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Optimal Algorithm

• We can reduce the running time to O(n) and the

memory requirement to O(1).

• Note that

b(j;n, p) =
p(n− j + 1)

(1− p) j
b(j − 1;n, p).
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Optimal Algorithm (continued)

• The following program computes b(j;n, p) in b[ j ]:

• It runs in O(n) steps.

1: b[ a ] :=
(
n
a

)
pa(1− p)n−a;

2: for j = a+ 1, a+ 2, . . . , n do

3: b[ j ] := b[ j − 1 ]× p× (n− j + 1)/((1− p)× j);

4: end for
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Optimal Algorithm (concluded)

• With the b(j;n, p) available, the risk-neutral valuation

formula (32) on p. 255 is trivial to compute.

• But we only need a single variable to store the b(j;n, p)s

as they are being sequentially computed.

• This linear-time algorithm computes the discounted

expected value of max(Sn −X, 0).

• The above technique cannot be applied to American

options because of early exercise.

• So binomial tree algorithms for American options

usually run in O(n2) time.
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The Bushy Tree
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Toward the Black-Scholes Formula

• The binomial model seems to suffer from two unrealistic

assumptions.

– The stock price takes on only two values in a period.

– Trading occurs at discrete points in time.

• As n increases, the stock price ranges over ever larger

numbers of possible values, and trading takes place

nearly continuously.a

• Any proper calibration of the model parameters makes

the BOPM converge to the continuous-time model.

• We now skim through the proof.
aContinuous-time trading may create arbitrage opportunities (Bud-

ish, Cramton, and Shim, 2015)!
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Toward the Black-Scholes Formula (continued)

• Let τ denote the time to expiration of the option

measured in years.

• Let r be the continuously compounded annual rate.

• With n periods during the option’s life, each period

represents a time interval of τ/n.

• Need to adjust the period-based u, d, and interest rate

r̂ to match the empirical results as n → ∞.

• First, r̂ = rτ/n.

– The period gross return R = er̂.
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Toward the Black-Scholes Formula (continued)

• Let

μ̂ ≡ 1

n
E

[
ln

Sτ

S

]
denote the expected value of the continuously

compounded rate of return per period.

• Let

σ̂2 ≡ 1

n
Var

[
ln

Sτ

S

]
denote the variance of that return.
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Toward the Black-Scholes Formula (continued)

• Under the BOPM, it is not hard to show that

μ̂ = q ln(u/d) + ln d,

σ̂2 = q(1− q) ln2(u/d).

• Assume the stock’s true continuously compounded rate

of return over τ years has mean μτ and variance σ2τ .

• Call σ the stock’s (annualized) volatility.
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Toward the Black-Scholes Formula (continued)

• The BOPM converges to the distribution only if

nμ̂ = n[ q ln(u/d) + ln d ] → μτ, (34)

nσ̂2 = nq(1− q) ln2(u/d) → σ2τ. (35)

• We need one more condition to have a solution for u, d, q.
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Toward the Black-Scholes Formula (continued)

• Impose

ud = 1.

– It makes nodes at the same horizontal level of the

tree have identical price (review p. 267).

– Other choices are possible (see text).

• Exact solutions for u, d, q are feasible if Eqs. (34)–(35)

are replaced by equations: 3 equations for 3 variables.a

aChance (2008).
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Toward the Black-Scholes Formula (continued)

• The above requirements can be satisfied by

u = eσ
√

τ/n, d = e−σ
√

τ/n, q =
1

2
+

1

2

μ

σ

√
τ

n
. (36)

• With Eqs. (36), it can be checked that

nμ̂ = μτ,

nσ̂2 =

[
1−

(μ
σ

)2 τ

n

]
σ2τ → σ2τ.

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 278



Toward the Black-Scholes Formula (continued)

• The choices (36) result in the CRR binomial model.a

• A more common choice for the probability is actually

q =
R − d

u− d
.

by Eq. (29) on p. 236.

