
Pricing Discrete Barrier Options

• Barrier options whose barrier is monitored only at

discrete times are called discrete barrier options.

• They are more common than the continuously

monitored versions.

• The main difficulty with pricing discrete barrier options

lies in matching the monitored times.

• Here is why.
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Pricing Discrete Barrier Options (continued)

• Suppose each period has a duration of Δt and the

� > 1 monitored times are

t0 = 0, t1, t2, . . . , t� = T.

• It is unlikely that all monitored times coincide with the

end of a period on the tree, or Δt divides ti for all i.

• The binomial-trinomial tree can handle discrete options

with ease, however.

• Simply build a binomial-trinomial tree from time 0 to

time t1, followed by one from time t1 to time t2, and so

on until time t�.
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Pricing Discrete Barrier Options (concluded)

• This procedure works even if each ti is associated with

a distinct barrier or if each window [ ti, ti+1) has its own

continuously monitored barrier or double barriers.
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Options on a Stock That Pays Known Dividends

• Many ad hoc assumptions have been postulated for

option pricing with known dividends.a

1. The one we saw earlier (p. 305) models the stock

price minus the present value of the anticipated

dividends as following geometric Brownian motion.

2. One can also model the stock price plus the forward

values of the dividends as following geometric

Brownian motion.

aFrishling (2002).
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Options on a Stock That Pays Known Dividends (continued)

• Realistic models assume:

– The stock price decreases by the amount of the

dividend paid at the ex-dividend date.

– The dividend is part cash and part yield (i.e.,

α(t)S0 + β(t)St), for practitioners.
a

• The stock price follows geometric Brownian motion

between adjacent ex-dividend dates.

• But they result in binomial trees that grow

exponentially (recall p. 304).

• The binomial-trinomial tree can avoid this problem in

most cases.
aHenry-Labordère (2009).
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Options on a Stock That Pays Known Dividends (continued)

• Suppose that the known dividend is D dollars and the

ex-dividend date is at time t.

• So there are m
Δ
= t/Δt periods between time 0 and the

ex-dividend date.a

• To avoid negative stock prices, we need to make sure the

lowest stock price at time t is at least D, i.e.,

Se−(t/Δt)σ
√
Δt ≥ D.

– Or,

Δt ≥
[

tσ

ln(S/D)

]2
.

aOr simply assume m is an integer input and Δt
Δ
= t/m.
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Options on a Stock That Pays Known Dividends (continued)

• Build a CRR tree from time 0 to time t as before.

• Subtract D from all the stock prices on the tree at time

t to represent the price drop on the ex-dividend date.

• Assume the top node’s price equals S′.

– As usual, its two successor nodes will have prices

S′u and S′u−1.

• The remaining nodes’ successor nodes will have prices

S′u−3, S′u−5, S′u−7, . . . ,

same as the CRR tree.
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A Stair Tree
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Options on a Stock That Pays Known Dividends (continued)

• For each node at time t below the top node, we build

the trinomial connection.

• Note that the binomial-trinomial structure remains valid

in the special case when Δt′ = Δt on p. 703.

– And even with the displacements ±2σ
√
Δt (as on p.

731).
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Options on a Stock That Pays Known Dividends (concluded)

• Hence the construction can be completed.

• From time t+Δt onward, the standard binomial tree

will be used until the maturity date or the next

ex-dividend date when the procedure can be repeated.

• The resulting tree is called the stair tree.a

aDai (B82506025, R86526008, D8852600) & Lyuu (2004); Dai

(B82506025, R86526008, D8852600) (2009).
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Other Applications of Binomial-Trinomial Trees

• Pricing guaranteed minimum withdrawal benefits.a

• Option pricing with stochastic volatilities.b

• Efficient Parisian option pricing.c

• Option pricing with time-varying volatilities and

time-varying barriers.d

• Defaultable bond pricing.e

aH. Wu (R96723058) (2009).
bC. Huang (R97922073) (2010).
cY. Huang (R97922081) (2010).
dC. Chou (R97944012) (2010); C. Chen (R98922127) (2011).
eDai (B82506025, R86526008, D8852600), Lyuu, & C. Wang

(F95922018) (2009, 2010, 2014).
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General Properties of Treesa

• Consider the Ito process,

dX = a(X, t) dt+ σ dW,

where a(X, t) = O(1) and σ is a constant.

