Option on a Non-Dividend-Paying Stock: Multi-Period

- Consider a call with two periods remaining before expiration.
- Under the binomial model, the stock can take on three possible prices at time two: *Suu*, *Sud*, and *Sdd*.
 - There are 4 paths.
 - But the tree *combines* or *recombines*.
- At any node, the next two stock prices only depend on the current price, not the prices of earlier times.^a

^aIt is Markovian.

Option on a Non-Dividend-Paying Stock: Multi-Period (continued)

- Let C_{uu} be the call's value at time two if the stock price is Suu.
- Thus,

$$C_{uu} = \max(0, Suu - X).$$

• C_{ud} and C_{dd} can be calculated analogously,

$$C_{ud} = \max(0, Sud - X),$$

$$C_{dd} = \max(0, Sdd - X).$$

Option on a Non-Dividend-Paying Stock: Multi-Period (continued)

• The call values at time 1 can be obtained by applying the same logic:

$$C_{u} = \frac{pC_{uu} + (1-p)C_{ud}}{R}, \qquad (32)$$
$$C_{d} = \frac{pC_{ud} + (1-p)C_{dd}}{R}.$$

- Deltas can be derived from Eq. (28) on p. 232.
- For example, the delta at C_u is

$$\frac{C_{uu} - C_{ud}}{Suu - Sud}.$$

Option on a Non-Dividend-Paying Stock: Multi-Period (concluded)

- We now reach the current period.
- Compute

$$\frac{pC_u + (1-p)C_d}{R}$$

as the option price.

• The values of delta *h* and *B* can be derived from Eqs. (28)–(29) on p. 232.

Early Exercise

- Since the call will not be exercised at time 1 even if it is American, $C_u \ge Su - X$ and $C_d \ge Sd - X$.
- Therefore,

$$hS + B = \frac{pC_u + (1-p)C_d}{R} \ge \frac{[pu + (1-p)d]S - X}{R}$$

= $S - \frac{X}{R} > S - X.$

– The call again will not be exercised at present.^a

• So

$$C = hS + B = \frac{pC_u + (1 - p)C_d}{R}$$

^aConsistent with Theorem 5 (p. 215).

${\sf Backward}\ {\sf Induction}^{\rm a}$

- The above expression calculates C from the two successor nodes C_u and C_d and none beyond.
- The same computation happened at C_u and C_d , too, as demonstrated in Eq. (32) on p. 242.
- This recursive procedure is called backward induction.
- C equals

$$[p^{2}C_{uu} + 2p(1-p)C_{ud} + (1-p)^{2}C_{dd}](1/R^{2})$$

= $[p^{2}\max(0, Su^{2} - X) + 2p(1-p)\max(0, Sud - X) + (1-p)^{2}\max(0, Sd^{2} - X)]/R^{2}.$

^aErnst Zermelo (1871–1953).

Backward Induction (continued)

• In the *n*-period case,

$$C = \frac{\sum_{j=0}^{n} {n \choose j} p^{j} (1-p)^{n-j} \times \max\left(0, Su^{j} d^{n-j} - X\right)}{R^{n}}.$$

- The value of a call on a non-dividend-paying stock is the expected discounted payoff at expiration in a risk-neutral economy.
- Similarly,

$$P = \frac{\sum_{j=0}^{n} \binom{n}{j} p^{j} (1-p)^{n-j} \times \max\left(0, X - Su^{j} d^{n-j}\right)}{R^{n}}$$

Backward Induction (concluded)

• Note that

$$p_j \equiv \frac{\binom{n}{j} p^j (1-p)^{n-j}}{R^n}$$

is the state price^a for the state $Su^{j}d^{n-j}$, j = 0, 1, ..., n.

• In general,

option price =
$$\sum_{j} p_j \times \text{payoff at state } j$$
.

^aRecall p. 194. One can obtain the undiscounted state price $\binom{n}{j} p^{j} (1-p)^{n-j}$ —the risk-neutral probability—for the state $Su^{j}d^{n-j}$ with $(X_{M}-X_{L})^{-1}$ units of the butterfly spread where $X_{L} = Su^{j-1}d^{n-j+1}$, $X_{M} = Su^{j}d^{n-j}$, and $X_{H} = Su^{j-1+1}d^{n-j-1}$. See Bahra (1997).

Risk-Neutral Pricing Methodology

- Every derivative can be priced as if the economy were risk-neutral.
- For a European-style derivative with the terminal payoff function \mathcal{D} , its value is

$$e^{-\hat{r}n}E^{\pi}[\mathcal{D}]. \tag{33}$$

- $-E^{\pi}$ means the expectation is taken under the risk-neutral probability.
- The "equivalence" between arbitrage freedom in a model and the existence of a risk-neutral probability is called the (first) fundamental theorem of asset pricing.

