Futures Price under the BOPM

- Futures prices form a martingale under the risk-neutral probability.
 - The expected futures price in the next period is^a

$$p_{\rm f}Fu + (1-p_{\rm f})Fd = F\left(\frac{1-d}{u-d}u + \frac{u-1}{u-d}d\right) = F.$$

• Can be generalized to

$$F_i = E_i^{\pi} [F_k], \quad i \le k,$$

where F_i is the futures price at time *i*.

• This equation holds under stochastic interest rates, too.^b

^bSee Exercise 13.2.11 of the textbook.

^aRecall p. 476.

Martingale Pricing and Numeraire $^{\rm a}$

- The martingale pricing formula (67) on p. 518 uses the money market account as numeraire.^b
 - It expresses the price of any asset *relative to* the money market account.
- The money market account is not the only choice for numeraire.
- Suppose asset S's value is positive at all times.

^aJohn Law (1671–1729), "Money to be qualified for exchaning goods and for payments need not be certain in its value." ^bLeon Walras (1834–1910).

Martingale Pricing and Numeraire (concluded)

- Choose S as numeraire.
- Martingale pricing says there exists a risk-neutral probability π under which the relative price of any asset
 C is a martingale:

$$\frac{C(i)}{S(i)} = E_i^{\pi} \left[\frac{C(k)}{S(k)} \right], \quad i \le k.$$

- S(j) denotes the price of S at time j.

• So the discount process remains a martingale.^a

^aThis result is related to Girsanov's theorem (1960).

Example

- Take the binomial model with two assets.
- In a period, asset one's price can go from S to S_1 or S_2 .
- In a period, asset two's price can go from P to P_1 or P_2 .
- Both assets must move up or down at the same time.
- Assume

$$\frac{S_1}{P_1} < \frac{S}{P} < \frac{S_2}{P_2}$$
 (68)

to rule out arbitrage opportunities.

Example (continued)

- For any derivative security, let C_1 be its price at time one if asset one's price moves to S_1 .
- Let C_2 be its price at time one if asset one's price moves to S_2 .
- Replicate the derivative by solving

$$\alpha S_1 + \beta P_1 = C_1,$$

$$\alpha S_2 + \beta P_2 = C_2,$$

using α units of asset one and β units of asset two.

Example (continued)

- By Eqs. (68) on p. 524, α and β have unique solutions.
- In fact,

$$\alpha = \frac{P_2 C_1 - P_1 C_2}{P_2 S_1 - P_1 S_2}$$
 and $\beta = \frac{S_2 C_1 - S_1 C_2}{S_2 P_1 - S_1 P_2}$.

• The derivative costs

$$C = \alpha S + \beta P$$

= $\frac{P_2 S - P S_2}{P_2 S_1 - P_1 S_2} C_1 + \frac{P S_1 - P_1 S_1}{P_2 S_1 - P_1 S_2} C_2$

Example (continued)

• It is easy to verify that

$$\frac{C}{P} = p \, \frac{C_1}{P_1} + (1-p) \, \frac{C_2}{P_2}.$$

- Above,

$$p \stackrel{\Delta}{=} \frac{(S/P) - (S_2/P_2)}{(S_1/P_1) - (S_2/P_2)}.$$

- By Eqs. (68) on p. 524, 0 .

- C's price using asset two as numeraire (i.e., C/P) is a martingale under the risk-neutral probability p.
- The expected returns of the two assets are *irrelevant*.

Example (concluded)

- In the BOPM, S is the stock and P is the bond.
- Furthermore, p assumes the bond is the numeraire.
- In the binomial option pricing formula (p. 255), the S∑b(j;n,pu/R) term uses the stock as the numeraire.
 It results in a different probability measure pu/R.
- In the limit, SN(x) for the call and SN(-x) for the put in the Black-Scholes formula (p. 285) use the stock as the numeraire.^a

^aSee Exercise 13.2.12 of the textbook.