• Their numerical properties are essentially identical.

aCox, Ross, and Rubinstein (1979).
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Toward the Black-Scholes Formula (continued)

• The no-arbitrage inequalities d < R < u may not hold

under Eqs. (36) on p. 278 or Eq. (29) on p. 236.

– If this happens, the probabilities lie outside [ 0, 1 ].a

• The problem disappears when n satisfies

eσ
√

τ/n > erτ/n,

i.e., when n > r2τ/σ2 (check it).

– So it goes away if n is large enough.

– Other solutions will be presented later.

aMany papers and programs forget to check this condition!
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Toward the Black-Scholes Formula (continued)

• What is the limiting probabilistic distribution of the

continuously compounded rate of return ln(Sτ/S)?

• The central limit theorem says ln(Sτ/S) converges to

N(μτ, σ2τ).a

• So lnSτ approaches N(μτ + lnS, σ2τ).

• Conclusion: Sτ has a lognormal distribution in the limit.

aThe normal distribution with mean μτ and variance σ2τ .
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Toward the Black-Scholes Formula (continued)

Lemma 10 The continuously compounded rate of return

ln(Sτ/S) approaches the normal distribution with mean

(r − σ2/2) τ and variance σ2τ in a risk-neutral economy.

• Let q equal the risk-neutral probability

p ≡ (erτ/n − d)/(u− d).

• Let n → ∞.a

aSee Lemma 9.3.3 of the textbook.
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Toward the Black-Scholes Formula (continued)

• The expected stock price at expiration in a risk-neutral

economy isa

Serτ .

• The stock’s expected annual rate of returnb is thus the

riskless rate r.

aBy Lemma 10 (p. 282) and Eq. (25) on p. 162.
bIn the sense of (1/τ) lnE[Sτ/S ] (arithmetic average rate of return)

not (1/τ)E[ ln(Sτ/S) ] (geometric average rate of return). In the latter

case, it would be r − σ2/2 by Lemma 10.
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Toward the Black-Scholes Formula (concluded)a

Theorem 11 (The Black-Scholes Formula)

C = SN(x)−Xe−rτN(x− σ
√
τ),

P = Xe−rτN(−x+ σ
√
τ)− SN(−x),

where

x ≡ ln(S/X) +
(
r + σ2/2

)
τ

σ
√
τ

.

(See Eq. (33) on p. 255 for the meaning of x.)

aOn a United flight from San Francisco to Tokyo on March 7, 2010,

a real-estate manager mentioned this formula to me!
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BOPM and Black-Scholes Model

• The Black-Scholes formula needs 5 parameters: S, X , σ,

τ , and r.

• Binomial tree algorithms take 6 inputs: S, X , u, d, r̂,

and n.

• The connections are

u = eσ
√

τ/n,

d = e−σ
√

τ/n,

r̂ = rτ/n.
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• S = 100, X = 100 (left), and X = 95 (right).
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BOPM and Black-Scholes Model (concluded)

• The binomial tree algorithms converge reasonably fast.

• The error is O(1/n).a

• Oscillations are inherent, however.

• Oscillations can be dealt with by the judicious choices of

u and d.b

aChang and Palmer (2007).
bSee Exercise 9.3.8 of the textbook.
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Implied Volatility

• Volatility is the sole parameter not directly observable.

• The Black-Scholes formula can be used to compute the

market’s opinion of the volatility.a

– Solve for σ given the option price, S, X , τ , and r

with numerical methods.

– How about American options?

aImplied volatility is hard to compute when τ is small (why?).
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Implied Volatility (concluded)

• Implied volatility is

the wrong number to put in the wrong formula to

get the right price of plain-vanilla options.a

• Implied volatility is often preferred to historical

volatility in practice.

– Using the historical volatility is like driving a car

with your eyes on the rearview mirror?

aRebonato (2004).
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Problems; the Smile

• Options written on the same underlying asset usually do

not produce the same implied volatility.

• A typical pattern is a “smile” in relation to the strike

price.

– The implied volatility is lowest for at-the-money

options.

– It becomes higher the further the option is in- or

out-of-the-money.

