t) r) dt+ σ(t) dW.

• Like the Ho-Lee model, this is a normal model.

• The inclusion of θ(t) allows for an exact fit to the

current spot rate curve.
aHull & White (1990).
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The Extended Vasicek Model (concluded)

• Function σ(t) defines the short rate volatility, and a(t)

determines the shape of the volatility structure.

• Many European-style securities can be evaluated

analytically.

• Efficient numerical procedures can be developed for

American-style securities.
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The Hull-White Model

• The Hull-White model is the following special case,

dr = (θ(t)− ar) dt+ σ dW.

• When the current term structure is matched,a

θ(t) =
∂f(0, t)

∂t
+ af(0, t) +

σ2

2a

(
1− e−2at

)
.

aHull & White (1993).
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The Extended CIR Model

• In the extended CIR model the short rate follows

dr = (θ(t)− a(t) r) dt+ σ(t)
√
r dW.

• The functions θ(t), a(t), and σ(t) are implied from

market observables.

• With constant parameters, there exist analytical

solutions to a small set of interest rate-sensitive

securities.
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The Hull-White Model: Calibrationa

• We describe a trinomial forward induction scheme to

calibrate the Hull-White model given a and σ.

• As with the Ho-Lee model, the set of achievable short

rates is evenly spaced.

• Let r0 be the annualized, continuously compounded

short rate at time zero.

• Every short rate on the tree takes on a value

r0 + jΔr

for some integer j.

aHull & White (1993).
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The Hull-White Model: Calibration (continued)

• Time increments on the tree are also equally spaced at

Δt apart.

• Hence nodes are located at times iΔt for i = 0, 1, 2, . . . .

• We shall refer to the node on the tree with

ti
Δ
= iΔt,

rj
Δ
= r0 + jΔr,

as the (i, j) node.

• The short rate at node (i, j), which equals rj , is

effective for the time period [ ti, ti+1).
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The Hull-White Model: Calibration (continued)

• Use

μi,j
Δ
= θ(ti)− arj (149)

to denote the drift ratea of the short rate as seen from

node (i, j).

• The three distinct possibilities for node (i, j) with three

branches incident from it are displayed on p. 1121.

• The middle branch may be an increase of Δr, no

change, or a decrease of Δr.

aOr, the annualized expected change.
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The Hull-White Model: Calibration (continued)

(i, j)

�
(i+ 1, j + 2)

�(i+ 1, j + 1)

� (i+ 1, j)

(i, j)

�(i+ 1, j + 1)

� (i+ 1, j)

�(i+ 1, j − 1)

(i, j) � (i+ 1, j)

�(i+ 1, j − 1)

�
(i+ 1, j − 2)
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The Hull-White Model: Calibration (continued)

• The upper and the lower branches bracket the middle

branch.

• Define

p1(i, j)
Δ
= the probability of following the upper branch from node (i, j),

p2(i, j)
Δ
= the probability of following the middle branch from node (i, j),

p3(i, j)
Δ
= the probability of following the lower branch from node (i, j).

• The root of the tree is set to the current short rate r0.

• Inductively, the drift μi,j at node (i, j) is a function of

(the still unknown) θ(ti).

– It describes the expected change from node (i, j).
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The Hull-White Model: Calibration (continued)

• Once θ(ti) is available, μi,j can be derived via

Eq. (149) on p. 1120.

• This in turn determines the branching scheme at every

node (i, j) for each j, as we will see shortly.

• The value of θ(ti) must thus be made consistent with

the spot rate r(0, ti+2).
a

aNot r(0, ti+1)!
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The Hull-White Model: Calibration (continued)

• The branches emanating from node (i, j) with their

probabilitiesa must be chosen to be consistent with μi,j

and σ.

• This is done by letting the middle node be as closest to

the current short rate rj plus the drift μi,jΔt.b

ap1(i, j), p2(i, j), and p3(i, j).
bA precursor of Lyuu and C. N. Wu’s (R90723065) (2003, 2005) mean-

tracking idea, which is the precursor of the binomial-trinomial tree of Dai

(B82506025, R86526008, D8852600) & Lyuu (2006, 2008, 2010).
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The Hull-White Model: Calibration (continued)

• Let k be the number among { j − 1, j, j + 1 } that

makes the short rate reached by the middle branch, rk,

closest to

rj + μi,jΔt.

– But note that μi,j is still not computed yet.

• Then the three nodes following node (i, j) are nodes

(i+ 1, k + 1), (i+ 1, k), (i+ 1, k − 1).

• See p. 1126 for a possible geometry.

• The resulting tree combines because of the constant

jump sizes to reach k from j.
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The Hull-White Model: Calibration (continued)

• The probabilities for moving along these branches are

functions of μi,j , σ, j, and k:

p1(i, j) =
σ2Δt+ η2

2(Δr)2
+

η

2Δr
(150)

p2(i, j) = 1− σ2Δt+ η2

(Δr)2
(150′)

p3(i, j) =
σ2Δt+ η2

2(Δr)2
− η

2Δr
(150′′)

where

η
Δ
= μi,jΔt+ (j − k)Δr.
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The Hull-White Model: Calibration (continued)

• As trinomial tree algorithms are but explicit methods in

disguise,a certain relations must hold for Δr and Δt to

guarantee stability.