Brownian Motion $^{\rm a}$

- Brownian motion is a stochastic process $\{X(t), t \ge 0\}$ with the following properties.
 - **1.** X(0) = 0, unless stated otherwise.
 - **2.** for any $0 \le t_0 < t_1 < \cdots < t_n$, the random variables

 $X(t_k) - X(t_{k-1})$

for $1 \le k \le n$ are independent.^b

3. for $0 \le s < t$, X(t) - X(s) is normally distributed with mean $\mu(t-s)$ and variance $\sigma^2(t-s)$, where μ and $\sigma \ne 0$ are real numbers.

^aRobert Brown (1773–1858).

^bSo X(t) - X(s) is independent of X(r) for $r \le s < t$.

Brownian Motion (concluded)

- The existence and uniqueness of such a process is guaranteed by Wiener's theorem.^a
- This process will be called a (μ, σ) Brownian motion with drift μ and variance σ^2 .
- Although Brownian motion is a continuous function of t with probability one, it is almost nowhere differentiable.
- The (0,1) Brownian motion is called the Wiener process.
- If condition 3 is replaced by "X(t) X(s) depends only on t - s," we have the more general Levy process.^b

^aNorbert Wiener (1894–1964). He received his Ph.D. from Harvard in 1912.

^bPaul Levy (1886–1971).

Example

• If $\{X(t), t \ge 0\}$ is the Wiener process, then

$$X(t) - X(s) \sim N(0, t - s).$$

• A (μ, σ) Brownian motion $Y = \{Y(t), t \ge 0\}$ can be expressed in terms of the Wiener process:

$$Y(t) = \mu t + \sigma X(t). \tag{69}$$

• Note that

$$Y(t+s) - Y(t) \sim N(\mu s, \sigma^2 s).$$

Brownian Motion as Limit of Random Walk

Claim 1 A (μ, σ) Brownian motion is the limiting case of random walk.

- A particle moves Δx to the right with probability p after Δt time.
- It moves Δx to the left with probability 1-p.
- Define

 $X_i \stackrel{\Delta}{=} \begin{cases} +1 & \text{if the } i \text{th move is to the right,} \\ -1 & \text{if the } i \text{th move is to the left.} \end{cases}$

 $-X_i$ are independent with

$$\operatorname{Prob}[X_i = 1] = p = 1 - \operatorname{Prob}[X_i = -1].$$

Brownian Motion as Limit of Random Walk (continued)

- Assume $n \stackrel{\Delta}{=} t/\Delta t$ is an integer.
- Its position at time t is

$$Y(t) \stackrel{\Delta}{=} \Delta x \left(X_1 + X_2 + \dots + X_n \right).$$

• Recall

$$E[X_i] = 2p - 1,$$

 $Var[X_i] = 1 - (2p - 1)^2.$

Brownian Motion as Limit of Random Walk (continued)Therefore,

$$E[Y(t)] = n(\Delta x)(2p - 1),$$

Var[Y(t)] = $n(\Delta x)^2 [1 - (2p - 1)^2].$

• With
$$\Delta x \stackrel{\Delta}{=} \sigma \sqrt{\Delta t}$$
 and $p \stackrel{\Delta}{=} [1 + (\mu/\sigma)\sqrt{\Delta t}]/2,^{a}$
 $E[Y(t)] = n\sigma \sqrt{\Delta t} (\mu/\sigma)\sqrt{\Delta t} = \mu t,$
 $\operatorname{Var}[Y(t)] = n\sigma^{2}\Delta t [1 - (\mu/\sigma)^{2}\Delta t] \rightarrow \sigma^{2} t,$
as $\Delta t \rightarrow 0.$
^aIdentical to Eq. (38) on p. 278!

Brownian Motion as Limit of Random Walk (concluded)

- Thus, $\{Y(t), t \ge 0\}$ converges to a (μ, σ) Brownian motion by the central limit theorem.
- Brownian motion with zero drift is the limiting case of symmetric random walk by choosing $\mu = 0$.
- Similarity to the the BOPM: The p is identical to the probability in Eq. (38) on p. 278 and $\Delta x = \ln u$.
- Note that

 $\operatorname{Var}[Y(t + \Delta t) - Y(t)]$ = $\operatorname{Var}[\Delta x X_{n+1}] = (\Delta x)^2 \times \operatorname{Var}[X_{n+1}] \to \sigma^2 \Delta t.$

Geometric Brownian Motion

- Let $X \stackrel{\Delta}{=} \{ X(t), t \ge 0 \}$ be a Brownian motion process.
- The process

$$\{ Y(t) \stackrel{\Delta}{=} e^{X(t)}, t \ge 0 \},\$$

is called geometric Brownian motion.