• The mean and volatility of the next move’s size are

O(Δt) and O(
√
Δt), respectively.

• Note that
√
Δt � Δt.

• The tree spacing must be in the order of σ
√
Δt if the

variance is to be matched.b

aChiu (R98723059) (2012); C. H. Wu (R99922149) (2012).
bLyuu & C. Wang (F95922018) (2009, 2011); Lyuu & Wen

(D94922003) (2012).
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Merton’s Jump-Diffusion Model

• Empirically, stock returns tend to have fat tails,

inconsistent with the Black-Scholes model’s assumptions.

• Stochastic volatility and jump processes have been

proposed to address this problem.

• Merton’s (1976) jump-diffusion model is our focus.
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Merton’s Jump-Diffusion Model (continued)

• This model superimposes a jump component on a

diffusion component.

• The diffusion component is the familiar geometric

Brownian motion.

• The jump component is composed of lognormal jumps

driven by a Poisson process.

– It models the sudden changes in the stock price

because of the arrival of important new information.
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Merton’s Jump-Diffusion Model (continued)

• Let St be the stock price at time t.

• The risk-neutral jump-diffusion process for the stock

price follows

dSt

St
= (r − λk̄) dt+ σ dWt + k dqt. (96)

• Above, σ denotes the volatility of the diffusion

component.
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Merton’s Jump-Diffusion Model (continued)

• The jump event is governed by a compound Poisson

process qt with intensity λ, where k denotes the

magnitude of the random jump.

– The distribution of k obeys

ln(1 + k) ∼ N
(
γ, δ2

)
with mean k̄

Δ
= E (k) = eγ+δ2/2 − 1.

• The model with λ = 0 reduces to the Black-Scholes

model.
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Merton’s Jump-Diffusion Model (continued)

• The solution to Eq. (96) on p. 738 is

St = S0e
(r−λk̄−σ2/2) t+σWtU(n(t)), (97)

where

U(n(t)) =

n(t)∏
i=0

(1 + ki) .

– ki is the magnitude of the ith jump with

ln(1 + ki) ∼ N(γ, δ2).

– k0 = 0.

– n(t) is a Poisson process with intensity λ.
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Merton’s Jump-Diffusion Model (concluded)

• Recall that n(t) denotes the number of jumps that

occur up to time t.

• As k > −1, stock prices will stay positive.

• The geometric Brownian motion, the lognormal jumps,

and the Poisson process are assumed to be independent.
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Tree for Merton’s Jump-Diffusion Modela

• Define the S-logarithmic return of the stock price S′ as

ln(S′/S).

• Define the logarithmic distance between stock prices S′

and S as

| ln(S′)− ln(S) | = | ln(S′/S) |.
aDai (B82506025, R86526008, D8852600), C. Wang (F95922018), Lyuu,

& Y. Liu (2010).
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Tree for Merton’s Jump-Diffusion Model (continued)

• Take the logarithm of Eq. (97) on p. 740:

Mt
Δ
= ln

(
St

S0

)
= Xt + Yt, (98)

where

Xt
Δ
=

(
r − λk̄ − σ2

2

)
t+ σWt, (99)

Yt
Δ
=

n(t)∑
i=0

ln (1 + ki) . (100)

• It decomposes the S0-logarithmic return of St into the

diffusion component Xt and the jump component Yt.
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Tree for Merton’s Jump-Diffusion Model (continued)

• Motivated by decomposition (98) on p. 743, the tree

construction divides each period into a diffusion phase

followed by a jump phase.

• In the diffusion phase, Xt is approximated by the

BOPM.

• So Xt makes an up move to Xt + σ
√
Δt with

probability pu or a down move to Xt − σ
√
Δt with

probability pd.
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Tree for Merton’s Jump-Diffusion Model (continued)

• According to BOPM,

pu =
eμΔt − d

u− d
,

pd = 1− pu,

except that μ = r − λk̄ here.

• The diffusion component gives rise to diffusion nodes.

• They are spaced at 2σ
√
Δt apart such as the white

nodes A, B, C, D, E, F, and G on p. 746.
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White nodes are diffusion nodes.