Self-Financing

- Delta changes over time.
- The maintenance of an equivalent portfolio is dynamic.
- But it does *not* depend on predicting future stock prices.
- The portfolio's value at the end of the current period is precisely the amount needed to set up the next portfolio.
- The trading strategy is *self-financing* because there is neither injection nor withdrawal of funds throughout.^a

- Changes in value are due entirely to capital gains.

^aExcept at the beginning, of course, when you have to put up the option value C or P before the replication starts.

Hakansson's $\mathsf{Paradox}^\mathrm{a}$

• If options can be replicated, why are they needed at all?

^aHakansson (1979).

Can You Figure Out u, d without Knowing q?^a

- Yes, you can, under BOPM.
- Let us observe the time series of past stock prices, e.g.,

• So with sufficiently long history, you will figure out *u* and *d* without knowing *q*.

^aContributed by Mr. Hsu, Jia-Shuo (D97945003) on March 11, 2009.

Binomial Distribution

• Denote the binomial distribution with parameters nand p by

$$b(j;n,p) \equiv \binom{n}{j} p^{j} (1-p)^{n-j} = \frac{n!}{j! (n-j)!} p^{j} (1-p)^{n-j}.$$

$$-n! = 1 \times 2 \times \cdots \times n.$$

- Convention: 0! = 1.

- Suppose you flip a coin n times with p being the probability of getting heads.
- Then b(j; n, p) is the probability of getting j heads.

The Binomial Option Pricing Formula

• The stock prices at time n are

$$Su^n, Su^{n-1}d, \ldots, Sd^n.$$

- Let *a* be the minimum number of upward price moves for the call to finish in the money.
- So a is the smallest nonnegative integer j such that

$$Su^j d^{n-j} \ge X,$$

or, equivalently,

$$a = \left\lceil \frac{\ln(X/Sd^n)}{\ln(u/d)} \right\rceil$$

The Binomial Option Pricing Formula (concluded)Hence,

$$= \frac{C}{\sum_{j=a}^{n} {n \choose j} p^{j} (1-p)^{n-j} \left(Su^{j} d^{n-j} - X\right)}{R^{n}}$$
(34)
$$= S \sum_{j=a}^{n} {n \choose j} \frac{(pu)^{j} [(1-p) d]^{n-j}}{R^{n}} - \frac{X}{R^{n}} \sum_{j=a}^{n} {n \choose j} p^{j} (1-p)^{n-j} = S \sum_{j=a}^{n} b(j; n, pu/R) - Xe^{-\hat{r}n} \sum_{j=a}^{n} b(j; n, p).$$
(35)

Numerical Examples

- A non-dividend-paying stock is selling for \$160.
- u = 1.5 and d = 0.5.
- r = 18.232% per period $(R = e^{0.18232} = 1.2)$. - Hence p = (R - d)/(u - d) = 0.7.
- Consider a European call on this stock with X = 150and n = 3.
- The call value is \$85.069 by backward induction.
- Or, the PV of the expected payoff at expiration:

 $\frac{390 \times 0.343 + 30 \times 0.441 + 0 \times 0.189 + 0 \times 0.027}{(1.2)^3} = 85.069.$

- Mispricing leads to arbitrage profits.
- Suppose the option is selling for \$90 instead.
- Sell the call for \$90 and invest \$85.069 in the replicating portfolio with 0.82031 shares of stock required by delta.
- Borrow $0.82031 \times 160 85.069 = 46.1806$ dollars.
- The fund that remains,

```
90 - 85.069 = 4.931 dollars,
```

is the arbitrage profit as we will see.

Time 1:

- Suppose the stock price moves to \$240.
- The new delta is 0.90625.
- Buy

0.90625 - 0.82031 = 0.08594

more shares at the cost of $0.08594 \times 240 = 20.6256$ dollars financed by borrowing.

• Debt now totals $20.6256 + 46.1806 \times 1.2 = 76.04232$ dollars.

• The trading strategy is self-financing because the portfolio has a value of

 $0.90625 \times 240 - 76.04232 = 141.45768.$

• It matches the corresponding call value!

Time 2:

- Suppose the stock price plunges to \$120.
- The new delta is 0.25.
- Sell 0.90625 0.25 = 0.65625 shares.
- This generates an income of $0.65625 \times 120 = 78.75$ dollars.
- Use this income to reduce the debt to

```
76.04232 \times 1.2 - 78.75 = 12.5
```

dollars.

