Futures Price under the BOPM

e Futures prices form a martingale under the risk-neutral
probability.

— The expected futures price in the next period is?

1—d —1
pfFu—l—(l—pf)Fd:F( ut - d)zF.

u—d u—d
e Can be generalized to
EF, = E7 [ Fi|, i<k,
where F; is the futures price at time 1.

e This equation holds under stochastic interest rates, too.”

aRecall p. 476.
bSee Exercise 13.2.11 of the textbook.

©2017 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 521



Martingale Pricing and Numeraire®

e The martingale pricing formula (67) on p. 518 uses the

money market account as numeraire.”

— It expresses the price of any asset relative to the

money market account.

e The money market account is not the only choice for

numeraire.

e Suppose asset S’s value is positive at all times.

2John Law (1671-1729), “Money to be qualified for exchaning goods

and for payments need not be certain in its value.”
PLeon Walras (1834-1910).
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Martingale Pricing and Numeraire (concluded)
e Choose S as numeraire.

e Martingale pricing says there exists a risk-neutral
probability m under which the relative price of any asset

C' is a martingale:

C(z’)_EF[%]’ i<k

S@) " | S(k)
— S(j) denotes the price of S at time j.

e So the discount process remains a martingale.?

2This result is related to Girsanov’s theorem (1960).
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Example

Take the binomial model with two assets.

In a period, asset one’s price can go from S to S or

Sa.

In a period, asset two’s price can go from P to P; or
Ps.

Both assets must move up or down at the same time.

Assume

St S 5

P10 P2 68
P, P PR (68)

to rule out arbitrage opportunities.
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Example (continued)

e For any derivative security, let C be its price at time

one if asset one’s price moves to S;.

e Let (5 be its price at time one if asset one’s price

moves to Ss.

e Replicate the derivative by solving

OéSl +6P1 Cla
aSo + BPs Co,

using « units of asset one and S units of asset two.
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Example (continued)

e By Eqgs. (68) on p. 524, a and 8 have unique solutions.

e In fact,

_ PC - PGy and = S5C1 — S1C5
- P,S; — PSo - SoP — 5Py

04

e The derivative costs

C asS + BP

P,S — PS, PS, — P,S
C Co.
PyS| — P Sy * PyS; — P Sy ?
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Example (continued)

e It is easy to verify that

C 01 02

21— p) 22,
5 pP1+( p)P2

— Above,
A (5/P)—(5:/P)

P (S /P) — (S2/Po)
— By Eqgs. (68) on p. 524, 0 < p < 1.

e (s price using asset two as numeraire (i.e., C'/P) is a

martingale under the risk-neutral probability p.

e The expected returns of the two assets are irrelevant.
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Example (concluded)

In the BOPM, S is the stock and P is the bond.
Furthermore, p assumes the bond is the numeraire.

In the binomial option pricing formula (p. 255), the
S> b(j;n,pu/R) term uses the stock as the numeraire.
— It results in a different probability measure pu/R.

In the limit, SN (z) for the call and SN(—=x) for the put
in the Black-Scholes formula (p. 285) use the stock as

the numeraire.?

aSee Exercise 13.2.12 of the textbook.
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Brownian Motion?

e Brownian motion is a stochastic process { X (t),t >0}

with the following properties.

1. X(0) = 0, unless stated otherwise.
2. forany 0 <tyg <t; <---<t,, the random variables

X(tk) — X(tk_l)

for 1 < k < n are independent.P

3. for 0 <s<t, X(t)— X(s) is normally distributed

with mean pu(t — s) and variance o?(t — s), where pu

and o # 0 are real numbers.

2Robert Brown (1773-1858).
PSo X (t) — X(s) is independent of X(r) for r < s < .
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Brownian Motion (concluded)

The existence and uniqueness of such a process is
guaranteed by Wiener’s theorem.?

This process will be called a (u,0) Brownian motion

with drift ¢ and variance o?2.

Although Brownian motion is a continuous function of ¢

with probability one, it is almost nowhere differentiable.
The (0, 1) Brownian motion is called the Wiener process.