- Suppose further that X is a (μ, σ) Brownian motion.
- $X(t) \sim N(\mu t, \sigma^2 t)$ with moment generating function

$$E\left[e^{sX(t)}\right] = E\left[Y(t)^s\right] = e^{\mu t s + (\sigma^2 t s^2/2)}$$

from Eq. (25) on p 158.

Geometric Brownian Motion (concluded)

• In particular,

$$E[Y(t)] = e^{\mu t + (\sigma^2 t/2)},$$

Var[Y(t)] = $E[Y(t)^2] - E[Y(t)]^2$
= $e^{2\mu t + \sigma^2 t} (e^{\sigma^2 t} - 1).$

A Case for Long-Term Investment^{\rm a}

• Suppose the stock follows the geometric Brownian motion

$$S(t) = S(0) e^{N(\mu t, \sigma^2 t)} = S(0) e^{tN(\mu, \sigma^2/t)}, \quad t \ge 0,$$

where $\mu > 0$.

• The annual rate of return has a normal distribution:

$$N\left(\mu, \frac{\sigma^2}{t}\right)$$

- The larger the t, the likelier the return is positive.
- The smaller the t, the likelier the return is negative.

^aContributed by Prof. King, Gow-Hsing on April 9, 2015. See http://www.cb.idv.tw/phpbb3/viewtopic.php?f=7&t=1025

Continuous-Time Financial Mathematics

A proof is that which convinces a reasonable man; a rigorous proof is that which convinces an unreasonable man. — Mark Kac (1914–1984)

> The pursuit of mathematics is a divine madness of the human spirit. — Alfred North Whitehead (1861–1947), Science and the Modern World

Stochastic Integrals

- Use $W \stackrel{\Delta}{=} \{ W(t), t \ge 0 \}$ to denote the Wiener process.
- The goal is to develop integrals of X from a class of stochastic processes,^a

$$I_t(X) \stackrel{\Delta}{=} \int_0^t X \, dW, \quad t \ge 0.$$

- $I_t(X)$ is a random variable called the stochastic integral of X with respect to W.
- The stochastic process $\{I_t(X), t \ge 0\}$ will be denoted by $\int X \, dW$.

^aKiyoshi Ito (1915–2008).

Stochastic Integrals (concluded)

- Typical requirements for X in financial applications are: $-\operatorname{Prob}\left[\int_{0}^{t} X^{2}(s) \, ds < \infty\right] = 1 \text{ for all } t \ge 0 \text{ or the}$ stronger $\int_{0}^{t} E[X^{2}(s)] \, ds < \infty$.
 - The information set at time t includes the history of X and W up to that point in time.
 - But it contains nothing about the evolution of X or W after t (nonanticipating, so to speak).
 - The future cannot influence the present.

Ito Integral

- A theory of stochastic integration.
- As with calculus, it starts with step functions.
- A stochastic process $\{X(t)\}$ is simple if there exist

$$0 = t_0 < t_1 < \cdots$$

such that

$$X(t) = X(t_{k-1})$$
 for $t \in [t_{k-1}, t_k), k = 1, 2, \dots$

for any realization (see figure on next page).

Ito Integral (continued)

• The Ito integral of a simple process is defined as

$$I_t(X) \stackrel{\Delta}{=} \sum_{k=0}^{n-1} X(t_k) [W(t_{k+1}) - W(t_k)], \quad (70)$$

where $t_n = t$.

- The integrand X is evaluated at t_k , not t_{k+1} .
- Define the Ito integral of more general processes as a limiting random variable of the Ito integral of simple stochastic processes.

Ito Integral (continued)

- Let $X = \{X(t), t \ge 0\}$ be a general stochastic process.
- Then there exists a random variable $I_t(X)$, unique almost certainly, such that $I_t(X_n)$ converges in probability to $I_t(X)$ for each sequence of simple stochastic processes X_1, X_2, \ldots such that X_n converges in probability to X.
- If X is continuous with probability one, then $I_t(X_n)$ converges in probability to $I_t(X)$ as

$$\delta_n \stackrel{\Delta}{=} \max_{1 \le k \le n} (t_k - t_{k-1})$$

goes to zero.