Gray nodes are jump nodes. In

the diffusion phase, the solid black

lines denote the binomial structure

of BOPM; the dashed lines denote

the trinomial structure. Here m is

set to one for simplicity. Only the

double-circled nodes will remain af-

ter the construction. Note that a

and b are diffusion nodes because

no jump occurs in the jump phase.
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Tree for Merton’s Jump-Diffusion Model (concluded)

• In the jump phase, Yt+Δt is approximated by moves

from each diffusion node to 2m jump nodes that match

the first 2m moments of the lognormal jump.

• The m jump nodes above the diffusion node are spaced

at h
Δ
=
√
γ2 + δ2 apart.

• The same holds for the m jump nodes below the

diffusion node.

• The gray nodes at time �Δt on p. 746 are jump nodes.

• The size of the tree is O(n2.5).
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Multivariate Contingent Claims

• They depend on two or more underlying assets.

• The basket call on m assets has the terminal payoff

max

(
m∑
i=1

αiSi(τ)−X, 0

)
,

where αi is the percentage of asset i.

• Basket options are essentially options on a portfolio of

stocks; they are index options.

• Option on the best of two risky assets and cash has a

terminal payoff of max(S1(τ), S2(τ), X).
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Multivariate Contingent Claims (concluded)a

Name Payoff

Exchange option max(S1(τ)− S2(τ), 0)

Better-off option max(S1(τ), . . . , Sk(τ), 0)

Worst-off option min(S1(τ), . . . , Sk(τ), 0)

Binary maximum option I{max(S1(τ), . . . , Sk(τ)) > X }
Maximum option max(max(S1(τ), . . . , Sk(τ))−X, 0)

Minimum option max(min(S1(τ), . . . , Sk(τ))−X, 0)

Spread option max(S1(τ)− S2(τ)−X, 0)

Basket average option max((S1(τ) + · · ·+ Sk(τ))/k −X, 0)

Multi-strike option max(S1(τ)−X1, . . . , Sk(τ)−Xk, 0)

Pyramid rainbow option max(|S1(τ)−X1 |+ · · ·+ |Sk(τ)−Xk | −X, 0)

Madonna option max(
√

(S1(τ)−X1)2 + · · ·+ (Sk(τ)−Xk)2 −X, 0)

aLyuu & Teng (R91723054) (2011).
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Correlated Trinomial Modela

• Two risky assets S1 and S2 follow

dSi

Si
= r dt+ σi dWi

in a risk-neutral economy, i = 1, 2.

• Let

Mi
Δ
= erΔt,

Vi
Δ
= M2

i (e
σ2
iΔt − 1).

– SiMi is the mean of Si at time Δt.

– S2
i Vi the variance of Si at time Δt.

aBoyle, Evnine, & Gibbs (1989).
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Correlated Trinomial Model (continued)

• The value of S1S2 at time Δt has a joint lognormal

distribution with mean S1S2M1M2e
ρσ1σ2Δt, where ρ is

the correlation between dW1 and dW2.

• Next match the 1st and 2nd moments of the

approximating discrete distribution to those of the

continuous counterpart.

• At time Δt from now, there are 5 distinct outcomes.
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Correlated Trinomial Model (continued)

• The five-point probability distribution of the asset prices

is

Probability Asset 1 Asset 2

p1 S1u1 S2u2

p2 S1u1 S2d2

p3 S1d1 S2d2

p4 S1d1 S2u2

p5 S1 S2

• As usual, impose uidi = 1.
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Correlated Trinomial Model (continued)

• The probabilities must sum to one, and the means must

be matched:

1 = p1 + p2 + p3 + p4 + p5,

S1M1 = (p1 + p2)S1u1 + p5S1 + (p3 + p4)S1d1,

S2M2 = (p1 + p4)S2u2 + p5S2 + (p2 + p3)S2d2.
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Correlated Trinomial Model (concluded)

• Let R
Δ
= M1M2e

ρσ1σ2Δt.

• Match the variances and covariance:

S2
1V1 = (p1 + p2)((S1u1)

2 − (S1M1)
2) + p5(S

2
1 − (S1M1)

2)

+(p3 + p4)((S1d1)
2 − (S1M1)

2
),

S2
2V2 = (p1 + p4)((S2u2)

2 − (S2M2)
2) + p5(S

2
2 − (S2M2)

2)

+(p2 + p3)((S2d2)
2 − (S2M2)

2
),

S1S2R = (p1u1u2 + p2u1d2 + p3d1d2 + p4d1u2 + p5)S1S2.