If condition 3 is replaced by “ X (t) — X(s) depends only

on t —s,” we have the more general Levy process.”

2Norbert Wiener (1894-1964). He received his Ph.D. from Harvard
in 1912.
PPaul Levy (1886-1971).
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Example

o If { X(¢),t >0} is the Wiener process, then
X(t)— X(s) ~ N(0,t—s).

e A (u,0) Brownian motion ¥ ={Y (¢),t >0} can be

expressed in terms of the Wiener process:
Y(t)=put+oX(t). (69)

e Note that

Y(t+s)—Y(t) ~ N(us,o°s).
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Brownian Motion as Limit of Random Walk

Claim 1 A (u,0) Brownian motion is the limiting case of
random walk.

e A particle moves Ax to the right with probability p
after At time.

e It moves Ax to the left with probability 1 — p.
e Define

A +1 if the 2th move is to the right,

X;
—1 if the 2th move is to the left.

— X, are independent with

Prob| X; =1]=p=1—Prob[ X; = —1].
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Brownian Motion as Limit of Random Walk (continued)

o Assume n =t /At is an integer.

e Its position at time ¢ is
Y(£) 2 Az (X1 4+ Xo+ -+ Xn).

e Recall
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Brownian Motion as Limit of Random Walk (continued)

e Therefore,

Var[Y(t)] = n(Az)* [1—(2p —1)*].

With Az 2 o/Af and p 2 |14 (u/o)VAL]/22

ElY(t)] = noVAt(u/o)VAt= ut,
Var[Y(t)] = no’At[1— (u/o)’At] — ot

as At — 0.
2]dentical to Eq. (38) on p. 278!
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Brownian Motion as Limit of Random Walk (concluded)

Thus, {Y(t),t > 0} converges to a (u,c) Brownian
motion by the central limit theorem.

Brownian motion with zero drift is the limiting case of

symmetric random walk by choosing p© = 0.

Similarity to the the BOPM: The p is identical to the
probability in Eq. (38) on p. 278 and Az = Inu.

Note that

Var[Y(t + At) — Y (t) ]
=Var[ Az X,41] = (Az)? x Var[ X,,11] — 0 At.
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Geometric Brownian Motion

Let X 2 { X (t),t >0} be a Brownian motion process.

The process
{Y(t)= X0t >0},
is called geometric Brownian motion.

Suppose further that X is a (u,0) Brownian motion.

X(t) ~ N(ut,o?t) with moment generating function

B[eX0] = B[y (1)) = ert o172

from Eq. (25) on p 158.
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Geometric Brownian Motion (concluded)

e In particular,

E[Y ()] = eut+(a2t/2)’

Var[Y(t)] = E[Y(£)?] — E[Y (1) ]?

2 2
_ 2utto’t (ea t 1) .

©2017 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 537



©2017 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 538



A Case for Long-Term Investment?®

e Suppose the stock follows the geometric Brownian

motion

S(t) = S(0) N Bt = §(0) !N/t >,

where pu > 0.

e The annual rate of return has a normal distribution:

0.2

e The larger the ¢, the likelier the return is positive.

e The smaller the ¢, the likelier the return is negative.

aContributed by Prof. King, Gow-Hsing on April 9, 2015. See
http://www.cb.idv.tw/phpbb3/viewtopic.php?f=7&t=1025
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Continuous-Time Financial Mathematics
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A proof is that which convinces a reasonable man;

a rigorous proof is that which convinces an

unreasonable man.

— Mark Kac (1914-1984)

The pursuit of mathematics is a

divine madness of the human spirit.

— Alfred North Whitehead (1861-1947),
Science and the Modern World
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Stochastic Integrals

Use W 2 {W(t),t >0} to denote the Wiener process.

The goal is to develop integrals of X from a class of

stochastic processes,®

t
It(X)é/ Xdw, t>0.
0

[;(X) is a random variable called the stochastic integral
of X with respect to W.