Ito Integral (concluded)

- It is a fundamental fact that $\int X \, dW$ is continuous almost surely.
- The following theorem says the Ito integral is a martingale.^a

Theorem 19 The Ito integral $\int X \, dW$ is a martingale.

• A corollary is the mean value formula

$$E\left[\int_{a}^{b} X \, dW\right] = 0.$$

^aSee Exercise 14.1.1 for simple stochastic processes.

Discrete Approximation

- Recall Eq. (70) on p. 546.
- The following simple stochastic process $\{\hat{X}(t)\}$ can be used in place of X to approximate $\int_0^t X \, dW$,

$$\widehat{X}(s) \stackrel{\Delta}{=} X(t_{k-1}) \text{ for } s \in [t_{k-1}, t_k), \ k = 1, 2, \dots, n.$$

- Note the nonanticipating feature of \widehat{X} .
 - The information up to time s,

$$\{\,\widehat{X}(t), W(t), 0 \le t \le s\,\},\$$

cannot determine the future evolution of X or W.

Discrete Approximation (concluded)

• Suppose we defined the stochastic integral as

$$\sum_{k=0}^{n-1} X(t_{k+1}) [W(t_{k+1}) - W(t_k)].$$

• Then we would be using the following different simple stochastic process in the approximation,

$$\widehat{Y}(s) \stackrel{\Delta}{=} X(t_k) \text{ for } s \in [t_{k-1}, t_k), \ k = 1, 2, \dots, n.$$

• This clearly anticipates the future evolution of X.^a

^aSee Exercise 14.1.2 of the textbook for an example where it matters.

Ito Process

• The stochastic process $X = \{X_t, t \ge 0\}$ that solves

$$X_t = X_0 + \int_0^t a(X_s, s) \, ds + \int_0^t b(X_s, s) \, dW_s, \quad t \ge 0$$

is called an Ito process.

- $-X_0$ is a scalar starting point.
- $\{a(X_t, t) : t \ge 0\}$ and $\{b(X_t, t) : t \ge 0\}$ are stochastic processes satisfying certain regularity conditions.
- $-a(X_t,t)$: the drift.
- $b(X_t, t)$: the diffusion.

Ito Process (continued)

• A shorthand^a is the following stochastic differential equation for the Ito differential dX_t ,

$$dX_t = a(X_t, t) dt + b(X_t, t) dW_t.$$
 (71)

– Or simply

$$dX_t = a_t \, dt + b_t \, dW_t.$$

- This is Brownian motion with an *instantaneous* drift a_t and an *instantaneous* variance b_t^2 .
- X is a martingale if $a_t = 0$ (Theorem 19 on p. 548).

^aPaul Langevin (1872–1946) in 1904.

Ito Process (concluded)

- dW is normally distributed with mean zero and variance dt.
- An equivalent form of Eq. (71) is

$$dX_t = a_t \, dt + b_t \sqrt{dt} \, \xi, \tag{72}$$

where $\xi \sim N(0, 1)$.

Euler Approximation

- Define $t_n \stackrel{\Delta}{=} n\Delta t$.
- The following approximation follows from Eq. (72), $\widehat{X}(t_{n+1}) = \widehat{X}(t_n) + a(\widehat{X}(t_n), t_n) \Delta t + b(\widehat{X}(t_n), t_n) \Delta W(t_n).$ (73)
- It is called the Euler or Euler-Maruyama method.
- Recall that $\Delta W(t_n)$ should be interpreted as

$$W(t_{n+1}) - W(t_n),$$

not $W(t_n) - W(t_{n-1})!$

Euler Approximation (concluded)

• With the Euler method, one can obtain a sample path $\widehat{X}(t_1), \widehat{X}(t_2), \widehat{X}(t_3), \ldots$

from a sample path

 $W(t_0), W(t_1), W(t_2), \ldots$

• Under mild conditions, $\widehat{X}(t_n)$ converges to $X(t_n)$.