• Other patterns have also been observed.
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Problems; the Smile (concluded)

• To address this issue, volatilities are often combined to

produce a composite implied volatility.

• This practice is not sound theoretically.

• The existence of different implied volatilities for options

on the same underlying asset shows the Black-Scholes

model cannot be literally true.

• So?
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Binomial Tree Algorithms for American Puts

• Early exercise has to be considered.

• The binomial tree algorithm starts with the terminal

payoffs

max(0, X − Sujdn−j)

and applies backward induction.

• At each intermediate node, it compares the payoff if

exercised and the continuation value.

• It keeps the larger one.

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 292



Bermudan Options

• Some American options can be exercised only at discrete

time points instead of continuously.

• They are called Bermudan options.

• Their pricing algorithm is identical to that for American

options.

• But early exercise is considered for only those nodes

when early exercise is permitted.
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Time-Dependent Instantaneous Volatilitya

• Suppose the (instantaneous) volatility can change over

time but otherwise predictable: σ(t) instead of σ.

• In the limit, the variance of ln(Sτ/S) is∫ τ

0

σ2(t) dt

rather than σ2τ .

• The annualized volatility to be used in the Black-Scholes

formula should now be√∫ τ

0
σ2(t) dt

τ
.

aMerton (1973).
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Time-Dependent Instantaneous Volatility (concluded)

• There is no guarantee that the implied volatility is

constant.

• For the binomial model,u and d depend on time:

u = eσ(t)
√

τ/n,

d = e−σ(t)
√

τ/n.

• How to make the binomial tree combine?a

aAmin (1991); Chen (R98922127) (2011).
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Time-Dependent Short Rates

• Suppose the short rate (i.e., the one-period spot rate)

changes over time but otherwise predictable.

• The riskless rate r in the Black-Scholes formula should

be the spot rate with a time to maturity equal to τ .

• In other words,

r =

∑n−1
i=0 ri
τ

,

where ri is the continuously compounded short rate

measured in periods for period i.a

• Will the binomial tree fail to combine?

aThat is, one-period forward rate.
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Trading Days and Calendar Days

• Interest accrues based on the calendar day.

• But σ is usually calculated based on trading days only.

– Stock price seems to have lower volatilities when the

exchange is closed.a

• How to harmonize these two different times into the

Black-Scholes formula and binomial tree algorithms?b

aFama (1965); K. French (1980); K. French and Roll (1986).
bRecall p. 147 about dating issues.

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 297



Trading Days and Calendar Days (continued)

• Think of σ as measuring the annualized volatility of

stock price one year from now.

• Suppose a year has m (say 253) trading days.

• We can replace σ in the Black-Scholes formula witha

σ

√
365

m
× number of trading days to expiration

number of calendar days to expiration
.

aD. French (1984).
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Trading Days and Calendar Days (concluded)

• This works only for European options.

• How about binomial tree algorithms?a

aContributed by Mr. Lu, Zheng-Liang (D00922011) in 2015.
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Options on a Stock That Pays Dividends

• Early exercise must be considered.

• Proportional dividend payout model is tractable (see

text).

– The dividend amount is a constant proportion of the

prevailing stock price.

• In general, the corporate dividend policy is a complex

issue.
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Known Dividends

• Constant dividends introduce complications.

• Use D to denote the amount of the dividend.

• Suppose an ex-dividend date falls in the first period.

• At the end of that period, the possible stock prices are

Su−D and Sd−D.

• Follow the stock price one more period.

• The number of possible stock prices is not three but

four: (Su−D)u, (Su−D) d, (Sd−D)u, (Sd−D) d.

– The binomial tree no longer combines.
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(Su−D)u

↗
Su−D

↗ ↘
(Su−D) d

S

(Sd−D)u

↘ ↗
Sd−D

↘
(Sd−D) d
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An Ad-Hoc Approximation

• Use the Black-Scholes formula with the stock price

reduced by the PV of the dividends.a

• This essentially decomposes the stock price into a

riskless one paying known dividends and a risky one.

• The riskless component at any time is the PV of future

dividends during the life of the option.