The stochastic process {1;(X),t > 0} will be denoted
by [XdW.

aKiyoshi Ito (1915-2008).
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Stochastic Integrals (concluded)

e Typical requirements for X in financial applications are:

— Prob[fOtXQ(s) ds <oo]=1 forall t >0 or the
stronger fg E[X?(s)]ds < 0.

— The information set at time ¢ includes the history of
X and W up to that point in time.

— But it contains nothing about the evolution of X or

W after t (nonanticipating, so to speak).

— The future cannot influence the present.
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lto Integral

e A theory of stochastic integration.
e As with calculus, it starts with step functions.

e A stochastic process { X(t) } is simple if there exist
O=tg <t <---
such that
X(t) = X(tp—1) for t € [tp_1,tx), k=1,2,...

for any realization (see figure on next page).
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Ito Integral (continued)

e The Ito integral of a simple process is defined as

LX) 2 S X () Wlter) - W)l (70)
k=0

where t,, = t.
— The integrand X is evaluated at tg, not tx.;.
e Define the Ito integral of more general processes as a

limiting random variable of the Ito integral of simple

stochastic processes.
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Ito Integral (continued)

o Let X ={X(t),t >0} be a general stochastic process.

e Then there exists a random variable I;(X), unique
almost certainly, such that I;(X,,) converges in
probability to I;(X) for each sequence of simple
stochastic processes X7, Xo,... such that X,, converges

in probability to X.
If X is continuous with probability one, then I;(X,,)
converges in probability to I;(X) as

max (tk — tkz—l)
1<k<n

goes to zero.
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Ito Integral (concluded)

e It is a fundamental fact that f X dW 1is continuous
almost surely.

e The following theorem says the Ito integral is a

martingale.?

Theorem 19 The Ito integral [ X dW is a martingale.

e A corollary is the mean value formula

b
5 /XdW]o.

@See Exercise 14.1.1 for simple stochastic processes.
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Discrete Approximation
e Recall Eq. (70) on p. 546.

e The following simple stochastic process { X(t)} can be

used in place of X to approximate fg X dW,

AN

X(S) = X(tk_1> for s € [tkz—latkz>7 k = 1,2,. .. 5 N

e Note the nonanticipating feature of X.

— The information up to time s,
{X(t),W(t),0<t<s},

cannot determine the future evolution of X or W.
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Discrete Approximation (concluded)

e Suppose we defined the stochastic integral as

S X (b )W (b 1) — W (k) |
k=0

e Then we would be using the following different simple

stochastic process in the approximation,
Y(s) 2 X(t) for s € [tp_1,tx), k=1,2,... ,n.

e This clearly anticipates the future evolution of X.?

aSee Exercise 14.1.2 of the textbook for an example where it matters.
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lto Process

The stochastic process X = { X;,t > 0} that solves

t t
Xt:XO+/ a(XS,s)ds+/ b(Xs,s)dWs, t>0
0 0

is called an Ito process.

— X 1s a scalar starting point.
{a(Xs,t):t >0} and {b(Xs,t):t >0} are
stochastic processes satistying certain regularity

conditions.
a(X,t): the drift.
b(X;,t): the diffusion.
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Ito Process (continued)

e A shorthand? is the following stochastic differential
equation for the Ito differential d.X;,

dXt = CL(Xt, t) dt + b(Xt, t) th (71)

— Or simply
dXt — Q¢ dt + bt th

— This is Brownian motion with an instantaneous drift

a; and an instantaneous variance bs.

e X is a martingale if a; = 0 (Theorem 19 on p. 548).

2Paul Langevin (1872—-1946) in 1904.
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Ito Process (concluded)

e dW 1is normally distributed with mean zero and

variance dt.

e An equivalent form of Eq. (71) is
dX; = a; dt + bV dt €,

where & ~ N(0,1).
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Euler Approximation

Define t,, 2 nAt.

The following approximation follows from Eq. (72),

AN

X(tn—l—l)
=X (tn) + a(X (tn), tn) At + b(X (tn), tn) AW (t5).

It is called the Euler or Euler-Maruyama method.