Time 3 (the case of rising price):

- The stock price moves to \$180.
- The call we wrote finishes in the money.
- For a loss of 180 150 = 30 dollars, close out the position by either buying back the call or buying a share of stock for delivery.
- Financing this loss with borrowing brings the total debt to $12.5 \times 1.2 + 30 = 45$ dollars.
- It is repaid by selling the 0.25 shares of stock for $0.25 \times 180 = 45$ dollars.

Numerical Examples (concluded)

Time 3 (the case of declining price):

- The stock price moves to \$60.
- The call we wrote is worthless.
- Sell the 0.25 shares of stock for a total of

$$0.25 \times 60 = 15$$

dollars.

• Use it to repay the debt of $12.5 \times 1.2 = 15$ dollars.

Applications besides Exploiting Arbitrage Opportunities^a

- Replicate an option using stocks and bonds.
 - Set up a portfolio to replicate the call with \$85.069.
- Hedge the options we issued.
 - Use \$85.069 to set up a portfolio to replicate the call to counterbalance its values exactly.^b
- • •
- Without hedge, one may end up forking out \$390 in the worst case!^c

^aThanks to a lively class discussion on March 16, 2011. ^bHedging and replication are mirror images. ^cThanks to a lively class discussion on March 16, 2016.

Binomial Tree Algorithms for European Options

- The BOPM implies the binomial tree algorithm that applies backward induction.
- The total running time is $O(n^2)$ because there are $\sim n^2/2$ nodes.
- The memory requirement is $O(n^2)$.
 - Can be easily reduced to O(n) by reusing space.^a
- To price European puts, simply replace the payoff.

^aBut watch out for the proper updating of array entries.

Optimal Algorithm

- We can reduce the running time to O(n) and the memory requirement to O(1).
- Note that

$$b(j;n,p) = \frac{p(n-j+1)}{(1-p)j} b(j-1;n,p).$$

Optimal Algorithm (continued)

- The following program computes b(j; n, p) in b[j]:
- It runs in O(n) steps.

1:
$$b[a] := {n \choose a} p^a (1-p)^{n-a};$$

2: for $j = a + 1, a + 2, ..., n$ do
3: $b[j] := b[j-1] \times p \times (n-j+1)/((1-p) \times j);$
4: end for

Optimal Algorithm (concluded)

- With the b(j; n, p) available, the risk-neutral valuation formula (34) on p. 255 is trivial to compute.
- But we only need a single variable to store the b(j; n, p)s as they are being sequentially computed.
- This linear-time algorithm computes the discounted expected value of $\max(S_n X, 0)$.
- The above technique *cannot* be applied to American options because of early exercise.
- So binomial tree algorithms for American options usually run in $O(n^2)$ time.

Toward the Black-Scholes Formula

- The binomial model seems to suffer from two unrealistic assumptions.
 - The stock price takes on only two values in a period.
 - Trading occurs at discrete points in time.
- As *n* increases, the stock price ranges over ever larger numbers of possible values, and trading takes place nearly continuously.^a
- Need to calibrate the BOPM's parameters u, d, and R to make it converge to the continuous-time model.
- We now skim through the proof.

^aContinuous-time trading may create arbitrage opportunities in practice (Budish, Cramton, & Shim, 2015)!

- Let τ denote the time to expiration of the option measured in years.
- Let r be the continuously compounded annual rate.
- With n periods during the option's life, each period represents a time interval of τ/n .
- Need to adjust the period-based u, d, and interest rate \hat{r} to match the empirical results as $n \to \infty$.

• First,
$$\hat{r} = r\tau/n$$
.

- Each period is τ/n years long.
- The period gross return $R = e^{\hat{r}}$.
- Let

$$\widehat{\mu} \equiv \frac{1}{n} E\left[\ln\frac{S_{\tau}}{S}\right]$$

denote the expected value of the continuously compounded rate of return per period.

• Let

$$\hat{\sigma}^2 \equiv \frac{1}{n} \operatorname{Var}\left[\ln \frac{S_{\tau}}{S}\right]$$

denote the variance of that return.

• Under the BOPM, it is not hard to show that

$$\widehat{\mu} = q \ln(u/d) + \ln d,$$

$$\widehat{\sigma}^2 = q(1-q) \ln^2(u/d).$$

- Assume the stock's *true* continuously compounded rate of return over τ years has mean $\mu\tau$ and variance $\sigma^2\tau$.
- Call σ the stock's (annualized) volatility.

• The BOPM converges to the distribution only if

$$n\widehat{\mu} = n[q\ln(u/d) + \ln d] \to \mu\tau, \qquad (36)$$

$$n\widehat{\sigma}^2 = nq(1-q)\ln^2(u/d) \to \sigma^2\tau.$$
 (37)

• We need one more condition to have a solution for u, d, q.

