Delta and Common Random Numbers

• In estimating delta, it is natural to start with the finite-difference estimate

$$e^{-r\tau} \frac{E[P(S+\epsilon)] - E[P(S-\epsilon)]}{2\epsilon}$$

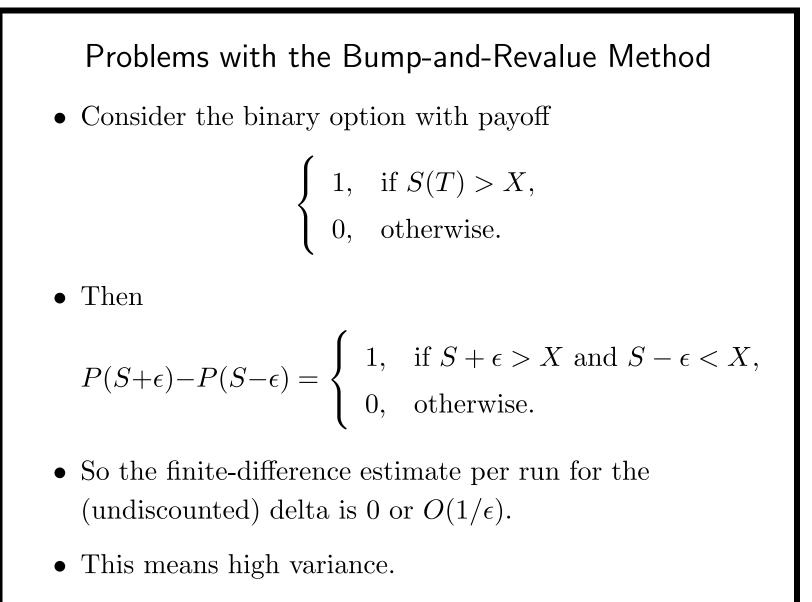
- -P(x) is the terminal payoff of the derivative security when the underlying asset's initial price equals x.
- Use simulation to estimate $E[P(S + \epsilon)]$ first.
- Use another simulation to estimate $E[P(S \epsilon)]$.
- Finally, apply the formula to approximate the delta.
- This is also called the bump-and-revalue method.

Delta and Common Random Numbers (concluded)

- This method is not recommended because of its high variance.
- A much better approach is to use common random numbers to lower the variance:

$$e^{-r\tau} E\left[\frac{P(S+\epsilon) - P(S-\epsilon)}{2\epsilon}\right]$$

- Here, the same random numbers are used for $P(S + \epsilon)$ and $P(S - \epsilon)$.
- This holds for gamma and cross gammas (for multivariate derivatives).



Problems with the Bump-and-Revalue Method (concluded)

• The price of the binary option equals

$$e^{-r\tau}N(x-\sigma\sqrt{\tau}).$$

• Its delta is

$$N'(x - \sigma\sqrt{\tau})/(S\sigma\sqrt{\tau}).$$

Gamma

• The finite-difference formula for gamma is

$$e^{-r\tau} E\left[\frac{P(S+\epsilon) - 2 \times P(S) + P(S-\epsilon)}{\epsilon^2}\right]$$

• For a correlation option with multiple underlying assets, the finite-difference formula for the cross gamma $\partial^2 P(S_1, S_2, \dots)/(\partial S_1 \partial S_2)$ is:

$$e^{-r\tau} E \left[\frac{P(S_1 + \epsilon_1, S_2 + \epsilon_2) - P(S_1 - \epsilon_1, S_2 + \epsilon_2)}{4\epsilon_1 \epsilon_2} \right]$$
$$\frac{-P(S_1 + \epsilon_1, S_2 - \epsilon_2) + P(S_1 - \epsilon_1, S_2 - \epsilon_2)}{D} \right].$$

- Choosing an ϵ of the right magnitude can be challenging.
 - If ϵ is too large, inaccurate Greeks result.
 - If ϵ is too small, unstable Greeks result.
- This phenomenon is sometimes called the curse of differentiation.^a

^aAït-Sahalia & Lo (1998); Bondarenko (2003).

• In general, suppose

$$\frac{\partial^{i}}{\partial\theta^{i}}e^{-r\tau}E[P(S)] = e^{-r\tau}E\left[\frac{\partial^{i}P(S)}{\partial\theta^{i}}\right]$$

holds for all i > 0, where θ is a parameter of interest.

- A common requirement is Lipschitz continuity.^a
- Then formulas for the Greeks become integrals.
- As a result, we avoid ϵ , finite differences, and resimulation.

^aBroadie & Glasserman (1996).

- This is indeed possible for a broad class of payoff functions.^a
 - Roughly speaking, any payoff function that is equal to a sum of products of differentiable functions and indicator functions with the right kind of support.
 - For example, the payoff of a call is

 $\max(S(T) - X, 0) = (S(T) - X)I_{\{S(T) - X \ge 0\}}.$

The results are too technical to cover here (see next page).

^aTeng (**R91723054**) (2004); Lyuu & Teng (**R91723054**) (2011).

