
Trading and the Ito Integral

• Consider an Ito process dSt = μt dt+ σt dWt.

– St is the vector of security prices at time t.

• Let φt be a trading strategy denoting the quantity of

each type of security held at time t.

– Hence the stochastic process φtSt is the value of the

portfolio φt at time t.

• φt dSt ≡ φt(μt dt+ σt dWt) represents the change in the

value from security price changes occurring at time t.
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Trading and the Ito Integral (concluded)

• The equivalent Ito integral,

GT (φ) ≡
∫ T

0

φt dSt =

∫ T

0

φtμt dt+

∫ T

0

φtσt dWt,

measures the gains realized by the trading strategy over

the period [ 0, T ].
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Ito’s Lemmaa

A smooth function of an Ito process is itself an Ito process.

Theorem 19 Suppose f : R → R is twice continuously

differentiable and dX = at dt+ bt dW . Then f(X) is the

Ito process,

f(Xt)

= f(X0) +

∫ t

0

f ′(Xs) as ds+

∫ t

0

f ′(Xs) bs dW

+
1

2

∫ t

0

f ′′(Xs) b
2
s ds

for t ≥ 0.

aIto (1944).
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Ito’s Lemma (continued)

• In differential form, Ito’s lemma becomes

df(X) = f ′(X) a dt+ f ′(X) b dW +
1

2
f ′′(X) b2 dt.

(72)

• Compared with calculus, the interesting part is the third

term on the right-hand side.

• A convenient formulation of Ito’s lemma is

df(X) = f ′(X) dX +
1

2
f ′′(X)(dX)2.
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Ito’s Lemma (continued)

• We are supposed to multiply out

(dX)2 = (a dt+ b dW )2 symbolically according to

× dW dt

dW dt 0

dt 0 0

– The (dW )2 = dt entry is justified by a known result.

• Hence (dX)2 = (a dt+ b dW )2 = b2 dt.

• This form is easy to remember because of its similarity

to the Taylor expansion.
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Ito’s Lemma (continued)

Theorem 20 (Higher-Dimensional Ito’s Lemma) Let

W1,W2, . . . ,Wn be independent Wiener processes and

X ≡ (X1, X2, . . . , Xm) be a vector process. Suppose

f : Rm → R is twice continuously differentiable and Xi is

an Ito process with dXi = ai dt+
∑n

j=1 bij dWj. Then

df(X) is an Ito process with the differential,

df(X) =
m∑
i=1

fi(X) dXi +
1

2

m∑
i=1

m∑
k=1

fik(X) dXi dXk,

where fi ≡ ∂f/∂Xi and fik ≡ ∂2f/∂Xi∂Xk.
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Ito’s Lemma (continued)

• The multiplication table for Theorem 20 is

× dWi dt

dWk δik dt 0

dt 0 0

in which

δik =

⎧⎨
⎩

1 if i = k,

0 otherwise.
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Ito’s Lemma (continued)

• In applying the higher-dimensional Ito’s lemma, usually

one of the variables, say X1, is time t and dX1 = dt.

• In this case, b1j = 0 for all j and a1 = 1.

• As an example, let

dXt = at dt+ bt dWt.

• Consider the process f(Xt, t).
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Ito’s Lemma (continued)

• Then

df =
∂f

∂Xt
dXt +

∂f

∂t
dt+

1

2

∂2f

∂X2
t

(dXt)
2

=
∂f

∂Xt
(at dt+ bt dWt) +

∂f

∂t
dt

+
1

2

∂2f

∂X2
t

(at dt+ bt dWt)
2

=

(
∂f

∂Xt
at +

∂f

∂t
+

1

2

∂2f

∂X2
t

b2t

)
dt

+
∂f

∂Xt
bt dWt. (73)
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Ito’s Lemma (continued)

Theorem 21 (Alternative Ito’s Lemma) Let

W1,W2, . . . ,Wm be Wiener processes and

X ≡ (X1, X2, . . . , Xm) be a vector process. Suppose

f : Rm → R is twice continuously differentiable and Xi is

an Ito process with dXi = ai dt+ bi dWi. Then df(X) is the

following Ito process,

df(X) =
m∑
i=1

fi(X) dXi +
1

2

m∑
i=1

m∑
k=1

fik(X) dXi dXk.
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Ito’s Lemma (concluded)

• The multiplication table for Theorem 21 is

× dWi dt

dWk ρik dt 0

dt 0 0

• Above, ρik denotes the correlation between dWi and

dWk.
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Geometric Brownian Motion

• Consider geometric Brownian motion Y (t) ≡ eX(t)

– X(t) is a (μ, σ) Brownian motion.