More Discrete Approximations

• Under fairly loose regularity conditions, Eq. (73) on p. 555 can be replaced by

$$\widehat{X}(t_{n+1}) = \widehat{X}(t_n) + a(\widehat{X}(t_n), t_n) \,\Delta t + b(\widehat{X}(t_n), t_n) \sqrt{\Delta t} \, Y(t_n).$$

- $Y(t_0), Y(t_1), \ldots$ are independent and identically distributed with zero mean and unit variance.

More Discrete Approximations (concluded)

• An even simpler discrete approximation scheme:

$$\widehat{X}(t_{n+1}) = \widehat{X}(t_n) + a(\widehat{X}(t_n), t_n) \,\Delta t + b(\widehat{X}(t_n), t_n) \sqrt{\Delta t} \,\xi.$$

$$- \operatorname{Prob}[\xi = 1] = \operatorname{Prob}[\xi = -1] = 1/2.$$

- Note that
$$E[\xi] = 0$$
 and $Var[\xi] = 1$.

- This is a binomial model.
- As Δt goes to zero, \widehat{X} converges to X.^a

^aHe (1990).

Trading and the Ito Integral

• Consider an Ito process

$$d\boldsymbol{S}_t = \mu_t \, dt + \sigma_t \, dW_t.$$

 $-S_t$ is the vector of security prices at time t.

- Let ϕ_t be a trading strategy denoting the quantity of each type of security held at time t.
 - Hence the stochastic process $\phi_t S_t$ is the value of the portfolio ϕ_t at time t.
- $\phi_t dS_t \stackrel{\Delta}{=} \phi_t (\mu_t dt + \sigma_t dW_t)$ represents the change in the value from security price changes occurring at time t.

Trading and the Ito Integral (concluded)

• The equivalent Ito integral,

$$G_T(\boldsymbol{\phi}) \stackrel{\Delta}{=} \int_0^T \boldsymbol{\phi}_t \, d\boldsymbol{S}_t = \int_0^T \boldsymbol{\phi}_t \mu_t \, dt + \int_0^T \boldsymbol{\phi}_t \sigma_t \, dW_t,$$

measures the gains realized by the trading strategy over the period [0, T].

Ito's Lemma $^{\rm a}$

A smooth function of an Ito process is itself an Ito process.

Theorem 20 Suppose $f : R \to R$ is twice continuously differentiable and $dX = a_t dt + b_t dW$. Then f(X) is the Ito process,

$$f(X_t) = f(X_0) + \int_0^t f'(X_s) a_s \, ds + \int_0^t f'(X_s) b_s \, dW + \frac{1}{2} \int_0^t f''(X_s) b_s^2 \, ds$$
for $t \ge 0$.

• In differential form, Ito's lemma becomes

$$df(X) = f'(X) a dt + f'(X) b dW + \frac{1}{2} f''(X) b^2 dt.$$
(74)

- Compared with calculus, the interesting part is the third term on the right-hand side.
- A convenient formulation of Ito's lemma is

$$df(X) = f'(X) \, dX + \frac{1}{2} \, f''(X) (dX)^2.$$

• We are supposed to multiply out $(dX)^2 = (a dt + b dW)^2$ symbolically according to

×	dW	dt
dW	dt	0
dt	0	0

- The $(dW)^2 = dt$ entry is justified by a known result.

- Hence $(dX)^2 = (a \, dt + b \, dW)^2 = b^2 \, dt$.
- This form is easy to remember because of its similarity to the Taylor expansion.

Theorem 21 (Higher-Dimensional Ito's Lemma) Let W_1, W_2, \ldots, W_n be independent Wiener processes and $X \stackrel{\Delta}{=} (X_1, X_2, \ldots, X_m)$ be a vector process. Suppose $f: \mathbb{R}^m \to \mathbb{R}$ is twice continuously differentiable and X_i is an Ito process with $dX_i = a_i dt + \sum_{j=1}^n b_{ij} dW_j$. Then df(X) is an Ito process with the differential,

$$df(X) = \sum_{i=1}^{m} f_i(X) \, dX_i + \frac{1}{2} \sum_{i=1}^{m} \sum_{k=1}^{m} f_{ik}(X) \, dX_i \, dX_k,$$

where $f_i \stackrel{\Delta}{=} \partial f / \partial X_i$ and $f_{ik} \stackrel{\Delta}{=} \partial^2 f / \partial X_i \partial X_k$.