- Suppose $h(\theta, x) \in \mathcal{H}$ with pdf f(x) for x and $g_j(\theta, x) \in \mathcal{G}$ for $j \in \mathcal{B}$, a finite set of natural numbers.
- Then

$$\begin{split} & \frac{\partial}{\partial \theta} \int_{\Re} h(\theta, x) \prod_{j \in \mathcal{B}} \mathbf{1}_{\{g_{j}(\theta, x) > 0\}}(x) f(x) dx \\ = & \int_{\Re} h_{\theta}(\theta, x) \prod_{j \in \mathcal{B}} \mathbf{1}_{\{g_{j}(\theta, x) > 0\}}(x) f(x) dx \\ & + \sum_{l \in \mathcal{B}} \left[h(\theta, x) J_{l}(\theta, x) \prod_{j \in \mathcal{B} \setminus l} \mathbf{1}_{\{g_{j}(\theta, x) > 0\}}(x) f(x) \right]_{x = \chi_{l}(\theta)}, \end{split}$$

where

$$J_l(\theta, x) = \operatorname{sign}\left(\frac{\partial g_l(\theta, x)}{\partial x_k}\right) \frac{\partial g_l(\theta, x) / \partial \theta}{\partial g_l(\theta, x) / \partial x} \text{ for } l \in \mathcal{B}.$$

Gamma (concluded)

- Similar results have been derived for Levy processes.^a
- Formulas are also recently obtained for credit derivatives.^b
- In queueing networks, this is called infinitesimal perturbation analysis (IPA).^c

^aLyuu, Teng (**R91723054**), & S. Wang (2013). ^bLyuu, Teng (**R91723054**), & Tzeng (2014). ^cCao (1985); Ho & Cao (1985).

Biases in Pricing Continuously Monitored Options with Monte Carlo

- We are asked to price a continuously monitored up-and-out call with barrier *H*.
- The Monte Carlo method samples the stock price at n discrete time points t_1, t_2, \ldots, t_n .
- A sample path

$$S(t_0), S(t_1), \ldots, S(t_n)$$

is produced.

- Here, $t_0 = 0$ is the current time, and $t_n = T$ is the expiration time of the option.

Biases in Pricing Continuously Monitored Options with Monte Carlo (continued)

- If all of the sampled prices are below the barrier, this sample path pays $\max(S(t_n) X, 0)$.
- Repeating these steps and averaging the payoffs yield a Monte Carlo estimate.

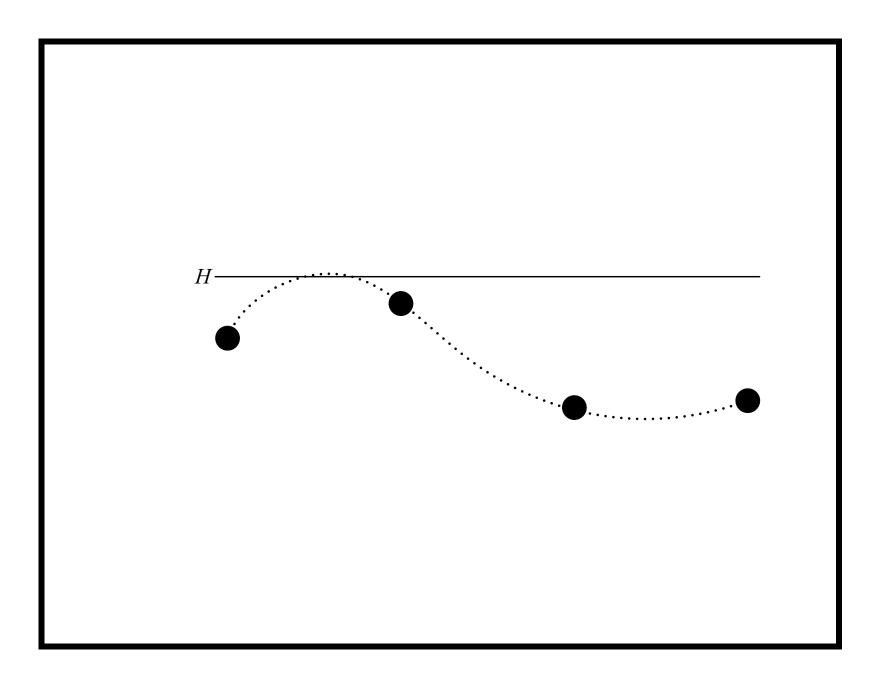
1:
$$C := 0;$$

2: for $i = 1, 2, 3, ..., N$ do
3: $P := S;$ hit $:= 0;$
4: for $j = 1, 2, 3, ..., n$ do
5: $P := P \times e^{(r - \sigma^2/2) (T/n) + \sigma \sqrt{(T/n)} \xi};$
6: if $P \ge H$ then
7: hit $:= 1;$
8: break;
9: end if
10: end for
11: if hit = 0 then
12: $C := C + \max(P - X, 0);$
13: end if
14: end for
15: return $Ce^{-rT}/N;$

Biases in Pricing Continuously Monitored Options with Monte Carlo (continued)

- This estimate is biased.^a
 - Suppose none of the sampled prices on a sample path equals or exceeds the barrier H.
 - It remains possible for the continuous sample path that passes through them to hit the barrier between sampled time points (see plot on next page).

^aShevchenko (2003).



Biases in Pricing Continuously Monitored Options with Monte Carlo (concluded)

- The bias can certainly be lowered by increasing the number of observations along the sample path.
- However, even daily sampling may not suffice.
- The computational cost also rises as a result.