– Hence dX = μ dt+ σ dW by Eq. (67) on p. 525.

• Note that

∂Y

∂X
= Y,

∂2Y

∂X2
= Y.
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Geometric Brownian Motion (concluded)

• Ito’s formula (72) on p. 556 implies

dY = Y dX + (1/2)Y (dX)2

= Y (μ dt+ σ dW ) + (1/2)Y (μ dt+ σ dW )2

= Y (μ dt+ σ dW ) + (1/2)Y σ2 dt.

• Hence

dY

Y
=

(
μ+ σ2/2

)
dt+ σ dW. (74)

• The annualized instantaneous rate of return is μ+ σ2/2

(not μ).a

aConsistent with Lemma 10 (p. 282).
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Product of Geometric Brownian Motion Processes

• Let

dY/Y = a dt+ b dWY ,

dZ/Z = f dt+ g dWZ .

• Assume dWY and dWZ have correlation ρ.

• Consider the Ito process U ≡ Y Z.
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Product of Geometric Brownian Motion Processes
(continued)

• Apply Ito’s lemma (Theorem 21 on p. 562):

dU = Z dY + Y dZ + dY dZ

= ZY (a dt+ b dWY ) + Y Z(f dt+ g dWZ)

+Y Z(a dt+ b dWY )(f dt+ g dWZ)

= U(a+ f + bgρ) dt+ Ub dWY + Ug dWZ .

• The product of two (or more) correlated geometric

Brownian motion processes thus remains geometric

Brownian motion.
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Product of Geometric Brownian Motion Processes
(continued)

• Note that

Y = exp
[(
a− b2/2

)
dt+ b dWY

]
,

Z = exp
[(
f − g2/2

)
dt+ g dWZ

]
,

U = exp
[ (

a+ f − (
b2 + g2

)
/2
)
dt+ b dWY + g dWZ

]
.

– There is no bgρ term in U !
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Product of Geometric Brownian Motion Processes
(concluded)

• lnU is Brownian motion with a mean equal to the sum

of the means of lnY and lnZ.

• This holds even if Y and Z are correlated.

• Finally, lnY and lnZ have correlation ρ.
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Quotients of Geometric Brownian Motion Processes

• Suppose Y and Z are drawn from p. 566.

• Let U ≡ Y/Z.

• We now show thata

dU

U
= (a− f + g2 − bgρ) dt+ b dWY − g dWZ .

(75)

• Keep in mind that dWY and dWZ have correlation ρ.

aExercise 14.3.6 of the textbook is erroneous.
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Quotients of Geometric Brownian Motion Processes
(concluded)

• The multidimensional Ito’s lemma (Theorem 21 on

p. 562) can be employed to show that

dU

= (1/Z) dY − (Y/Z2) dZ − (1/Z2) dY dZ + (Y/Z3) (dZ)2

= (1/Z)(aY dt+ bY dWY )− (Y/Z2)(fZ dt+ gZ dWZ)

−(1/Z2)(bgY Zρ dt) + (Y/Z3)(g2Z2 dt)

= U(a dt+ b dWY )− U(f dt+ g dWZ)

−U(bgρ dt) + U(g2 dt)

= U(a− f + g2 − bgρ) dt+ Ub dWY − Ug dWZ .
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Forward Price

• Suppose S follows

dS

S
= μ dt+ σ dW.

• Consider F (S, t) ≡ Sey(T−t).

• Observe that

∂F

∂S
= ey(T−t),

∂2F

∂S2
= 0,

∂F

∂t
= −ySey(T−t).
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Forward Prices (concluded)

• Then

dF = ey(T−t) dS − ySey(T−t) dt

= Sey(T−t) (μ dt+ σ dW )− ySey(T−t) dt

= F (μ− y) dt+ Fσ dW.

– One can also prove it by Eq. (73) on p. 561.

• Thus F follows

dF

F
= (μ− y) dt+ σ dW.

• This result has applications in forward and futures

contracts.a

aIt is also consistent with p. 515.
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Ornstein-Uhlenbeck Process

• The Ornstein-Uhlenbeck process:

dX = −κX dt+ σ dW,

where κ, σ ≥ 0.