– Then, σ is the volatility of the process followed by

the risky component.

• The stock price, between two adjacent ex-dividend

dates, follows the same lognormal distribution.

aRoll (1977).
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An Ad-Hoc Approximation (concluded)

• Start with the current stock price minus the PV of

future dividends before expiration.

• Develop the binomial tree for the new stock price as if

there were no dividends.

• Then add to each stock price on the tree the PV of all

future dividends before expiration.

• American option prices can be computed as before on

this tree of stock prices.
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The Ad-Hoc Approximation vs. P. 302 (Step 1)

S −D/R

�

�

(S −D/R)u

�

�

(S −D/R)d

�

�

(S −D/R)u2

(S −D/R)ud

(S −D/R)d2
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The Ad-Hoc Approximation vs. P. 302 (Step 2)

(S −D/R) +D/R = S

�

�

(S −D/R)u

�

�

(S −D/R)d

�

�

(S −D/R)u2

(S −D/R)ud

(S −D/R)d2
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The Ad-Hoc Approximation vs. P. 302a

• The trees are different.

• The stock prices at maturity are also different.

– (Su−D)u, (Su−D) d, (Sd−D)u, (Sd−D) d

(p. 302).

– (S −D/R)u2, (S −D/R)ud, (S −D/R)d2 (ad hoc).

• Note that, as d < R < u,

(Su−D)u > (S −D/R)u2,

(Sd−D) d < (S −D/R)d2,

aContributed by Mr. Yang, Jui-Chung (D97723002) on March 18,

2009.
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The Ad-Hoc Approximation vs. P. 302 (concluded)

• So the ad hoc approximation has a smaller dynamic

range.

• This explains why in practice the volatility is usually

increased when using the ad hoc approximation.
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A General Approacha

• A new tree structure.

• No approximation assumptions are made.

• A mathematical proof that the tree can always be

constructed.

• The actual performance is quadratic except in

pathological cases (see pp. 707ff).

• Other approaches include adjusting σ and approximating

the known dividend with a dividend yield.b

aDai (B82506025, R86526008, D8852600) and Lyuu (2004).
bGeske and Shastri (1985). It works well for American options but

not European options (Dai (B82506025, R86526008, D8852600), 2009).
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Continuous Dividend Yields

• Dividends are paid continuously.

– Approximates a broad-based stock market portfolio.

• The payment of a continuous dividend yield at rate q

reduces the growth rate of the stock price by q.

– A stock that grows from S to Sτ with a continuous

dividend yield of q would grow from S to Sτe
qτ

without the dividends.

• A European option has the same value as one on a stock

with price Se−qτ that pays no dividends.a

aIn pricing European options, only the distribution of Sτ matters.
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Continuous Dividend Yields (continued)

• So the Black-Scholes formulas hold with S replaced by

Se−qτ :a

C = Se−qτN(x)−Xe−rτN(x− σ
√
τ), (37)

P = Xe−rτN(−x+ σ
√
τ)− Se−qτN(−x),

(37′)

where

x ≡ ln(S/X) +
(
r − q + σ2/2

)
τ

σ
√
τ

.

• Formulas (37) and (37′) remain valid as long as the

dividend yield is predictable.

aMerton (1973).
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Continuous Dividend Yields (continued)

• To run binomial tree algorithms, replace u with ue−qΔt

and d with de−qΔt, where Δt ≡ τ/n.

– The reason: The stock price grows at an expected

rate of r − q in a risk-neutral economy.

• Other than the changes, binomial tree algorithms stay

the same.

– In particular, p should use the original u and d!a

aContributed by Ms. Wang, Chuan-Ju (F95922018) on May 2, 2007.
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Continuous Dividend Yields (concluded)

• Alternatively, pick the risk-neutral probability as

e(r−q)Δt − d

u− d
, (38)

where Δt ≡ τ/n.

– The reason: The stock price grows at an expected

rate of r − q in a risk-neutral economy.

• The u and d remain unchanged.