Brownian Bridge Approach to Pricing Barrier Options

- We desire an unbiased estimate which can be calculated efficiently.
- The above-mentioned payoff should be multiplied by the probability *p* that a continuous sample path does *not* hit the barrier conditional on the sampled prices.
- This methodology is called the Brownian bridge approach.
- Formally, we have

$$p \stackrel{\Delta}{=} \operatorname{Prob}[S(t) < H, 0 \le t \le T \mid S(t_0), S(t_1), \dots, S(t_n)].$$

• As a barrier is hit over a time interval if and only if the maximum stock price over that period is at least H,

$$p = \operatorname{Prob}\left[\max_{0 \le t \le T} S(t) < H \,|\, S(t_0), S(t_1), \dots, S(t_n)\right].$$

• Luckily, the conditional distribution of the maximum over a time interval given the beginning and ending stock prices is known.

Lemma 23 Assume S follows $dS/S = \mu dt + \sigma dW$ and define $\zeta(x) \stackrel{\Delta}{=} \exp\left[-\frac{2\ln(x/S(t))\ln(x/S(t+\Delta t))}{\sigma^2 \Delta t}\right].$

(1) If $H > \max(S(t), S(t + \Delta t))$, then $\operatorname{Prob}\left[\max_{\substack{t \le u \le t + \Delta t}} S(u) < H \mid S(t), S(t + \Delta t)\right] = 1 - \zeta(H).$ (2) If $h < \min(S(t), S(t + \Delta t))$, then $\operatorname{Prob}\left[\min_{\substack{t \le u \le t + \Delta t}} S(u) > h \mid S(t), S(t + \Delta t)\right] = 1 - \zeta(h).$

- Lemma 23 gives the probability that the barrier is not hit in a time interval, given the starting and ending stock prices.
- For our up-and-out call,^a choose n = 1.
- As a result,

$$p = \begin{cases} 1 - \exp\left[-\frac{2\ln(H/S(0))\ln(H/S(T))}{\sigma^2 T}\right], & \text{if } H > \max(S(0), S(T)), \\ 0, & \text{otherwise.} \end{cases}$$
$$aSo \ S(0) < H.$$

The following algorithms works for up-and-out and down-and-out calls.

1:
$$C := 0;$$

2: for $i = 1, 2, 3, ..., N$ do
3: $P := S \times e^{(r-q-\sigma^2/2)T+\sigma\sqrt{T} \xi()};$
4: if $(S < H \text{ and } P < H)$ or $(S > H \text{ and } P > H)$ then
5: $C := C + \max(P - X, 0) \times \left\{1 - \exp\left[-\frac{2\ln(H/S) \times \ln(H/P)}{\sigma^2 T}\right]\right\};$
6: end if
7: end for
8: return $Ce^{-rT}/N;$

- The idea can be generalized.
- For example, we can handle more complex barrier options.
- Consider an up-and-out call with barrier H_i for the time interval $(t_i, t_{i+1}], 0 \le i < n$.
- This option thus contains n barriers.
- Multiply the probabilities for the *n* time intervals to obtain the desired probability adjustment term.

Variance Reduction

- The statistical efficiency of Monte Carlo simulation can be measured by the variance of its output.
- If this variance can be lowered without changing the expected value, fewer replications are needed.
- Methods that improve efficiency in this manner are called variance-reduction techniques.
- Such techniques become practical when the added costs are outweighed by the reduction in sampling.

Variance Reduction: Antithetic Variates

- We are interested in estimating $E[g(X_1, X_2, \ldots, X_n)]$.
- Let Y_1 and Y_2 be random variables with the same distribution as $g(X_1, X_2, \ldots, X_n)$.
- Then

$$\operatorname{Var}\left[\frac{Y_1 + Y_2}{2}\right] = \frac{\operatorname{Var}[Y_1]}{2} + \frac{\operatorname{Cov}[Y_1, Y_2]}{2}$$

- $\operatorname{Var}[Y_1]/2$ is the variance of the Monte Carlo method with two independent replications.

• The variance $\operatorname{Var}[(Y_1 + Y_2)/2]$ is smaller than $\operatorname{Var}[Y_1]/2$ when Y_1 and Y_2 are negatively correlated.

Variance Reduction: Antithetic Variates (continued)

- For each simulated sample path X, a second one is obtained by *reusing* the random numbers on which the first path is based.
- This yields a second sample path Y.
- Two estimates are then obtained: One based on X and the other on Y.
- If N independent sample paths are generated, the antithetic-variates estimator averages over 2Nestimates.

Variance Reduction: Antithetic Variates (continued)

- Consider process $dX = a_t dt + b_t \sqrt{dt} \xi$.
- Let g be a function of n samples X_1, X_2, \ldots, X_n on the sample path.
- We are interested in $E[g(X_1, X_2, \ldots, X_n)].$
- Suppose one simulation run has realizations
 ξ₁, ξ₂,..., ξ_n for the normally distributed fluctuation term ξ.
- This generates samples x_1, x_2, \ldots, x_n .
- The estimate is then $g(\boldsymbol{x})$, where $\boldsymbol{x} \stackrel{\Delta}{=} (x_1, x_2 \dots, x_n)$.