• It is known that

E[X(t) ] = e
−κ(t−t0)

E[x0 ],

Var[X(t) ] =
σ2

2κ

(
1 − e

−2κ(t−t0)
)
+ e

−2κ(t−t0)
Var[x0 ],

Cov[X(s), X(t) ] =
σ2

2κ
e−κ(t−s)

[
1 − e−2κ(s−t0)

]

+e−κ(t+s−2t0) Var[x0 ],

for t0 ≤ s ≤ t and X(t0) = x0.
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Ornstein-Uhlenbeck Process (continued)

• X(t) is normally distributed if x0 is a constant or

normally distributed.

• X is said to be a normal process.

• E[x0 ] = x0 and Var[x0 ] = 0 if x0 is a constant.

• The Ornstein-Uhlenbeck process has the following mean

reversion property.

– When X > 0, X is pulled toward zero.

– When X < 0, it is pulled toward zero again.
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Ornstein-Uhlenbeck Process (continued)

• A generalized version:

dX = κ(μ−X) dt+ σ dW,

where κ, σ ≥ 0.

• Given X(t0) = x0, a constant, it is known that

E[X(t) ] = μ+ (x0 − μ) e−κ(t−t0), (76)

Var[X(t) ] =
σ2

2κ

[
1− e−2κ(t−t0)

]
,

for t0 ≤ t.
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Ornstein-Uhlenbeck Process (concluded)

• The mean and standard deviation are roughly μ and

σ/
√
2κ , respectively.

• For large t, the probability of X < 0 is extremely

unlikely in any finite time interval when μ > 0 is large

relative to σ/
√
2κ .

• The process is mean-reverting.

– X tends to move toward μ.

– Useful for modeling term structure, stock price

volatility, and stock price return.
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Square-Root Process

• Suppose X is an Ornstein-Uhlenbeck process.

• Ito’s lemma says V ≡ X2 has the differential,

dV = 2X dX + (dX)2

= 2
√
V (−κ

√
V dt+ σ dW ) + σ2 dt

=
(−2κV + σ2

)
dt+ 2σ

√
V dW,

a square-root process.
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Square-Root Process (continued)

• In general, the square-root process has the stochastic

differential equation,

dX = κ(μ−X) dt+ σ
√
X dW,

where κ, σ ≥ 0 and X(0) is a nonnegative constant.

• Like the Ornstein-Uhlenbeck process, it possesses mean

reversion: X tends to move toward μ, but the volatility

is proportional to
√
X instead of a constant.
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Square-Root Process (continued)

• When X hits zero and μ ≥ 0, the probability is one

that it will not move below zero.

– Zero is a reflecting boundary.

• Hence, the square-root process is a good candidate for

modeling interest rates.a

• The Ornstein-Uhlenbeck process, in contrast, allows

negative interest rates.b

• The two processes are related (see p. 578).

aCox, Ingersoll, and Ross (1985).
bBut some rates have gone negative in Europe in 2015!
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Square-Root Process (concluded)

• The random variable 2cX(t) follows the noncentral

chi-square distribution,a

χ

(
4κμ

σ2
, 2cX(0) e−κt

)
,

where c ≡ (2κ/σ2)(1− e−κt)−1.

• Given X(0) = x0, a constant,

E[X(t) ] = x0e
−κt + μ

(
1− e−κt

)
,

Var[X(t) ] = x0
σ2

κ

(
e−κt − e−2κt

)
+ μ

σ2

2κ

(
1− e−κt

)2
,

for t ≥ 0.

aWilliam Feller (1906–1970) in 1951.
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Modeling Stock Prices

• The most popular stochastic model for stock prices has

been the geometric Brownian motion,

dS

S
= μ dt+ σ dW.

• The continuously compounded rate of return X ≡ lnS

follows

dX = (μ− σ2/2) dt+ σ dW

by Ito’s lemma.a

aSee also Eq. (74) on p. 565. Consistent with Lemma 10 (p. 282).
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Local-Volatility Models

• The more general deterministic volatility model posits

dS

S
= (rt − qt) dt+ σ(S, t) dW,

where instantaneous volatility σ(S, t) is called the local

volatility function.a

• A (weak) solution exists if Sσ(S, t) is continuous and

grows at most linearly in S and t.b

aDerman and Kani (1994); Dupire (1994).
bSkorokhod (1961).
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Local-Volatility Models (continued)

• Theoretically,a

σ(X,T )2 = 2
∂C
∂T + (rT − qT )X

∂C
∂X + qTC

X2 ∂2C
∂X2

. (77)

• C is the call price at time t = 0 (today) with strike

price X and time to maturity T .