• The solutions appear on p. 246 of the textbook.
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Correlated Trinomial Model Simplifieda

• Let μ′
i
Δ
= r − σ2

i /2 and ui
Δ
= eλσi

√
Δt for i = 1, 2.

• The following simpler scheme is good enough:

p1 =
1

4

[
1

λ2
+

√
Δt

λ

(
μ′
1

σ1

+
μ′
2

σ2

)
+

ρ

λ2

]
,

p2 =
1

4

[
1

λ2
+

√
Δt

λ

(
μ′
1

σ1

−
μ′
2

σ2

)
−

ρ

λ2

]
,

p3 =
1

4

[
1

λ2
+

√
Δt

λ

(
−

μ′
1

σ1

−
μ′
2

σ2

)
+

ρ

λ2

]
,

p4 =
1

4

[
1

λ2
+

√
Δt

λ

(
−

μ′
1

σ1

+
μ′
2

σ2

)
−

ρ

λ2

]
,

p5 = 1 −
1

λ2
.

aMadan, Milne, & Shefrin (1989).
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Correlated Trinomial Model Simplified (continued)

• All of the probabilities lie between 0 and 1 if and only if

−1 + λ
√
Δt

∣∣
∣∣
μ′
1

σ1
+

μ′
2

σ2

∣∣
∣∣ ≤ ρ ≤ 1− λ

√
Δt

∣∣
∣∣
μ′
1

σ1
− μ′

2

σ2

∣∣
∣∣ ,(101)

1 ≤ λ (102)

• We call a multivariate tree (correlation-) optimal if it

guarantees valid probabilities as long as

−1 +O(
√
Δt) < ρ < 1−O(

√
Δt),

such as the above one.a

aW. Kao (R98922093) (2011); W. Kao (R98922093), Lyuu, & Wen

(D94922003) (2014).
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Correlated Trinomial Model Simplified (concluded)

• But this model cannot price 2-asset 2-barrier options

accurately.a

• Few multivariate trees are both optimal and able to

handle multiple barriers.b

• An alternative is to use orthogonalization.c

aSee Y. Chang (B89704039, R93922034), Hsu (R7526001, D89922012),

& Lyuu (2006); W. Kao (R98922093), Lyuu, & Wen (D94922003) (2014)

for solutions.
bSee W. Kao (R98922093), Lyuu, & Wen (D94922003) (2014) for one.
cHull & White (1990); Dai (B82506025, R86526008, D8852600), Lyuu,

& C. Wang (F95922018) (2012).
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Extrapolation

• It is a method to speed up numerical convergence.

• Say f(n) converges to an unknown limit f at rate of

1/n:

f(n) = f +
c

n
+ o

(
1

n

)
. (103)

• Assume c is an unknown constant independent of n.

– Convergence is basically monotonic and smooth.
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Extrapolation (concluded)

• From two approximations f(n1) and f(n2) and

ignoring the smaller terms,

f(n1) = f +
c

n1
,

f(n2) = f +
c

n2
.

• A better approximation to the desired f is

f =
n1f(n1)− n2f(n2)

n1 − n2
. (104)

• This estimate should converge faster than 1/n.a

• The Richardson extrapolation uses n2 = 2n1.
aIt is identical to the forward rate formula (21) on p. 140!
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Improving BOPM with Extrapolation

• Consider standard European options.

• Denote the option value under BOPM using n time

periods by f(n).

• It is known that BOPM convergences at the rate of 1/n,

consistent with Eq. (103) on p. 758.

• But the plots on p. 288 (redrawn on next page)

demonstrate that convergence to the true option value

oscillates with n.

• Extrapolation is inapplicable at this stage.
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Improving BOPM with Extrapolation (concluded)

• Take the at-the-money option in the left plot on p. 761.

• The sequence with odd n turns out to be monotonic

and smooth (see the left plot on p. 763).a

• Apply extrapolation (104) on p. 759 with n2 = n1 + 2,

where n1 is odd.

• Result is shown in the right plot on p. 763.

• The convergence rate is amazing.