Recall that AW (t,,) should be interpreted as
W(tni1) = Witn),

not Wi(t,) — Wi(t,_1)!
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Euler Approximation (concluded)

e With the Euler method, one can obtain a sample path

AN

X(tl)a 55@2)7 X(tS)a SRR
from a sample path

W(to), W(t1), W(ts), ... .

e Under mild conditions, X (t,,) converges to X (ty).
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More Discrete Approximations

e Under fairly loose regularity conditions, Eq. (73) on
p. 555 can be replaced by

AN

X(thrl)
=X (tn) + a(X (tn), tn) At + b(X (£0), tn) VALY (£,).

— Y (t9),Y(t1),... are independent and identically

distributed with zero mean and unit variance.
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More Discrete Approximations (concluded)

e An even simpler discrete approximation scheme:

X(thrl)

AN

=X (t) + a(X (tn), tn) At + b(X (t), tn)VALE.

— Prob|é = 1] =Prob[¢ =—-1] =1/2.
— Note that E[¢] =0 and Var[{]| = 1.

e This is a binomial model.

AN

e As At goes to zero, X converges to X.?

aHe (1990).
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Trading and the lto Integral

e Consider an Ito process
dSt — Ut dt -+ Oy th
— S} is the vector of security prices at time t.

e Let ¢, be a trading strategy denoting the quantity of
each type of security held at time ¢.

— Hence the stochastic process @,S5; is the value of the
portfolio ¢, at time t.

e ¢, dS, 2 ¢, (e dt + oy dWy) represents the change in the

value from security price changes occurring at time ¢.
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Trading and the Ito Integral (concluded)

e The equivalent Ito integral,

T T T
Gr(¢) 2 /0 b, dS; = /0 Bopie dt + /0 $,00 AWV,

measures the gains realized by the trading strategy over
the period [0,7].
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lto's Lemma?

A smooth function of an Ito process is itself an Ito process.

Theorem 20 Suppose f: R — R 1s twice continuously

differentiable and dX = a;dt + by dW. Then f(X) is the
Ito process,

aTto (1944).
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Ito’s Lemma (continued)
e In differential form, Ito’s lemma becomes

f(X)adt+ f(X)bdW + % (X)) b2 dt.
(74)

e Compared with calculus, the interesting part is the third

term on the right-hand side.

e A convenient formulation of Ito’s lemma is

F(X)dX + 3 f(X)(dX)?
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Ito’s Lemma (continued)

e We are supposed to multiply out
(dX)? = (adt + bdW)? symbolically according to

X dW  dt
dW | dt 0
dt 0 0

— The (dW)? = dt entry is justified by a known result.
e Hence (dX)? = (adt+bdW)? = b* dt.

e This form is easy to remember because of its similarity

to the Taylor expansion.
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Ito’s Lemma (continued)

Theorem 21 (Higher-Dimensional Ito’s Lemma) Let
Wi, Wo, ... , W, be independent Wiener processes and

X 2 (X1, Xo,...,X,) be a vector process. Suppose

f: R™ — R 1s twice continuously differentiable and X; 1is
an Ito process with dX; = a; dt + Z?Zl bij dW;. Then

df (X)) is an Ito process with the differential,

) =3 A0 X+ 3 303 filX) dX; dX,
1=1

1=1 k=1

where f; 2 0f/0X; and fi = 0% f/0X,;0X}.
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Ito’s Lemma (continued)

e The multiplication table for Theorem 21 is

dWy | d;dt 0
dt 0 0

in which
1, if ¢+ =k,
Ok =

0, otherwise.
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Ito’s Lemma (continued)

In applying the higher-dimensional Ito’s lemma, usually

one of the variables, say X, is time ¢t and dX; = dt.
In this case, by; =0 for all j and a1 = 1.

As an example, let

dXt — Q¢ dt + bt th

Consider the process f(Xi,t).

©2017 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 566



Ito’s Lemma (continued)

of of 1 0%f 5

% (a¢ dt + by dW,) + g dt

2
+3a%:
(%atJr% +%%bf) dt

(a¢ dt + by dW;)?

by dWy.