• σ(X,T ) is the local volatility that will prevail at future

time T and stock price ST = X .

aDupire (1994); Andersen and Brotherton-Ratcliffe (1998).
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Local-Volatility Models (continued)

• For more general models, this equation gives the

expectation as seen from today, under the risk-neural

probability, of the instantaneous variance at time T

given that ST = X .a

• In practice, σ(S, t)2 may have spikes, vary wildly, or

even be negative.

• The term ∂2C/∂X2 in the denominator often results in

numerical instability.

• Now, denote the implied volatility surface by Σ(X,T )

and the local volatility surface by σ(S, t).

aDerman and Kani (1997).
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Local-Volatility Models (continued)

• The relation between Σ(X,T ) and σ(X,T ) isa

σ(X,T )2 =
Σ2 + 2Στ

[
∂Σ
∂T

+ (rT − qT )X
∂Σ
∂X

]
(
1− Xy

Σ
∂Σ
∂X

)2
+XΣτ

[
∂Σ
∂X

− XΣτ
4

(
∂Σ
∂X

)2
+X ∂2Σ

∂X2

] ,
τ ≡ T − t,

y ≡ ln(X/St) +

∫ T

t

(qs − rs) ds.

• Although this version may be more stable than Eq. (77)

on p. 584, it is expected to suffer from similar problems.

aAndreasen (1996); Andersen and Brotherton-Ratcliffe (1998);

Gatheral (2003); Wilmott (2006); Kamp (2009).
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Local-Volatility Models (continued)

• Small changes to the implied volatility surface may

produce big changes to the local volatility surface.

• In reality, option prices only exist for a finite set of

maturities and strike prices.

• Hence interpolation and extrapolation may be needed to

construct the volatility surface.a

• But some implied volatility surfaces generate option

prices that allow arbitrage profits.

aDoing it to the option prices produces worse results (Li, 2000/2001).
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Local-Volatility Models (continued)

• For example, consider the following implied volatility

surface:a

Σ(X,T )2 = aATM(T ) + b(X − S0)
2, b > 0.

• It generates higher prices for out-of-the-money options

than in-the-money options for T large enough.b

aATM: at-the-money.
bRebonato (2004).
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Local-Volatility Models (continued)

• Let x ≡ ln(X/S0)− rT .

• For X large enough,a

Σ(X,T )2 < 2
|x |
T

.

• For X small enough,b

Σ(X,T )2 < β
|x |
T

for any β > 2.

aLee (2004).
bLee (2004).
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Local-Volatility Models (concluded)

• There exist conditions for a set of option prices to be

arbitrage-free.a

• For some vanilla equity options, the Black-Scholes model

“seems” better than the local-volatility model.b

aDavis and Hobson (2007).
bDumas, Fleming, and Whaley (1998).
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Implied and Local Volatility Surfacesa
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aContributed by Mr. Lok, U Hou (D99922028) on April 5, 2014.
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Implied Trees

• The trees for the local volatility model are called implied

trees.a

• Their construction requires option prices at all strike

prices and maturities.

– That is, an implied volatility surface.

• The local volatility model does not require that the

implied tree combine.

aDerman and Kani (1994); Dupire (1994); Rubinstein (1994).
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Implied Trees (continued)

• How to construct a valid implied tree with efficiency has

been open for a long time.a

– Reasons may include: noise and nonsynchrony in

data, arbitrage opportunities in the smoothed and

interpolated/extrapolated implied volatility surface,

wrong model, wrong algorithms, etc.

• Numerically, inversion is an ill-posed problem.b

aRubinstein (1994); Derman and Kani (1994); Derman, Kani, and

Chriss (1996); Jackwerth and Rubinstein (1996); Jackwerth (1997); Cole-

man, Kim, Li, and Verma (2000); Li (2000/2001); Moriggia, Muzzioli,

and Torricelli (2009).
bAyache, Henrotte, Nassar, and Wang (2004).
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Implied Trees (concluded)

• It is solved for separable local volatilities σ.a

– The local-volatility function σ(S, V ) is separableb if

σ(S, t) = σ1(S)σ2(t).