• See Exercise 9.3.8 of the text (p. 111) for ideas in the

general case.

aThis can be proved (L. Chang & Palmer, 2007).

c©2017 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 762



5 10 15 20 25 30 35
n

12.2

12.4

12.6

12.8

13

13.2

13.4
Call value

5 10 15 20 25 30 35
n

12.11
12.12
12.13
12.14
12.15
12.16
12.17

Call value

c©2017 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 763



Numerical Methods
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All science is dominated

by the idea of approximation.

— Bertrand Russell

c©2017 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 765



Finite-Difference Methods

• Place a grid of points on the space over which the

desired function takes value.

• Then approximate the function value at each of these

points (p. 767).

• Solve the equation numerically by introducing difference

equations in place of derivatives.
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Example: Poisson’s Equation

• It is ∂2θ/∂x2 + ∂2θ/∂y2 = −ρ(x, y), which describes the

electrostatic field.

• Replace second derivatives with finite differences

through central difference.

• Introduce evenly spaced grid points with distance of Δx

along the x axis and Δy along the y axis.

• The finite difference form is

−ρ(xi, yj) =
θ(xi+1, yj)− 2θ(xi, yj) + θ(xi−1, yj)

(Δx)2

+
θ(xi, yj+1)− 2θ(xi, yj) + θ(xi, yj−1)

(Δy)2
.
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Example: Poisson’s Equation (concluded)

• In the above, Δx
Δ
= xi − xi−1 and Δy

Δ
= yj − yj−1 for

i, j = 1, 2, . . . .

• When the grid points are evenly spaced in both axes so

that Δx = Δy = h, the difference equation becomes

−h2ρ(xi, yj) = θ(xi+1, yj) + θ(xi−1, yj)

+θ(xi, yj+1) + θ(xi, yj−1)− 4θ(xi, yj).

• Given boundary values, we can solve for the xis and the

yjs within the square [±L,±L ].

• From now on, θi,j will denote the finite-difference

approximation to the exact θ(xi, yj).
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Explicit Methods

• Consider the diffusion equation

D(∂2θ/∂x2)− (∂θ/∂t) = 0, D > 0.

• Use evenly spaced grid points (xi, tj) with distances

Δx and Δt, where Δx
Δ
= xi+1 − xi and Δt

Δ
= tj+1 − tj .

• Employ central difference for the second derivative and

forward difference for the time derivative to obtain

∂θ(x, t)

∂t

∣
∣
∣∣
t=tj

=
θ(x, tj+1)− θ(x, tj)

Δt
+ · · · , (105)

∂2θ(x, t)

∂x2

∣
∣
∣∣
x=xi

=
θ(xi+1, t)− 2θ(xi, t) + θ(xi−1, t)

(Δx)2
+ · · · .(106)
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Explicit Methods (continued)

• Next, assemble Eqs. (105) and (106) into a single

equation at (xi, tj).

• But we need to decide how to evaluate x in the first

equation and t in the second.

• Since central difference around xi is used in Eq. (106),

we might as well use xi for x in Eq. (105).

• Two choices are possible for t in Eq. (106).

• The first choice uses t = tj to yield the following

finite-difference equation,

θi,j+1 − θi,j
Δt

= D
θi+1,j − 2θi,j + θi−1,j

(Δx)2
.

(107)
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Explicit Methods (continued)

• The stencil of grid points involves four values, θi,j+1,

θi,j , θi+1,j, and θi−1,j.

• Rearrange Eq. (107) on p. 771 as

θi,j+1 =
DΔt

(Δx)2
θi+1,j +

(
1− 2DΔt

(Δx)2

)
θi,j +

DΔt

(Δx)2
θi−1,j .

• We can calculate θi,j+1 from θi,j , θi+1,j, θi−1,j, at the

previous time tj (see exhibit (a) on next page).
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Explicit Methods (concluded)

• Starting from the initial conditions at t0, that is,

θi,0 = θ(xi, t0), i = 1, 2, . . . , we calculate

θi,1, i = 1, 2, . . . .

• And then

θi,2, i = 1, 2, . . . .

• And so on.
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Stability

• The explicit method is numerically unstable unless

Δt ≤ (Δx)2/(2D).

– A numerical method is unstable if the solution is

highly sensitive to changes in initial conditions.

• The stability condition may lead to high running times

and memory requirements.