Variance Reduction: Antithetic Variates (concluded)

- The antithetic-variates method does not sample n more numbers from ξ for the second estimate $g(\mathbf{x}')$.
- Instead, generate the sample path $\mathbf{x}' \stackrel{\Delta}{=} (x'_1, x'_2 \dots, x'_n)$ from $-\xi_1, -\xi_2, \dots, -\xi_n$.
- Compute $g(\boldsymbol{x}')$.
- Output (g(x) + g(x'))/2.
- Repeat the above steps for as many times as required by accuracy.

Variance Reduction: Conditioning

- We are interested in estimating E[X].
- Suppose here is a random variable Z such that E[X | Z = z] can be efficiently and precisely computed.
- E[X] = E[E[X | Z]] by the law of iterated conditional expectations.
- Hence the random variable E[X | Z] is also an unbiased estimator of E[X].

Variance Reduction: Conditioning (concluded)

• As

```
\operatorname{Var}[E[X | Z]] \leq \operatorname{Var}[X],
```

 $E[X \mid Z]$ has a smaller variance than observing X directly.

- First obtain a random observation z on Z.
- Then calculate E[X | Z = z] as our estimate.
 - There is no need to resort to simulation in computing E[X | Z = z].
- The procedure can be repeated a few times to reduce the variance.

Control Variates

- Use the analytic solution of a similar yet simpler problem to improve the solution.
- Suppose we want to estimate E[X] and there exists a random variable Y with a known mean $\mu \stackrel{\Delta}{=} E[Y]$.
- Then $W \stackrel{\Delta}{=} X + \beta(Y \mu)$ can serve as a "controlled" estimator of E[X] for any constant β .
 - However β is chosen, W remains an unbiased estimator of E[X] as

$$E[W] = E[X] + \beta E[Y - \mu] = E[X].$$

Control Variates (continued)

• Note that

$$\operatorname{Var}[W] = \operatorname{Var}[X] + \beta^{2} \operatorname{Var}[Y] + 2\beta \operatorname{Cov}[X, Y],$$
(110)

• Hence W is less variable than X if and only if $\beta^2 \operatorname{Var}[Y] + 2\beta \operatorname{Cov}[X, Y] < 0. \quad (111)$

Control Variates (concluded)

- The success of the scheme clearly depends on both β and the choice of Y.
 - For example, arithmetic average-rate options can be priced by choosing Y to be the otherwise identical geometric average-rate option's price and $\beta = -1$.
- This approach is much more effective than the antithetic-variates method.

Choice of Y

- In general, the choice of Y is ad hoc,^a and experiments must be performed to confirm the wisdom of the choice.
- Try to match calls with calls and puts with puts.^b
- On many occasions, Y is a discretized version of the derivative that gives μ.
 - Discretely monitored geometric average-rate option vs. the continuously monitored geometric average-rate option given by formulas (50) on p. 401.

^aBut see Dai (B82506025, R86526008, D8852600), Chiu (R94922072), & Lyuu (2015).

^bContributed by Ms. Teng, Huei-Wen (R91723054) on May 25, 2004.

Optimal Choice of β

- For some choices, the discrepancy can be significant, such as the lookback option.^a
- Equation (110) on p. 826 is minimized when

$$\beta = -\operatorname{Cov}[X, Y] / \operatorname{Var}[Y].$$

- It is called beta in the book.

• For this specific β ,

$$\operatorname{Var}[W] = \operatorname{Var}[X] - \frac{\operatorname{Cov}[X,Y]^2}{\operatorname{Var}[Y]} = \left(1 - \rho_{X,Y}^2\right) \operatorname{Var}[X],$$

where $\rho_{X,Y}$ is the correlation between X and Y.

^aContributed by Mr. Tsai, Hwai (R92723049) on May 12, 2004.

Optimal Choice of β (continued)

- Note that the variance can never be increased with the optimal choice.
- Furthermore, the stronger X and Y are correlated, the greater the reduction in variance.
- For example, if this correlation is nearly perfect (± 1) , we could control X almost exactly.

Optimal Choice of β (continued)

- Typically, neither $\operatorname{Var}[Y]$ nor $\operatorname{Cov}[X, Y]$ is known.
- Therefore, we cannot obtain the maximum reduction in variance.
- We can guess these values and hope that the resulting W does indeed have a smaller variance than X.
- A second possibility is to use the simulated data to estimate these quantities.
 - How to do it efficiently in terms of time and space?

Optimal Choice of β (concluded)

- Observe that $-\beta$ has the same sign as the correlation between X and Y.
- Hence, if X and Y are positively correlated, $\beta < 0$, then X is adjusted downward whenever $Y > \mu$ and upward otherwise.
- The opposite is true when X and Y are negatively correlated, in which case $\beta > 0$.
- Suppose a suboptimal $\beta + \epsilon$ is used instead.
- The variance increases by only $\epsilon^2 \operatorname{Var}[Y]$.^a

^aHan & Lai (2010).

A Pitfall

- A potential pitfall is to sample X and Y independently.
- In this case, $\operatorname{Cov}[X, Y] = 0$.
- Equation (110) on p. 826 becomes

 $\operatorname{Var}[W] = \operatorname{Var}[X] + \beta^2 \operatorname{Var}[Y].$

- So whatever Y is, the variance is *increased*!
- Lesson: X and Y must be correlated.

Problems with the Monte Carlo Method

- The error bound is only probabilistic.
- The probabilistic error bound of \sqrt{N} does not benefit from regularity of the integrand function.
- The requirement that the points be independent random samples are wasteful because of clustering.
- In reality, pseudorandom numbers generated by completely deterministic means are used.
- Monte Carlo simulation exhibits a great sensitivity on the seed of the pseudorandom-number generator.