• A complete solution is close.c

aLok (D99922028) and Lyuu (2015, 2016).
bRebonato (2004); Brace, Ga̧tarek, and Musiela (1997).
cLok (D99922028) and Lyuu (2016).
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The Hull-White Model

• Hull and White (1987) postulate the following model,

dS

S
= r dt+

√
V dW1,

dV = μvV dt+ bV dW2.

• Above, V is the instantaneous variance.

• They assume μv depends on V and t (but not S).
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The SABR Model

• Hagan, Kumar, Lesniewski, and Woodward (2002)

postulate the following model,

dS

S
= r dt+ SθV dW1,

dV = bV dW2,

for 0 ≤ θ ≤ 1.

• A nice feature of this model is that the implied volatility

surface has a compact approximate closed form.
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The Hilliard-Schwartz Model

• Hilliard and Schwartz (1996) postulate the following

general model,

dS

S
= r dt+ f(S)V a dW1,

dV = μ(V ) dt+ bV dW2,

for some well-behaved function f(S) and constant a.
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The Blacher Model

• Blacher (2002) postulates the following model,

dS

S
= r dt+ σ

[
1 + α(S − S0) + β(S − S0)

2
]
dW1,

dσ = κ(θ − σ) dt+ εσ dW2.

• So the volatility σ follows a mean-reverting process to

level θ.
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Heston’s Stochastic-Volatility Model

• Heston (1993) assumes the stock price follows

dS

S
= (μ− q) dt+

√
V dW1, (78)

dV = κ(θ − V ) dt+ σ
√
V dW2. (79)

– V is the instantaneous variance, which follows a

square-root process.

– dW1 and dW2 have correlation ρ.

– The riskless rate r is constant.

• It may be the most popular continuous-time

stochastic-volatility model.a

aChristoffersen, Heston, and Jacobs (2009).
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Heston’s Stochastic-Volatility Model (continued)

• Heston assumes the market price of risk is b2
√
V .

• So μ = r + b2V .

• Define

dW ∗
1 = dW1 + b2

√
V dt,

dW ∗
2 = dW2 + ρb2

√
V dt,

κ∗ = κ+ ρb2σ,

θ∗ =
θκ

κ+ ρb2σ
.

• dW ∗
1 and dW ∗

2 have correlation ρ.
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Heston’s Stochastic-Volatility Model (continued)

• Under the risk-neutral probability measure Q, both W ∗
1

and W ∗
2 are Wiener processes.

• Heston’s model becomes, under probability measure Q,

dS

S
= (r − q) dt+

√
V dW ∗

1 ,

dV = κ∗(θ∗ − V ) dt+ σ
√
V dW ∗

2 .
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Heston’s Stochastic-Volatility Model (continued)

• Define

φ(u, τ) = exp { ıu(lnS + (r − q) τ)

+θ∗κ∗σ−2

[
(κ∗ − ρσuı− d) τ − 2 ln

1− ge−dτ

1− g

]

+
vσ−2(κ∗ − ρσuı− d)

(
1− e−dτ

)
1− ge−dτ

}
,

d =
√

(ρσuı− κ∗)2 − σ2(−ıu− u2) ,

g = (κ∗ − ρσuı− d)/(κ∗ − ρσuı+ d).
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Heston’s Stochastic-Volatility Model (continued)

The formulas area

C = S

[
1

2
+

1

π

∫ ∞

0

Re

(
X−ıuφ(u− ı, τ)

ıuSerτ

)
du

]

−Xe−rτ

[
1

2
+

1

π

∫ ∞

0

Re

(
X−ıuφ(u, τ)

ıu

)
du

]
,

P = Xe−rτ

[
1

2
− 1

π

∫ ∞

0

Re

(
X−ıuφ(u, τ)

ıu

)
du

]
,

−S

[
1

2
− 1

π

∫ ∞

0

Re

(
X−ıuφ(u− ı, τ)

ıuSerτ

)
du

]
,

where ı =
√−1 and Re(x) denotes the real part of the

complex number x.
aContributed by Mr. Chen, Chun-Ying (D95723006) on August 17,

2008 and Mr. Liou, Yan-Fu (R92723060) on August 26, 2008.
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Heston’s Stochastic-Volatility Model (concluded)

• For American options, we will need a tree for Heston’s

model.a

• They are all O(n3)-sized.

aLeisen (2010); Beliaeva and Nawalka (2010); Chou (R02723073)

(2015).
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Stochastic-Volatility Models and Further Extensionsa

• How to explain the October 1987 crash?