©2017 Prof. Yuh-Dauh Lyuu, National Taiwan University

Page 567



Ito’s Lemma (continued)

Theorem 22 (Alternative Ito’s Lemma) Let

Wi, Wo, ... , W,, be Wiener processes and

X 2 (X1, Xo,...,X,n) be a vector process. Suppose

f: R™ — R 1s twice continuously differentiable and X; 1is
an Ito process with dX; = a; dt + b; dW,;. Then df(X) is the

following Ito process,

) =3 A0 dX;+ 3 303 filX) dX; dX
1=1

1=1 k=1
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Ito’s Lemma (concluded)

e The multiplication table for Theorem 22 is

X dWZ dt
de Pik dt 0
dt 0 0

e Above, p;i. denotes the correlation between dW,; and
dWy..
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Geometric Brownian Motion

e Consider geometric Brownian motion

Y(t) 2 X0,

— X (t) is a (u,0) Brownian motion.

— By Eq. (69) on p. 531,
dX = pdt+ odW.

e Note that
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Geometric Brownian Motion (continued)
e [to’s formula (74) on p. 562 implies
dY YdX +(1/2)Y (dX)?
Y (udt +odW)+ (1/2)Y (udt + o dW)?
Y (pdt 4+ o dW) + (1/2) Yo? dt.

ay

S = (u+0°/2) dt + o dW. (76)

e The annualized instantaneous rate of return is p -+ o2 /2
(not p).?

2Consistent with Lemma 11 (p. 283).
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Geometric Brownian Motion (concluded)

e Similarly, suppose

dY

e Then X () 2 In Y (t) follows

dX = (p—0°/2) dt + o dW.
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Product of Geometric Brownian Motion Processes

o et

ay
Y
dz

—  adt+bdWy,

= dt d :
7 Jdt+gdWy

e Assume dWy and dW, have correlation p.

e Consider the Ito process

a

U=YZ.
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Product of Geometric Brownian Motion Processes
(continued)

e Apply Ito’s lemma (Theorem 22 on p. 568):

dU ZdY +YdZ +dY dZ
ZY (adt +bdWy) + Y Z(f dt + gdWz)
+Y Z(adt +bdWy)(f dt + gdWy)
U(a+ f+bgp)dt +UbdWy + UgdWy.

e The product of correlated geometric Brownian motion

processes thus remains geometric Brownian motion.
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Product of Geometric Brownian Motion Processes
(continued)

e Note that

exp [(a —b%/2) dt + bdWy],

exp :(f—g2/2) dt+gdWZ} :
exp :(a—l—f— (62+92) /2) dt—l—deY-l-gdWZ] :

— There is no bgp term in U!
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Product of Geometric Brownian Motion Processes
(concluded)

e InU is Brownian motion with a mean equal to the sum
of the means of InY and InZ.

e This holds even if Y and Z are correlated.

e Finally, InY and In Z have correlation p.
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Quotients of Geometric Brownian Motion Processes

e Suppose Y and Z are drawn from p. 573.

o Let

U2vY/Z.

e We now show that?

aU W
7:(a—f—|—g2—bg,())d?f—l—deY—LC]d Z-
(77)

e Keep in mind that dWy and dW; have correlation p.

2 xercise 14.3.6 of the textbook is erroneous.
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Quotients of Geometric Brownian Motion Processes
(concluded)

e The multidimensional Ito’s lemma (Theorem 22 on
p. 568) can be employed to show that

dU
(1/2)dY — (Y/)Z*)dZ — (1)Z°)dY dZ + (Y/Z?) (dZ)*

(1/2)(aY dt 4 bY dWy) — (Y/Z*)(fZ dt + gZ dW z)
—(1/Z%)(bgY Zpdt) + (Y/Z")(g° Z" dt)
Uladt+bdWy) —U(fdt +gdWyz)

—U(bgpdt) + U(g” dt)

U(a— f+g° —bgp)dt +UbdWy —UgdWy.
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Forward Price

Suppose S follows

d
gS = pdt + odW.

Consider F'(S,t) 2 Sev(T=1) for some constants y and 7.