Matrix Computation

To set up a philosophy against physics is rash; philosophers who have done so have always ended in disaster. — Bertrand Russell

Definitions and Basic Results

- Let $A \stackrel{\Delta}{=} [a_{ij}]_{1 \leq i \leq m, 1 \leq j \leq n}$, or simply $A \in \mathbb{R}^{m \times n}$, denote an $m \times n$ matrix.
- It can also be represented as $[a_1, a_2, \ldots, a_n]$ where $a_i \in \mathbb{R}^m$ are vectors.

- Vectors are column vectors unless stated otherwise.

- A is a square matrix when m = n.
- The rank of a matrix is the largest number of linearly independent columns.

Definitions and Basic Results (continued)

- A square matrix A is said to be symmetric if $A^{T} = A$.
- A real $n \times n$ matrix

$$A \stackrel{\Delta}{=} [a_{ij}]_{i,j}$$

is diagonally dominant if $|a_{ii}| > \sum_{j \neq i} |a_{ij}|$ for $1 \le i \le n$.

- Such matrices are nonsingular.

• The identity matrix is the square matrix

 $I \stackrel{\Delta}{=} \operatorname{diag}[1, 1, \dots, 1].$

Definitions and Basic Results (concluded)

- A matrix has full column rank if its columns are linearly independent.
- A real symmetric matrix A is positive definite if

$$x^{\mathrm{T}}Ax = \sum_{i,j} a_{ij} x_i x_j > 0$$

for any nonzero vector x.

 A matrix A is positive definite if and only if there exists a matrix W such that A = W^TW and W has full column rank.

Cholesky Decomposition

• Positive definite matrices can be factored as

$$A = LL^{\mathrm{T}},$$

called the Cholesky decomposition.

- Above, L is a lower triangular matrix.

Generation of Multivariate Distribution

• Let $\boldsymbol{x} \stackrel{\Delta}{=} [x_1, x_2, \dots, x_n]^{\mathrm{T}}$ be a vector random variable with a positive definite covariance matrix C.

• As usual, assume $E[\boldsymbol{x}] = \boldsymbol{0}$.

- This covariance structure can be matched by Py.
 - $-C = PP^{T}$ is the Cholesky decomposition of $C.^{a}$
 - $\mathbf{y} \stackrel{\Delta}{=} [y_1, y_2, \dots, y_n]^{\mathrm{T}} \text{ is a vector random variable}$ with a covariance matrix equal to the identity matrix.

^aWhat if C is not positive definite? See Lai (R93942114) & Lyuu (2007).

Generation of Multivariate Normal Distribution

- Suppose we want to generate the multivariate normal distribution with a covariance matrix $C = PP^{T}$.
 - First, generate independent standard normal distributions y_1, y_2, \ldots, y_n .

– Then

$$P[y_1, y_2, \ldots, y_n]^{\mathrm{T}}$$

has the desired distribution.

– These steps can then be repeated.

Multivariate Derivatives Pricing

- Generating the multivariate normal distribution is essential for the Monte Carlo pricing of multivariate derivatives (pp. 748ff).
- For example, the rainbow option on k assets has payoff

$$\max(\max(S_1, S_2, \ldots, S_k) - X, 0)$$

at maturity.

• The closed-form formula is a multi-dimensional integral.^a

```
<sup>a</sup>Johnson (1987); Chen (D95723006) & Lyuu (2009).
```

Multivariate Derivatives Pricing (concluded)

- Suppose $dS_j/S_j = r dt + \sigma_j dW_j$, $1 \le j \le k$, where C is the correlation matrix for dW_1, dW_2, \ldots, dW_k .
- Let $C = PP^{\mathrm{T}}$.
- Let ξ consist of k independent random variables from N(0, 1).
- Let $\xi' = P\xi$.
- Similar to Eq. (109) on p. 791,

$$S_{i+1} = S_i e^{(r - \sigma_j^2/2)\Delta t + \sigma_j \sqrt{\Delta t} \xi'_j}, \quad 1 \le j \le k.$$

Least-Squares Problems

• The least-squares (LS) problem is concerned with

 $\min_{x \in R^n} \parallel Ax - b \parallel,$

where $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, and $m \ge n$.

- The LS problem is called regression analysis in statistics and is equivalent to minimizing the mean-square error.
- Often written as

$$Ax = b.$$

Polynomial Regression

- In polynomial regression, $x_0 + x_1x + \cdots + x_nx^n$ is used to fit the data $\{(a_1, b_1), (a_2, b_2), \dots, (a_m, b_m)\}.$
- This leads to the LS problem,

$$\begin{bmatrix} 1 & a_1 & a_1^2 & \cdots & a_1^n \\ 1 & a_2 & a_2^2 & \cdots & a_2^n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & a_m & a_m^2 & \cdots & a_m^n \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$

• Consult p. 273 of the textbook for solutions.

American Option Pricing by Simulation

- The continuation value of an American option is the conditional expectation of the payoff from keeping the option alive now.
- The option holder must compare the immediate exercise value and the continuation value.
- In standard Monte Carlo simulation, each path is treated independently of other paths.
- But the decision to exercise the option cannot be reached by looking at one path alone.