• For instance, halving Δx would imply quadrupling

(Δt)−1, resulting in a running time 8 times as much.
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Explicit Method and Trinomial Tree

• Recall that

θi,j+1 =
DΔt

(Δx)2
θi+1,j +

(
1− 2DΔt

(Δx)2

)
θi,j +

DΔt

(Δx)2
θi−1,j .

• When the stability condition is satisfied, the three

coefficients for θi+1,j, θi,j , and θi−1,j all lie between

zero and one and sum to one.

• They can be interpreted as probabilities.

• So the finite-difference equation becomes identical to

backward induction on trinomial trees!

c©2017 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 776



Explicit Method and Trinomial Tree (concluded)

• The freedom in choosing Δx corresponds to similar

freedom in the construction of trinomial trees.

• The explicit finite-difference equation is also identical to

backward induction on a binomial tree.a

– Let the binomial tree take 2 steps each of length

Δt/2.

– It is now a trinomial tree.

aHilliard (2014).
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Implicit Methods

• Suppose we use t = tj+1 in Eq. (106) on p. 770 instead.

• The finite-difference equation becomes

θi,j+1 − θi,j
Δt

= D
θi+1,j+1 − 2θi,j+1 + θi−1,j+1

(Δx)2
.

(108)

• The stencil involves θi,j , θi,j+1, θi+1,j+1, and θi−1,j+1.

• This method is implicit:

– The value of any one of the three quantities at tj+1

cannot be calculated unless the other two are known.

– See exhibit (b) on p. 773.
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Implicit Methods (continued)

• Equation (108) can be rearranged as

θi−1,j+1 − (2 + γ) θi,j+1 + θi+1,j+1 = −γθi,j,

where γ
Δ
= (Δx)2/(DΔt).

• This equation is unconditionally stable.

• Suppose the boundary conditions are given at x = x0

and x = xN+1.

• After θi,j has been calculated for i = 1, 2, . . . , N , the

values of θi,j+1 at time tj+1 can be computed as the

solution to the following tridiagonal linear system,

c©2017 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 779



Implicit Methods (continued)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a 1 0 · · · · · · · · · 0

1 a 1 0 · · · · · · 0

0 1 a 1 0 · · · 0

.

.

.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.

.

.

.

.

.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.

.

.

0 · · · · · · 0 1 a 1

0 · · · · · · · · · 0 1 a

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

θ1,j+1

θ2,j+1

θ3,j+1

.

.

.

.

.

.

.

.

.

θN,j+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−γθ1,j − θ0,j+1

−γθ2,j

−γθ3,j

.

.

.

.

.

.

−γθN−1,j

−γθN,j − θN+1,j+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where a
Δ
= −2− γ.
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Implicit Methods (concluded)

• Tridiagonal systems can be solved in O(N) time and

O(N) space.

– Never invert a matrix to solve a tridiagonal system.

• The matrix above is nonsingular when γ ≥ 0.

– A square matrix is nonsingular if its inverse exists.
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Crank-Nicolson Method
• Take the average of explicit method (107) on p. 771 and
implicit method (108) on p. 778:

θi,j+1 − θi,j

Δt

=
1

2

(
D

θi+1,j − 2θi,j + θi−1,j

(Δx)2
+ D

θi+1,j+1 − 2θi,j+1 + θi−1,j+1

(Δx)2

)
.

• After rearrangement,

γθi,j+1 −
θi+1,j+1 − 2θi,j+1 + θi−1,j+1

2
= γθi,j +

θi+1,j − 2θi,j + θi−1,j

2
.

• This is an unconditionally stable implicit method with

excellent rates of convergence.
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Stencil

tj tj+1

xi

xi+1

xi+1
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Numerically Solving the Black-Scholes PDE (82) on p.
629

• See text.

• Brennan and Schwartz (1978) analyze the stability of

the implicit method.
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Monte Carlo Simulationa

• Monte Carlo simulation is a sampling scheme.

• In many important applications within finance and

without, Monte Carlo is one of the few feasible tools.

• When the time evolution of a stochastic process is not

easy to describe analytically, Monte Carlo may very well

be the only strategy that succeeds consistently.

aA top 10 algorithm (Dongarra & Sullivan, 2000).
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The Big Idea

• Assume X1, X2, . . . , Xn have a joint distribution.

• θ
Δ
= E[ g(X1, X2, . . . , Xn) ] for some function g is

desired.