• Stochastic-volatility models require an implausibly

high-volatility level prior to and after the crash.

• Merton (1976) proposed jump models.

• Discontinuous jump models in the asset price can

alleviate the problem somewhat.

aEraker (2004).
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Stochastic-Volatility Models and Further Extensions
(continued)

• But if the jump intensity is a constant, it cannot explain

the tendency of large movements to cluster over time.

• This assumption also has no impacts on option prices.

• Jump-diffusion models combine both.

– E.g., add a jump process to Eq. (78) on p. 599.

– Closed-form formulas exist for GARCH-jump option

pricing models.a

aLiou (R92723060) (2005).
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Stochastic-Volatility Models and Further Extensions
(concluded)

• But they still do not adequately describe the systematic

variations in option prices.a

• Jumps in volatility are alternatives.b

– E.g., add correlated jump processes to Eqs. (78) and

Eq. (79) on p. 599.

• Such models allow high level of volatility caused by a

jump to volatility.c

aBates (2000) and Pan (2002).
bDuffie, Pan, and Singleton (2000).
cEraker, Johnnes, and Polson (2000); Lin (2007); Zhu and Lian

(2012).
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Complexities of Stochastic-Volatility Models

• A few stochastic-volatility models suffer from

subexponential (c
√
n) tree size.

• Examples include the Hull-White (1987),

Hilliard-Schwartz (1996), and SABR (2002) models.a

• Future research may extend this negative result to more

stochastic-volatility models.

– We suspect many GARCH option pricing models

entertain similar problems.b

aChiu (R98723059) (2012).
bChen (R95723051) (2008); Chen (R95723051), Lyuu, and Wen

(D94922003) (2011).
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Complexities of Stochastic-Volatility Models
(concluded)

• Calibration can be computationally hard.

– Few have tried it on exotic options.a

• There are usually several local minima for the

calibration error.b

– They will give different prices to options not used in

the calibration.

– But which one captures the smile dynamics?

aAyache, Henrotte, Nassar, and Wang (2004).
bAyache (2004).
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Continuous-Time Derivatives Pricing
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I have hardly met a mathematician

who was capable of reasoning.

— Plato (428 B.C.–347 B.C.)

Fischer [Black] is the only real genius

I’ve ever met in finance. Other people,

like Robert Merton or Stephen Ross,

are just very smart and quick,

but they think like me.

Fischer came from someplace else entirely.

— John C. Cox, quoted in Mehrling (2005)
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Toward the Black-Scholes Differential Equation

• The price of any derivative on a non-dividend-paying

stock must satisfy a partial differential equation (PDE).

• The key step is recognizing that the same random

process drives both securities.

– Their prices are perfectly correlated.

• We then figure out the amount of stock such that the

gain from it offsets exactly the loss from the derivative.

• The removal of uncertainty forces the portfolio’s return

to be the riskless rate.

• PDEs allow many numerical methods to be applicable.
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Assumptionsa

• The stock price follows dS = μS dt+ σS dW .

• There are no dividends.

• Trading is continuous, and short selling is allowed.

• There are no transactions costs or taxes.

• All securities are infinitely divisible.

• The term structure of riskless rates is flat at r.

• There is unlimited riskless borrowing and lending.

• t is the current time, T is the expiration time, and

τ ≡ T − t.
aDerman and Taleb (2005) summarizes criticisms on these assump-

tions and the replication argument.
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Black-Scholes Differential Equation

• Let C be the price of a derivative on S.

• From Ito’s lemma (p. 558),

dC =

(
μS

∂C

∂S
+

∂C

∂t
+

1

2
σ2S2 ∂2C

∂S2

)
dt+ σS

∂C

∂S
dW.

– The same W drives both C and S.

• Short one derivative and long ∂C/∂S shares of stock

(call it Π).

• By construction,

Π = −C + S(∂C/∂S).
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Black-Scholes Differential Equation (continued)

• The change in the value of the portfolio at time dt isa

dΠ = −dC +
∂C

∂S
dS.

• Substitute the formulas for dC and dS into the partial

differential equation to yield

dΠ =

(
−∂C

∂t
− 1

2
σ2S2 ∂2C

∂S2

)
dt.