• The multiplication table for Theorem 21 is

×	dW_i	dt
dW_k	$\delta_{ik} dt$	0
dt	0	0

in which

$$\delta_{ik} = \begin{cases} 1, & \text{if } i = k, \\ 0, & \text{otherwise} \end{cases}$$

- In applying the higher-dimensional Ito's lemma, usually one of the variables, say X_1 , is time t and $dX_1 = dt$.
- In this case, $b_{1j} = 0$ for all j and $a_1 = 1$.
- As an example, let

$$dX_t = a_t \, dt + b_t \, dW_t.$$

• Consider the process $f(X_t, t)$.

• Then

$$df = \frac{\partial f}{\partial X_t} dX_t + \frac{\partial f}{\partial t} dt + \frac{1}{2} \frac{\partial^2 f}{\partial X_t^2} (dX_t)^2$$

$$= \frac{\partial f}{\partial X_t} (a_t dt + b_t dW_t) + \frac{\partial f}{\partial t} dt$$

$$+ \frac{1}{2} \frac{\partial^2 f}{\partial X_t^2} (a_t dt + b_t dW_t)^2$$

$$= \left(\frac{\partial f}{\partial X_t} a_t + \frac{\partial f}{\partial t} + \frac{1}{2} \frac{\partial^2 f}{\partial X_t^2} b_t^2\right) dt$$

$$+ \frac{\partial f}{\partial X_t} b_t dW_t.$$
(75)

Theorem 22 (Alternative Ito's Lemma) Let W_1, W_2, \ldots, W_m be Wiener processes and $X \stackrel{\Delta}{=} (X_1, X_2, \ldots, X_m)$ be a vector process. Suppose $f: \mathbb{R}^m \to \mathbb{R}$ is twice continuously differentiable and X_i is an Ito process with $dX_i = a_i dt + b_i dW_i$. Then df(X) is the following Ito process,

$$df(X) = \sum_{i=1}^{m} f_i(X) \, dX_i + \frac{1}{2} \sum_{i=1}^{m} \sum_{k=1}^{m} f_{ik}(X) \, dX_i \, dX_k.$$

Ito's Lemma (concluded)

• The multiplication table for Theorem 22 is

×	dW_i	dt
dW_k	$ \rho_{ik} dt $	0
dt	0	0

• Above, ρ_{ik} denotes the correlation between dW_i and dW_k .

Geometric Brownian Motion

• Consider geometric Brownian motion

$$Y(t) \stackrel{\Delta}{=} e^{X(t)}.$$

- X(t) is a (μ, σ) Brownian motion. - By Eq. (69) on p. 531,

$$dX = \mu \, dt + \sigma \, dW.$$

• Note that

$$\frac{\partial Y}{\partial X} = Y,$$
$$\frac{\partial^2 Y}{\partial X^2} = Y.$$

Geometric Brownian Motion (continued)

• Ito's formula (74) on p. 562 implies

$$dY = Y \, dX + (1/2) \, Y \, (dX)^2$$

= $Y \, (\mu \, dt + \sigma \, dW) + (1/2) \, Y \, (\mu \, dt + \sigma \, dW)^2$
= $Y \, (\mu \, dt + \sigma \, dW) + (1/2) \, Y \sigma^2 \, dt.$

• Hence

$$\frac{dY}{Y} = \left(\mu + \sigma^2/2\right)dt + \sigma \,dW.\tag{76}$$

• The annualized *instantaneous* rate of return is $\mu + \sigma^2/2$ (not μ).^a

^aConsistent with Lemma 11 (p. 283).