• It can be shown that their values must satisfy

σ
√
3Δt

2
≤ Δr ≤ 2σ

√
Δt

for the probabilities to lie between zero and one.

– For example, Δr can be set to σ
√
3Δt .b

• Now it only remains to determine θ(ti).

aRecall p. 777.
bHull & White (1988).
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The Hull-White Model: Calibration (continued)

• At this point at time ti,

r(0, t1), r(0, t2), . . . , r(0, ti+1)

have already been matched.

• Let Q(i, j) be the state price at node (i, j).

• By construction, the state prices Q(i, j) for all j are

known by now.

• We begin with state price Q(0, 0) = 1.
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The Hull-White Model: Calibration (continued)

• Let r̂(i) refer to the short rate value at time ti.

• The value at time zero of a zero-coupon bond maturing

at time ti+2 is then

e−r(0,ti+2)(i+2)Δt

=
∑
j

Q(i, j) e−rjΔt Eπ
[
e−r̂(i+1)Δt

∣∣∣ r̂(i) = rj

]
.(151)

• The right-hand side represents the value of $1 obtained

by holding a zero-coupon bond until time ti+1 and then

reinvesting the proceeds at that time at the prevailing

short rate r̂(i+ 1), which is stochastic.
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The Hull-White Model: Calibration (continued)

• The expectation in Eq. (151) can be approximated bya

Eπ
[
e−r̂(i+1)Δt

∣∣∣ r̂(i) = rj

]
≈ e−rjΔt

(
1− μi,j(Δt)2 +

σ2(Δt)3

2

)
. (152)

– This solves the chicken-egg problem!

• Substitute Eq. (152) into Eq. (151) and replace μi,j

with θ(ti)− arj to obtain

θ(ti) ≈
∑

j Q(i, j) e
−2rjΔt (

1 + arj(Δt)2 + σ2(Δt)3/2
)

− e
−r(0,ti+2)(i+2)Δt

(Δt)2
∑

j Q(i, j) e
−2rjΔt

.

aSee Exercise 26.4.2 of the textbook.
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The Hull-White Model: Calibration (continued)

• For the Hull-White model, the expectation in Eq. (152)

is actually known analytically by Eq. (26) on p. 165:

Eπ
[
e−r̂(i+1)Δt

∣∣∣ r̂(i) = rj

]
= e−rjΔt+(−θ(ti)+arj+σ2Δt/2)(Δt)2 .

• Therefore, alternatively,

θ(ti) =
r(0, ti+2)(i+ 2)

Δt
+
σ2Δt

2
+
ln
∑

j Q(i, j) e−2rjΔt+arj(Δt)2

(Δt)2
.

• With θ(ti) in hand, we can compute μi,j .
a

aSee Eq. (149) on p. 1120.
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The Hull-White Model: Calibration (concluded)

• With μi,j available, we compute the probabilities.a

• Finally the state prices at time ti+1:

Q(i+ 1, j)

=
∑

(i, j∗) is connected to (i + 1, j) with probability pj∗

pj∗e
−rj∗ΔtQ(i, j∗).

• There are at most 5 choices for j∗ (why?).

• The total running time is O(n2).

• The space requirement is O(n) (why?).

aSee Eqs. (150) on p. 1127.
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Comments on the Hull-White Model

• One can try different values of a and σ for each option.

• Or have an a value common to all options but use a

different σ value for each option.

• Either approach can match all the option prices exactly.

• But suppose the demand is for a single set of parameters

that replicate all option prices.

• Then the Hull-White model can be calibrated to all the

observed option prices by choosing a and σ that

minimize the mean-squared pricing error.a

aHull & White (1995).
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The Hull-White Model: Calibration with Irregular
Trinomial Trees

• The previous calibration algorithm is quite general.

• For example, it can be modified to apply to cases where

the diffusion term has the form σrb.

• But it has at least two shortcomings.

• First, the resulting trinomial tree is irregular (p. 1126).

– So it is harder to program (for nonprogrammers).

• The second shortcoming is again a consequence of the

tree’s irregular shape.
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The Hull-White Model: Calibration with Irregular
Trinomial Trees (concluded)

• Recall that the algorithm figured out θ(ti) that matches

the spot rate r(0, ti+2) in order to determine the

branching schemes for the nodes at time ti.

• But without those branches, the tree was not specified,

and backward induction on the tree was not possible.

• To avoid this chicken-egg dilemma, the algorithm turned

to the continuous-time model to evaluate Eq. (151) on

p. 1130 that helps derive θ(ti).

• The resulting θ(ti) hence might not yield a tree that

matches the spot rates exactly.
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Finis
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