• As this equation does not involve dW , the portfolio is

riskless during dt time: dΠ = rΠ dt.

aMathematically speaking, it is not quite right (Bergman, 1982).
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Black-Scholes Differential Equation (continued)

• So (
∂C

∂t
+

1

2
σ2S2 ∂2C

∂S2

)
dt = r

(
C − S

∂C

∂S

)
dt.

• Equate the terms to finally obtain

∂C

∂t
+ rS

∂C

∂S
+

1

2
σ2S2 ∂2C

∂S2
= rC.

• This is a backward equation, which describes the

dynamics of a derivative’s price forward in physical time.
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Black-Scholes Differential Equation (concluded)

• When there is a dividend yield q,

∂C

∂t
+ (r − q)S

∂C

∂S
+

1

2
σ2S2 ∂2C

∂S2
= rC. (80)

• The local-volatility model (77) on p. 584 is simply the

dual of this equation:a

∂C

∂T
+ (rT − qT )X

∂C

∂X
− 1

2
σ(X,T )2X2 ∂

2C

∂X2
= −qTC.

• This is a forward equation, which describes the dynamics

of a derivative’s price backward in maturity time.

aDerman and Kani (1997).
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Rephrase

• The Black-Scholes differential equation can be expressed

in terms of sensitivity numbers,

Θ + rSΔ+
1

2
σ2S2Γ = rC. (81)

• Identity (81) leads to an alternative way of computing

Θ numerically from Δ and Γ.

• When a portfolio is delta-neutral,

Θ +
1

2
σ2S2Γ = rC.

– A definite relation thus exists between Γ and Θ.
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Black-Scholes Differential Equation: An Alternative

• Perform the change of variable V ≡ lnS.

• The option value becomes U(V, t) ≡ C(eV , t).

• Furthermore,

∂C

∂t
=

∂U

∂t
,

∂C

∂S
=

1

S

∂U

∂V
,

∂2C

∂2S
=

1

S2

∂2U

∂V 2
− 1

S2

∂U

∂V
. (82)

• Equation (82) is an alternative way to calculate gamma.a

aSee also Eq. (43) on p. 341.
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Black-Scholes Differential Equation: An Alternative
(concluded)

• The Black-Scholes differential equation (80) on p. 617

becomes

1

2
σ2 ∂2U

∂V 2
+

(
r − q − σ2

2

)
∂U

∂V
− rU +

∂U

∂t
= 0

subject to U(V, T ) being the payoff such as

max(X − eV , 0).
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[Black] got the equation [in 1969] but then

was unable to solve it. Had he been a better

physicist he would have recognized it as a form

of the familiar heat exchange equation,

and applied the known solution. Had he been

a better mathematician, he could have

solved the equation from first principles.

Certainly Merton would have known exactly

what to do with the equation

had he ever seen it.

— Perry Mehrling (2005)
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PDEs for Asian Options

• Add the new variable A(t) ≡ ∫ t

0
S(u) du.

• Then the value V of the Asian option satisfies this

two-dimensional PDE:a

∂V

∂t
+ rS

∂V

∂S
+

1

2
σ2S2 ∂2V

∂S2
+ S

∂V

∂A
= rV.

• The terminal conditions are

V (T, S,A) = max

(
A

T
−X, 0

)
for call,

V (T, S,A) = max

(
X − A

T
, 0

)
for put.

aKemna and Vorst (1990).

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 622



PDEs for Asian Options (continued)

• The two-dimensional PDE produces algorithms similar

to that on pp. 399ff.a

• But one-dimensional PDEs are available for Asian

options.b

• For example, Večeř (2001) derives the following PDE for

Asian calls:

∂u

∂t
+ r

(
1− t

T
− z

)
∂u

∂z
+

(
1− t

T − z
)2

σ2

2

∂2u

∂z2
= 0

with the terminal condition u(T, z) = max(z, 0).

aSee also Barraquand and Pudet (1996).
bRogers and Shi (1995); Večeř (2001); Dubois and Lelièvre (2005).

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 623



PDEs for Asian Options (concluded)

• For Asian puts:

∂u

∂t
+ r

(
t

T
− 1− z

)
∂u

∂z
+

(
t
T − 1− z

)2
σ2

2

∂2u

∂z2
= 0

with the same terminal condition.

• One-dimensional PDEs lead to highly efficient numerical

methods.
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