As F' is a function of two variables, we need the various
partial derivatives of F'(S,t) with respect to S and ¢.

Note that in partial differentiation with respect to one

variable, other variables are held constant.?

2Contributed by Mr. Sun, Ao (R05922147) on April 26, 2017,
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Forward Prices (continued)

8_F _ ey(T—t)7

0S

02 F

a5z = O
OF

- _ySey(T—1t)
ot yoe

eVT=1) 48 — ySe¥T=t) gt
SeV T (udt + o dW) — ySe¥ T dt
F(p—y)dt+ FodW.
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Forward Prices (concluded)

One can also prove it by Eq. (75) on p. 567.

Thus F' follows
dF

F:(,u—y)dt—l—adW.

This result has applications in forward and futures

contracts.
In Eq. (52) on p. 446, up =1r = y.

So

dF
7 = UdW,

a martingale.®

21t is also consistent with p. 521.
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Ornstein-Uhlenbeck (OU) Process
e The OU process:

dX = —r X dt + o dW,
where k,0 > 0.

o For ty) < s <t and X(t9) = zo, it is known that

E[X(t)] e 1710 Bl ],
2
Var|[ X (1) ] (1 — 6_2“(75_750)) + e~ 2r(t=t0) Var[ zg ],

Cov] X (s), X ()]

e r(t—s) [1 _ e 2r(s—to) }

2k

+eF(t+s=2%) var[ z0].
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Ornstein-Uhlenbeck Process (continued)

X (t) is normally distributed if x( is a constant or

normally distributed.
X 1is said to be a normal process.
E|lxg] = x¢ and Var[zg] =0 if z( is a constant.

The OU process has the following mean reversion
property.

— When X > 0, X is pulled toward zero.

— When X < 0, it is pulled toward zero again.
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Ornstein-Uhlenbeck Process (continued)

e A generalized version:
dX = k(p— X) dt + odW,
where x,0 > 0.

e Given X (ty) = xg, a constant, it is known that

E[X(1)] ot (o — p)e ") (78)

Var| X (t) | g—/{ [1 — e 2nt=to) |

for t5 <t.

©2017 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 584



Ornstein-Uhlenbeck Process (concluded)

e The mean and standard deviation are roughly p and
o /v 2k , respectively.

e For large t, the probability of X < 0 is extremely
unlikely in any finite time interval when p > 0 is large
relative to o/v/2k.

e The process is mean-reverting.

— X tends to move toward u.

— Useful for modeling term structure, stock price

volatility, and stock price return.
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Square-Root Process

e Suppose X is an OU process.

e Consider
V2 X2

e [to’s lemma says V' has the differential,

% 2X dX + (dX)?
WV (—kVV dt + o dW) + o dt
(—2/{‘/ + 02) dt + 20V V dW,

a square-root process.
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Square-Root Process (continued)

e In general, the square-root process has the stochastic
differential equation,

dX = rk(p — X)dt + oV X dW,

where k,0 >0 and X(0) is a nonnegative constant.

e Like the OU process, it possesses mean reversion: X
tends to move toward pu, but the volatility is

proportional to v X instead of a constant.
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Square-Root Process (continued)

When X hits zero and p > 0, the probability is one

that it will not move below zero.

— Zero is a reflecting boundary.

Hence, the square-root process is a good candidate for

modeling interest rates.?

The OU process, in contrast, allows negative interest

rates.P

e The two processes are related (see p. 586).

2Cox, Ingersoll, & Ross (1985).
PBut some rates have gone negative in Europe in 2015!
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Square-Root Process (concluded)

e The random variable 2¢X(t) follows the noncentral

chi-square distribution,®
4
X (—F‘f ,2¢X(0) 6_“) ,
o

where ¢ 2 (2k/02)(1 — e~ ")~ L,

e Given X(0) = zg, a constant,

E[X(t)] = zoe ™+ pu (1 — e_’“> :

Var| X ()] xo % (e7"* — e ") 4+ ;_/1 (1-— e_’“‘t>2 :

for t > 0.
2William Feller (1906-1970) in 1951.
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