Geometric Brownian Motion (concluded)

• Similarly, suppose

$$\frac{dY}{Y} = \mu \, dt + \sigma \, dW.$$

• Then
$$X(t) \stackrel{\Delta}{=} \ln Y(t)$$
 follows

$$dX = \left(\mu - \sigma^2/2\right)dt + \sigma \, dW.$$

Product of Geometric Brownian Motion Processes

• Let

$$\frac{dY}{Y} = a \, dt + b \, dW_Y,$$
$$\frac{dZ}{Z} = f \, dt + g \, dW_Z.$$

- Assume dW_Y and dW_Z have correlation ρ .
- Consider the Ito process

$$U \stackrel{\Delta}{=} YZ$$

Product of Geometric Brownian Motion Processes (continued)

• Apply Ito's lemma (Theorem 22 on p. 568):

$$dU = Z dY + Y dZ + dY dZ$$

= $ZY(a dt + b dW_Y) + YZ(f dt + g dW_Z)$
+ $YZ(a dt + b dW_Y)(f dt + g dW_Z)$
= $U(a + f + bg\rho) dt + Ub dW_Y + Ug dW_Z.$

• The product of correlated geometric Brownian motion processes thus remains geometric Brownian motion.

Product of Geometric Brownian Motion Processes (continued)

• Note that

$$Y = \exp\left[\left(a - b^2/2\right)dt + b \, dW_Y\right],$$

$$Z = \exp\left[\left(f - g^2/2\right)dt + g \, dW_Z\right],$$

$$U = \exp\left[\left(a + f - \left(b^2 + g^2\right)/2\right)dt + b \, dW_Y + g \, dW_Z\right].$$

- There is no $bg\rho$ term in U!

Product of Geometric Brownian Motion Processes (concluded)

- $\ln U$ is Brownian motion with a mean equal to the sum of the means of $\ln Y$ and $\ln Z$.
- This holds even if Y and Z are correlated.
- Finally, $\ln Y$ and $\ln Z$ have correlation ρ .

Quotients of Geometric Brownian Motion Processes

- Suppose Y and Z are drawn from p. 573.
- Let

$$U \stackrel{\Delta}{=} Y/Z.$$

• We now show that^a

$$\frac{dU}{U} = (a - f + g^2 - bg\rho) dt + b \, dW_Y - g \, dW_Z.$$
(77)

• Keep in mind that dW_Y and dW_Z have correlation ρ .

^aExercise 14.3.6 of the textbook is erroneous.

Quotients of Geometric Brownian Motion Processes (concluded)

• The multidimensional Ito's lemma (Theorem 22 on p. 568) can be employed to show that

dU

$$= (1/Z) \, dY - (Y/Z^2) \, dZ - (1/Z^2) \, dY \, dZ + (Y/Z^3) \, (dZ)^2$$

$$= (1/Z)(aY dt + bY dW_Y) - (Y/Z^2)(fZ dt + gZ dW_Z) -(1/Z^2)(bgYZ\rho dt) + (Y/Z^3)(g^2Z^2 dt)$$

$$= U(a dt + b dW_Y) - U(f dt + g dW_Z)$$
$$-U(bg\rho dt) + U(g^2 dt)$$

$$= U(a - f + g^2 - bg\rho) dt + Ub dW_Y - Ug dW_Z.$$

Forward Price

• Suppose S follows

$$\frac{dS}{S} = \mu \, dt + \sigma \, dW.$$

- Consider $F(S,t) \stackrel{\Delta}{=} Se^{y(T-t)}$ for some constants y and T.
- As F is a function of two variables, we need the various partial derivatives of F(S, t) with respect to S and t.
- Note that in partial differentiation with respect to one variable, other variables are held constant.^a

^aContributed by Mr. Sun, Ao (R05922147) on April 26, 2017.

Forward Prices (concluded)

- One can also prove it by Eq. (75) on p. 567.
- Thus F follows

$$\frac{dF}{F} = (\mu - y) \, dt + \sigma \, dW.$$

- This result has applications in forward and futures contracts.
- In Eq. (52) on p. 446, $\mu = r = y$.
- So

$$\frac{dF}{F} = \sigma \, dW,$$

a martingale.^a

^aIt is also consistent with p. 521.

Ornstein-Uhlenbeck (OU) Process

• The OU process:

$$dX = -\kappa X \, dt + \sigma \, dW,$$

where $\kappa, \sigma \geq 0$.