• Impose

$$ud = 1.$$

 It makes nodes at the same horizontal level of the tree have identical price (review p. 267).

- Other choices are possible (see text).

• Exact solutions for u, d, q are feasible if Eqs. (36)–(37) are replaced by equations: 3 equations for 3 variables.^a

^aChance (2008).

• The above requirements can be satisfied by

$$u = e^{\sigma\sqrt{\tau/n}}, \quad d = e^{-\sigma\sqrt{\tau/n}}, \quad q = \frac{1}{2} + \frac{1}{2} \frac{\mu}{\sigma} \sqrt{\frac{\tau}{n}}.$$
 (38)

• With Eqs. (38), it can be checked that

$$n\widehat{\mu} = \mu\tau,$$

$$n\widehat{\sigma}^2 = \left[1 - \left(\frac{\mu}{\sigma}\right)^2 \frac{\tau}{n}\right] \sigma^2\tau \to \sigma^2\tau,$$

- The choices (38) result in the CRR binomial model.^a
- With the above choice, even if u and d are not calibrated, the mean is still matched!^b

^aCox, Ross, and Rubinstein (1979). ^bRecall Eq. (31) on p. 237. So u and d are related to volatility.

• The no-arbitrage inequalities d < R < u may not hold under Eqs. (38) on p. 278 or Eq. (30) on p. 236.

– If this happens, the probabilities lie outside [0, 1].^a

• The problem disappears when n satisfies

$$e^{\sigma\sqrt{\tau/n}} > e^{r\tau/n},$$

i.e., when $n > r^2 \tau / \sigma^2$ (check it).

- So it goes away if n is large enough.

- Other solutions will be presented later.

^aMany papers and programs forget to check this condition!

- What is the limiting probabilistic distribution of the continuously compounded rate of return $\ln(S_{\tau}/S)$?
- The central limit theorem says $\ln(S_{\tau}/S)$ converges to $N(\mu\tau, \sigma^2\tau)$.^a
- So $\ln S_{\tau}$ approaches $N(\mu \tau + \ln S, \sigma^2 \tau)$.
- Conclusion: S_{τ} has a lognormal distribution in the limit.

^aThe normal distribution with mean $\mu\tau$ and variance $\sigma^2\tau$.

Lemma 11 The continuously compounded rate of return $\ln(S_{\tau}/S)$ approaches the normal distribution with mean $(r - \sigma^2/2)\tau$ and variance $\sigma^2\tau$ in a risk-neutral economy.

• Let q equal the risk-neutral probability

$$p \equiv (e^{r\tau/n} - d)/(u - d).$$

• Let $n \to \infty$.^a

^aSee Lemma 9.3.3 of the textbook.

• The expected stock price at expiration in a risk-neutral economy is^a

$Se^{r\tau}$.

• The stock's expected annual rate of return^b is thus the riskless rate r.

^aBy Lemma 11 (p. 283) and Eq. (26) on p. 165.

^bIn the sense of $(1/\tau) \ln E[S_{\tau}/S]$ (arithmetic average rate of return) not $(1/\tau)E[\ln(S_{\tau}/S)]$ (geometric average rate of return). In the latter case, it would be $r - \sigma^2/2$ by Lemma 11. Toward the Black-Scholes Formula (continued)^a Theorem 12 (The Black-Scholes Formula) $C = SN(x) - Xe^{-r\tau}N(x - \sigma\sqrt{\tau}),$ $P = Xe^{-r\tau}N(-x + \sigma\sqrt{\tau}) - SN(-x),$

where

$$x \equiv \frac{\ln(S/X) + (r + \sigma^2/2)\tau}{\sigma\sqrt{\tau}}.$$

^aOn a United flight from San Francisco to Tokyo on March 7, 2010, a real-estate manager mentioned this formula to me!

- See Eq. (35) on p. 255 for the meaning of x.
- See Exercise 13.2.12 of the textbook for an interpretation of the probability measure associated with N(x) and N(-x).

BOPM and Black-Scholes Model

- The Black-Scholes formula needs 5 parameters: S, X, σ , τ , and r.
- Binomial tree algorithms take 6 inputs: S, X, u, d, \hat{r} , and n.
- The connections are

$$u = e^{\sigma\sqrt{\tau/n}},$$

$$d = e^{-\sigma\sqrt{\tau/n}},$$

$$\hat{r} = r\tau/n.$$

BOPM and Black-Scholes Model (concluded)

- The binomial tree algorithms converge reasonably fast.
- The error is O(1/n).^a
- Oscillations are inherent, however.
- Oscillations can be dealt with by the judicious choices of *u* and *d*.^b

^aChang and Palmer (2007). ^bSee Exercise 9.3.8 of the textbook.