• We generate(
x
(i)
1 , x

(i)
2 , . . . , x(i)

n

)
, 1 ≤ i ≤ N

independently with the same joint distribution as

(X1, X2, . . . , Xn).

• Set

Yi
Δ
= g

(
x
(i)
1 , x

(i)
2 , . . . , x(i)

n

)
.
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The Big Idea (concluded)

• Y1, Y2, . . . , YN are independent and identically

distributed random variables.

• Each Yi has the same distribution as

Y
Δ
= g(X1, X2, . . . , Xn).

• Since the average of these N random variables, Y ,

satisfies E[Y ] = θ, it can be used to estimate θ.

• The strong law of large numbers says that this

procedure converges almost surely.

• The number of replications (or independent trials), N , is

called the sample size.
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Accuracy

• The Monte Carlo estimate and true value may differ

owing to two reasons:

1. Sampling variation.

2. The discreteness of the sample paths.a

• The first can be controlled by the number of replications.

• The second can be controlled by the number of

observations along the sample path.

aThis may not be an issue if the financial derivative only requires

discrete sampling along the time dimension, such as the discrete barrier

option.
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Accuracy and Number of Replications

• The statistical error of the sample mean Y of the

random variable Y grows as 1/
√
N .

– Because Var[Y ] = Var[Y ]/N .

• In fact, this convergence rate is asymptotically optimal.a

• So the variance of the estimator Y can be reduced by a

factor of 1/N by doing N times as much work.

• This is amazing because the same order of convergence

holds independently of the dimension n.

aThe Berry-Esseen theorem.

c©2017 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 789



Accuracy and Number of Replications (concluded)

• In contrast, classic numerical integration schemes have

an error bound of O(N−c/n) for some constant c > 0.

– n is the dimension.

• The required number of evaluations thus grows

exponentially in n to achieve a given level of accuracy.

– The curse of dimensionality.

• The Monte Carlo method is more efficient than

alternative procedures for multivariate derivatives when

n is large.
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Monte Carlo Option Pricing

• For the pricing of European options on a

dividend-paying stock, we may proceed as follows.

• Assume
dS

S
= μ dt+ σ dW.

• Stock prices S1, S2, S3, . . . at times Δt, 2Δt, 3Δt, . . .

can be generated via

Si+1 = Sie
(μ−σ2/2)Δt+σ

√
Δt ξ, ξ ∼ N(0, 1).

(109)
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Monte Carlo Option Pricing (continued)

• If we discretize dS/S = μ dt+ σ dW directly, we will

obtain

Si+1 = Si + SiμΔt+ Siσ
√
Δt ξ.

• But this is locally normally distributed, not lognormally,

hence biased.a

• In practice, this is not expected to be a major problem

as long as Δt is sufficiently small.

aContributed by Mr. Tai, Hui-Chin (R97723028) on April 22, 2009.
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Monte Carlo Option Pricing (continued)

• Non-dividend-paying stock prices in a risk-neutral

economy can be generated by setting μ = r and Δt = T .

1: C := 0; {Accumulated terminal option value.}
2: for i = 1, 2, 3, . . . , N do

3: P := S × e(r−σ2/2)T+σ
√
T ξ, ξ ∼ N(0, 1);

4: C := C +max(P −X, 0);

5: end for

6: return Ce−rT /N ;
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Monte Carlo Option Pricing (concluded)

• Pricing Asian options is also easy.

1: C := 0;

2: for i = 1, 2, 3, . . . , N do

3: P := S; M := S;

4: for j = 1, 2, 3, . . . , n do

5: P := P × e(r−σ2/2)(T/n)+σ
√

T/n ξ;

6: M := M + P ;

7: end for

8: C := C +max(M/(n+ 1)−X, 0);

9: end for

10: return Ce−rT /N ;
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How about American Options?

• Standard Monte Carlo simulation is inappropriate for

American options because of early exercise (why?).

– Given a sample path S0, S1, . . . , Sn, how to decide

which Si is an early-exercise point?

– What is the option price at each Si if the option is

not exercised?

• It is difficult to determine the early-exercise point based

on one single path.

• But Monte Carlo simulation can be modified to price

American options with small biases (pp. 847ff).a

aLongstaff & Schwartz (2001).
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