The Least-Squares Monte Carlo Approach

- The continuation value can be estimated from the cross-sectional information in the simulation by using least squares.^a
- The result is a function (of the state) for estimating the continuation values.
- Use the function to estimate the continuation value for each path to determine its cash flow.
- This is called the least-squares Monte Carlo (LSM) approach.

^aLongstaff & Schwartz (2001).

The Least-Squares Monte Carlo Approach (concluded)

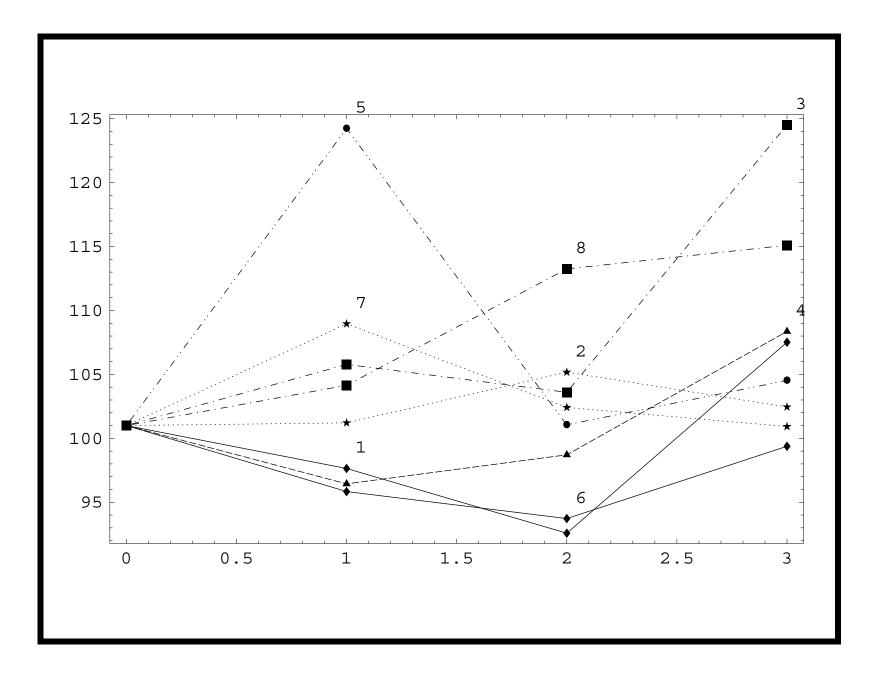
- The LSM is provably convergent.^a
- The LSM can be easily parallelized.^b
 - Partition the paths into subproblems and perform LSM on each of them independently.
 - The speedup is close to linear (i.e., proportional to the number of cores).
- Surprisingly, accuracy is not affected.

^aClément, Lamberton, & Protter (2002); Stentoft (2004). ^bHuang (B96902079, R00922018) (2013); Chen (B97902046, R01922005) (2014); Chen (B97902046, R01922005), Huang (B96902079, R00922018) & Lyuu (2015).

A Numerical Example

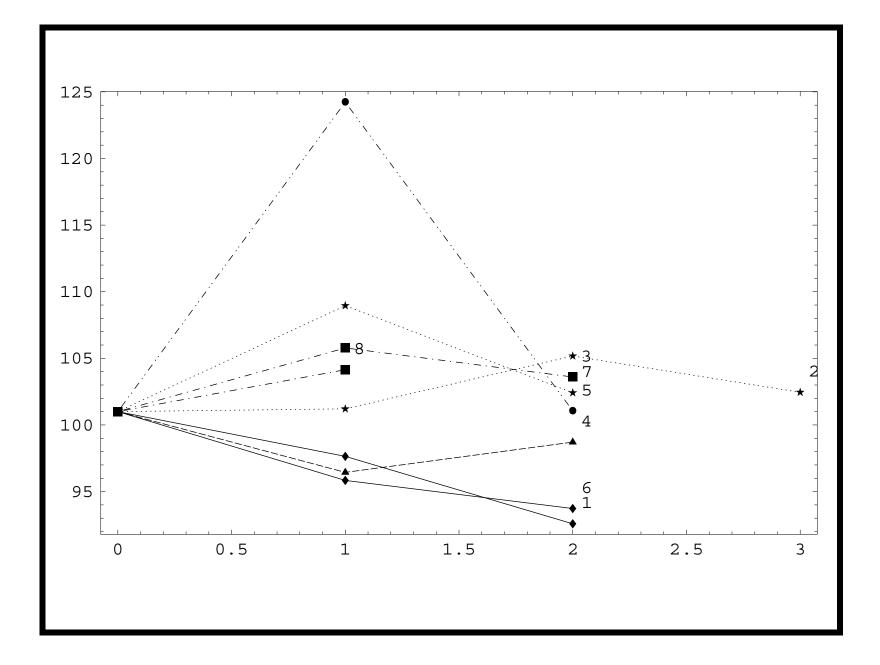
- Consider a 3-year American put on a non-dividend-paying stock.
- The put is exercisable at years 0, 1, 2, and 3.
- The strike price X = 105.
- The annualized riskless rate is r = 5%.
- The current stock price is 101.
 - The annual discount factor hence equals 0.951229.
- We use only 8 price paths to illustrate the algorithm.