• For $t_0 \leq s \leq t$ and $X(t_0) = x_0$, it is known that

$$E[X(t)] = e^{-\kappa(t-t_0)} E[x_0],$$

$$Var[X(t)] = \frac{\sigma^2}{2\kappa} \left(1 - e^{-2\kappa(t-t_0)}\right) + e^{-2\kappa(t-t_0)} Var[x_0],$$

$$Cov[X(s), X(t)] = \frac{\sigma^2}{2\kappa} e^{-\kappa(t-s)} \left[1 - e^{-2\kappa(s-t_0)}\right] + e^{-\kappa(t+s-2t_0)} Var[x_0].$$

Ornstein-Uhlenbeck Process (continued)

- X(t) is normally distributed if x_0 is a constant or normally distributed.
- X is said to be a normal process.
- $E[x_0] = x_0$ and $Var[x_0] = 0$ if x_0 is a constant.
- The OU process has the following mean reversion property.
 - When X > 0, X is pulled toward zero.
 - When X < 0, it is pulled toward zero again.

Ornstein-Uhlenbeck Process (continued)

• A generalized version:

$$dX = \kappa(\mu - X) \, dt + \sigma \, dW,$$

where $\kappa, \sigma \geq 0$.

• Given $X(t_0) = x_0$, a constant, it is known that $E[X(t)] = \mu + (x_0 - \mu) e^{-\kappa(t - t_0)}, \quad (78)$ $Var[X(t)] = \frac{\sigma^2}{2\kappa} \left[1 - e^{-2\kappa(t - t_0)} \right],$ for $t_0 \le t$.

Ornstein-Uhlenbeck Process (concluded)

- The mean and standard deviation are roughly μ and $\sigma/\sqrt{2\kappa}$, respectively.
- For large t, the probability of X < 0 is extremely unlikely in any finite time interval when $\mu > 0$ is large relative to $\sigma/\sqrt{2\kappa}$.
- The process is mean-reverting.
 - -X tends to move toward μ .
 - Useful for modeling term structure, stock price volatility, and stock price return.

Square-Root Process

- Suppose X is an OU process.
- Consider

$$V \stackrel{\Delta}{=} X^2.$$

• Ito's lemma says V has the differential,

$$dV = 2X \, dX + (dX)^2$$

= $2\sqrt{V} (-\kappa\sqrt{V} \, dt + \sigma \, dW) + \sigma^2 \, dt$
= $(-2\kappa V + \sigma^2) \, dt + 2\sigma\sqrt{V} \, dW,$

a square-root process.

Square-Root Process (continued)

• In general, the square-root process has the stochastic differential equation,

$$dX = \kappa(\mu - X) \, dt + \sigma \sqrt{X} \, dW,$$

where $\kappa, \sigma \geq 0$ and X(0) is a nonnegative constant.

• Like the OU process, it possesses mean reversion: X tends to move toward μ , but the volatility is proportional to \sqrt{X} instead of a constant.

Square-Root Process (continued)

- When X hits zero and $\mu \ge 0$, the probability is one that it will not move below zero.
 - Zero is a reflecting boundary.
- Hence, the square-root process is a good candidate for modeling interest rates.^a
- The OU process, in contrast, allows negative interest rates.^b
- The two processes are related (see p. 586).

^bBut some rates have gone negative in Europe in 2015!

^aCox, Ingersoll, & Ross (1985).

Square-Root Process (concluded)

• The random variable 2cX(t) follows the noncentral chi-square distribution,^a

$$\chi\left(\frac{4\kappa\mu}{\sigma^2}, 2cX(0)\,e^{-\kappa t}\right),$$

where $c \stackrel{\Delta}{=} (2\kappa/\sigma^2)(1-e^{-\kappa t})^{-1}$.

• Given
$$X(0) = x_0$$
, a constant,

$$E[X(t)] = x_0 e^{-\kappa t} + \mu \left(1 - e^{-\kappa t}\right),$$

$$Var[X(t)] = x_0 \frac{\sigma^2}{\kappa} \left(e^{-\kappa t} - e^{-2\kappa t}\right) + \mu \frac{\sigma^2}{2\kappa} \left(1 - e^{-\kappa t}\right)^2,$$

for $t \ge 0.$
^aWilliam Feller (1906–1970) in 1951.