Implied Volatility

- Volatility is the sole parameter not directly observable.
- The Black-Scholes formula can be used to compute the market's opinion of the volatility.^a
 - Solve for σ given the option price, S, X, τ , and r with numerical methods.
 - How about American options?

^aImplied volatility is hard to compute when τ is small (why?).

Implied Volatility (concluded)

• Implied volatility is

the wrong number to put in the wrong formula to get the right price of plain-vanilla options.^a

- Implied volatility is often preferred to historical volatility in practice.
 - Using the historical volatility is like driving a car with your eyes on the rearview mirror?

^aRebonato (2004).

Problems; the Smile

- Options written on the same underlying asset usually do not produce the same implied volatility.
- A typical pattern is a "smile" in relation to the strike price.
 - The implied volatility is lowest for at-the-money options.
 - It becomes higher the further the option is in- or out-of-the-money.
- Other patterns have also been observed.

Problems; the Smile (concluded)

- To address this issue, volatilities are often combined to produce a composite implied volatility.
- This practice is not sound theoretically.
- The existence of different implied volatilities for options on the same underlying asset shows the Black-Scholes model cannot be literally true.
- So?

Binomial Tree Algorithms for American Puts

- Early exercise has to be considered.
- The binomial tree algorithm starts with the terminal payoffs

$$\max(0, X - Su^j d^{n-j})$$

and applies backward induction.

- At each intermediate node, it compares the payoff if exercised and the continuation value.
- It keeps the larger one.

Bermudan Options

- Some American options can be exercised only at discrete time points instead of continuously.
- They are called Bermudan options.
- Their pricing algorithm is identical to that for American options.
- But early exercise is considered for only those nodes when early exercise is permitted.

Time-Dependent Instantaneous Volatility^a

- Suppose the (instantaneous) volatility can change over time but otherwise predictable: $\sigma(t)$ instead of σ .
- In the limit, the variance of $\ln(S_{\tau}/S)$ is

$$\int_0^\tau \sigma^2(t)\,dt$$

rather than $\sigma^2 \tau$.

• The annualized volatility to be used in the Black-Scholes formula should now be

$$\sqrt{\frac{\int_0^\tau \sigma^2(t) \, dt}{\tau}}$$

^aMerton (1973).

Time-Dependent Instantaneous Volatility (concluded)

- There is no guarantee that the implied volatility is constant.
- For the binomial model, u and d depend on time:

$$u = e^{\sigma(t)\sqrt{\tau/n}},$$
$$d = e^{-\sigma(t)\sqrt{\tau/n}}$$

• How to make the binomial tree combine?^a

^aAmin (1991); Chen (**R98922127**) (2011).

Time-Dependent Short Rates

- Suppose the short rate (i.e., the one-period spot rate) changes over time but otherwise predictable.
- The riskless rate r in the Black-Scholes formula should be the spot rate with a time to maturity equal to τ .
- In other words,

$$r = \frac{\sum_{i=0}^{n-1} r_i}{\tau},$$

where r_i is the continuously compounded short rate measured in periods for period i.^a

• Will the binomial tree fail to combine?

^aThat is, one-period forward rate.

Trading Days and Calendar Days

- Interest accrues based on the calendar day.
- But σ is usually calculated based on trading days only.
 - Stock price seems to have lower volatilities when the exchange is closed.^a
- How to harmonize these two different times into the Black-Scholes formula and binomial tree algorithms?^b

^aFama (1965); K. French (1980); K. French & Roll (1986). ^bRecall p. 150 about dating issues.

Trading Days and Calendar Days (continued)

- Think of σ as measuring the *annualized* volatility of stock price *one year from now*.
- Suppose a year has m (say 253) trading days.
- We can replace σ in the Black-Scholes formula with^a

 $\sigma \sqrt{\frac{365}{m}} \times \frac{\text{number of trading days to expiration}}{\text{number of calendar days to expiration}}$

^aD. French (1984).

Trading Days and Calendar Days (concluded)

- This works only for European options.
- How about binomial tree algorithms?^a

^aContributed by Mr. Lu, Zheng-Liang (D00922011) in 2015.

Options on a Stock That Pays Dividends

- Early exercise must be considered.
- Proportional dividend payout model is tractable (see text).
 - The dividend amount is a constant proportion of the prevailing stock price.
- In general, the corporate dividend policy is a complex issue.