		Stock price	e paths	
Path	Year 0	Year 1	Year 2	Year 3
1	101	97.6424	92.5815	107.5178
2	101	101.2103	105.1763	102.4524
3	101	105.7802	103.6010	124.5115
4	101	96.4411	98.7120	108.3600
5	101	124.2345	101.0564	104.5315
6	101	95.8375	93.7270	99.3788
7	101	108.9554	102.4177	100.9225
8	101	104.1475	113.2516	115.0994



- We use the basis functions $1, x, x^2$.
 - Other basis functions are possible.^a
- The plot next page shows the final estimated optimal exercise strategy given by LSM.
- We now proceed to tackle our problem.
- The idea is to calculate the cash flow along each path, using information from *all* paths.

^aLaguerre polynomials, Hermite polynomials, Legendre polynomials, Chebyshev polynomials, Gedenbauer polynomials, and Jacobi polynomials.



AN	A Numerical Example (continued)				
	Cash flows at year 3				
Path	Year 0	Year 1	Year 2	Year 3	
1				0	
2				2.5476	
3				0	
4				0	
5				0.4685	
6				5.6212	
7				4.0775	
8				0	

- The cash flows at year 3 are the exercise value if the put is in the money.
- Only 4 paths are in the money: 2, 5, 6, 7.
- Some of the cash flows may not occur if the put is exercised earlier, which we will find out step by step.
- Incidentally, the *European* counterpart has a value of

$$0.951229^3 \times \frac{2.5476 + 0.4685 + 5.6212 + 4.0775}{8} = 1.3680.$$

- We move on to year 2.
- For each state that is in the money at year 2, we must decide whether to exercise it.
- There are 6 paths for which the put is in the money: 1, 3, 4, 5, 6, 7 (p. 851).
- Only in-the-money paths will be used in the regression because they are where early exercise is relevant.
 - If there were none, we would move on to year 1.

- Let x denote the stock prices at year 2 for those 6 paths.
- Let y denote the corresponding discounted future cash flows (at year 3) if the put is not exercised at year 2.

n at year 2	Regressic	
y	x	Path
0 imes 0.951229	92.5815	1
		2
0 imes 0.951229	103.6010	3
0×0.951229	98.7120	4
0.4685×0.951229	101.0564	5
5.6212×0.951229	93.7270	6
4.0775×0.951229	102.4177	7
		8

- We regress y on 1, x, and x^2 .
- The result is

 $f(x) = 22.08 - 0.313114 \times x + 0.00106918 \times x^2.$

- f(x) estimates the continuation value conditional on the stock price at year 2.
- We next compare the immediate exercise value and the continuation value.^a

^aThe f(102.4177) entry on the next page was corrected by Mr. Du, Yung-Szu (B79503054, R83503086) on May 25, 2017.

A Numerical Example (continued)			
Optimal early exercise decision at year 2			
Path	Exercise	Continuation	
1	12.4185	f(92.5815) = 2.2558	
2			
3	1.3990	f(103.6010) = 1.1168	
4	6.2880	f(98.7120) = 1.5901	
5	3.9436	f(101.0564) = 1.3568	
6	11.2730	f(93.7270) = 2.1253	
7	2.5823	f(102.4177) = 1.2266	
8			

- Amazingly, the put should be exercised in all 6 paths: 1, 3, 4, 5, 6, 7.
- Now, any positive cash flow at year 3 should be set to zero or overridden for these paths as the put is exercised before year 3 (p. 851).

- They are paths 5, 6, 7.

• The cash flows on p. 855 become the ones on next slide.

	Cash f	lows at ye	ears 2 & 3	
Path	Year 0	Year 1	Year 2	Year 3
1			12.4185	0
2			0	2.5476
3			1.3990	0
4			6.2880	0
5			3.9436	0
6			11.2730	0
7			2.5823	0
8			0	0

- We move on to year 1.
- For each state that is in the money at year 1, we must decide whether to exercise it.
- There are 5 paths for which the put is in the money: 1, 2, 4, 6, 8 (p. 851).
- Only in-the-money paths will be used in the regression because they are where early exercise is relevant.
 - If there were none, we would move on to year 0.

- Let x denote the stock prices at year 1 for those 5 paths.
- Let y denote the corresponding discounted future cash flows if the put is not exercised at year 1.
- From p. 863, we have the following table.

A Nu	merical Ex	ample (continued)		
	Regression at year 1			
Path	x	y		
1	97.6424	12.4185×0.951229		
2	101.2103	$2.5476 imes 0.951229^2$		
3				
4	96.4411	6.2880×0.951229		
5				
6	95.8375	11.2730×0.951229		
7				
8	104.1475	0		

- We regress y on 1, x, and x^2 .
- The result is

 $f(x) = -420.964 + 9.78113 \times x - 0.0551567 \times x^2.$

- f(x) estimates the continuation value conditional on the stock price at year 1.
- We next compare the immediate exercise value and the continuation value.

A Numerical Example (continued)

Continuation	Exercise	Path
f(97.6424) = 8.2230	7.3576	1
f(101.2103) = 3.9882	3.7897	2
		3
f(96.4411) = 9.3329	8.5589	4
		5
f(95.8375) = 9.83042	9.1625	6
		7
f(104.1475) = -0.551885	0.8525	8

Optimal early exercise decision at year 1

A Numerical Example (continued)

- The put should be exercised for 1 path only: 8.
 - Note that f(104.1475) < 0.
- Now, any positive future cash flow should be set to zero or overridden for this path.
 - But there is none.
- The cash flows on p. 863 become the ones on next slide.
- They also confirm the plot on p. 854.

iuea)	ole (contir	i Examp	iumerica	AN
3	rs 1, 2, & 3	ws at yea	Cash flo	
Year 3	Year 2	Year 1	Year 0	Path
0	12.4185	0		1
2.5476	0	0		2
0	1.3990	0		3
0	6.2880	0		4
0	3.9436	0		5
0	11.2730	0		6
0	2.5823	0		7
0	0	0.8525		8

A Numerical Example (continued)

- We move on to year 0.
- The continuation value is, from p 870,

 $(12.4185 \times 0.951229^{2} + 2.5476 \times 0.951229^{3} + 1.3990 \times 0.951229^{2} + 6.2880 \times 0.951229^{2} + 3.9436 \times 0.951229^{2} + 11.2730 \times 0.951229^{2} + 2.5823 \times 0.951229^{2} + 0.8525 \times 0.951229)/8$

= 4.66263.

A Numerical Example (concluded)

• As this is larger than the immediate exercise value of

105 - 101 = 4,

the put should not be exercised at year 0.

- Hence the put's value is estimated to be 4.66263.
- Compare this with the European put's value of 1.3680 (p. 856).

Time Series Analysis

The historian is a prophet in reverse. — Friedrich von Schlegel (1772–1829)

$\mathsf{GARCH}\ \mathsf{Option}\ \mathsf{Pricing}^{\mathrm{a}}$

- Options can be priced when the underlying asset's return follows a GARCH process.
- Let S_t denote the asset price at date t.
- Let h_t^2 be the *conditional* variance of the return over the period [t, t+1] given the information at date t.
 - "One day" is merely a convenient term for any elapsed time Δt .

^aARCH (autoregressive conditional heteroskedastic) is due to Engle (1982), co-winner of the 2003 Nobel Prize in Economic Sciences. GARCH (generalized ARCH) is due to Bollerslev (1986) and Taylor (1986). A Bloomberg quant said to me on Feb 29, 2008, that GARCH is seldom used in trading.

GARCH Option Pricing (continued)

• Adopt the following risk-neutral process for the price dynamics:^a

$$\ln \frac{S_{t+1}}{S_t} = r - \frac{h_t^2}{2} + h_t \epsilon_{t+1}, \qquad (112)$$

where

$$h_{t+1}^{2} = \beta_{0} + \beta_{1}h_{t}^{2} + \beta_{2}h_{t}^{2}(\epsilon_{t+1} - c)^{2}, \qquad (113)$$

$$\epsilon_{t+1} \sim N(0, 1) \text{ given information at date } t,$$

$$r = \text{ daily riskless return,}$$

$$c \geq 0.$$

^aDuan (1995).

GARCH Option Pricing (continued)

- The five unknown parameters of the model are c, h_0, β_0, β_1 , and β_2 .
- It is postulated that $\beta_0, \beta_1, \beta_2 \ge 0$ to make the conditional variance positive.
- There are other inequalities to satisfy (see text).
- The above process is called the nonlinear asymmetric GARCH (or NGARCH) model.

GARCH Option Pricing (continued)

- It captures the volatility clustering in asset returns first noted by Mandelbrot (1963).^a
 - When c = 0, a large ϵ_{t+1} results in a large h_{t+1} , which in turns tends to yield a large h_{t+2} , and so on.
- It also captures the negative correlation between the asset return and changes in its (conditional) volatility.^b
 - For c > 0, a positive ϵ_{t+1} (good news) tends to decrease h_{t+1} , whereas a negative ϵ_{t+1} (bad news) tends to do the opposite.

^a"... large changes tend to be followed by large changes—of either sign—and small changes tend to be followed by small changes"

^bNoted by Black (1976): Volatility tends to rise in response to "bad news" and fall in response to "good news."

GARCH Option Pricing (concluded)

• With $y_t \stackrel{\Delta}{=} \ln S_t$ denoting the logarithmic price, the model becomes

$$y_{t+1} = y_t + r - \frac{h_t^2}{2} + h_t \epsilon_{t+1}.$$
 (114)

- The pair (y_t, h_t^2) completely describes the current state.
- The conditional mean and variance of y_{t+1} are clearly

$$E[y_{t+1} | y_t, h_t^2] = y_t + r - \frac{h_t^2}{2}, \qquad (115)$$

$$Var[y_{t+1} | y_t, h_t^2] = h_t^2. \qquad (116)$$

GARCH Model: Inferences

- Suppose the parameters c, h_0, β_0, β_1 , and β_2 are given.
- Then we can recover h_1, h_2, \ldots, h_n and $\epsilon_1, \epsilon_2, \ldots, \epsilon_n$ from the prices

$$S_0, S_1, \ldots, S_n$$

under the GARCH model (112) on p. 876.

• This property is useful in statistical inferences.

The Ritchken-Trevor (RT) Algorithm $^{\rm a}$

- The GARCH model is a continuous-state model.
- To approximate it, we turn to trees with *discrete* states.
- Path dependence in GARCH makes the tree for asset prices explode exponentially (why?).
- We need to mitigate this combinatorial explosion.

^aRitchken & Trevor (1999).