• Other than the change in Eq. (38), binomial tree

algorithms stay the same as if there were no dividends.
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Risk Reversalsa

• From formulas (37) and (37′) on p. 311, one can verify

that C = P when

X = Se(r−q)τ .

• A risk reversal consists of a short out-of-the-money put

and a long out-of-the-money call with the same maturity.

• Furthermore, the portfolio has zero value.

• A short risk reversal position is also called a collar.b

aNeftci (2008).
bBennett (2014).
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Sensitivity Analysis of Options
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Cleopatra’s nose, had it been shorter,

the whole face of the world

would have been changed.

— Blaise Pascal (1623–1662)
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Sensitivity Measures (“The Greeks”)

• How the value of a security changes relative to changes

in a given parameter is key to hedging.

– Duration, for instance.

• Let x ≡ ln(S/X)+(r+σ2/2) τ
σ
√
τ

(recall p. 284).

• Recall that

N ′(y) =
e−y2/2

√
2π

> 0,

the density function of standard normal distribution.
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Delta

• Defined as

Δ ≡ ∂f

∂S
.

– f is the price of the derivative.

– S is the price of the underlying asset.

• The delta of a portfolio of derivatives on the same

underlying asset is the sum of their individual deltas.a

• The delta used in the BOPM (p. 230) is the discrete

analog.

• The delta of a long stock is apparently 1.

aElementary calculus.
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Delta (continued)

• The delta of a European call on a non-dividend-paying

stock equals
∂C

∂S
= N(x) > 0.

• The delta of a European put equals

∂P

∂S
= N(x)− 1 = −N(−x) < 0.

• So the deltas of a call and an otherwise identical put

cancel each other when N(x) = 1/2, i.e., whena

X = Se(r+σ2/2) τ . (39)

aThe straddle (p. 192) C + P then has zero delta!
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Delta (continued)

• Suppose the stock pays a continuous dividend yield of q.

• Let

x ≡ ln(S/X) +
(
r − q + σ2/2

)
τ

σ
√
τ

(40)

(recall p. 311).

• Then

∂C

∂S
= e−qτN(x) > 0,

∂P

∂S
= −e−qτN(−x) < 0.

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 321



Delta (continued)

• Consider an X1-strike call and an X2-strike put,

X1 ≥ X2.

• They are otherwise identical.

• Let

xi ≡
ln(S/Xi) +

(
r − q + σ2/2

)
τ

σ
√
τ

. (41)

• Then their deltas sum to zero when x1 = −x2.
a

• That implies

S

X1
=

X2

S
e−(2r−2q+σ2) τ . (42)

aThe strangle (p. 194) C + P then has zero delta!
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Delta (continued)

• Suppose we demand X1 = X2 = X and have a straddle.

• Then

X = Se(r−q+σ2/2) τ

leads to a straddle with zero delta.

– This generalizes Eq. (39) on p. 319.

• When C(X1)’s delta and P (X2)’s delta sum to zero,

does the portfolio C(X1)− P (X2) have zero value?
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Delta (concluded)

• The risk reversal has value

Se−qτN(x1)−X1e
−rτN(x1 − σ

√
τ)

−X2e
−rτN(−x2 + σ

√
τ) + Se−qτN(−x2)

= 2Se−qτN(x1)−X1e
−rτN(x1 − σ

√
τ)−X2e

−rτN(x1 + σ
√
τ)

= 2Se−qτN(x1)−X1e
−rτN(x1 − σ

√
τ)

− S2

X1
e(r−2q+σ2) τN(x1 + σ

√
τ).

• This is not identically zero so not a risk reversal (p. 314).

• E.g., with r = q = 0 and τ large, it is about

2S − (S2/X1) e
σ2τ = 2S −X2.
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Delta Neutrality

• A position with a total delta equal to 0 is delta-neutral.

– A delta-neutral portfolio is immune to small price

changes in the underlying asset.

• Creating one serves for hedging purposes.

– A portfolio consisting of a call and −Δ shares of

stock is delta-neutral.

– Short Δ shares of stock to hedge a long call.

– Long Δ shares of stock to hedge a short call.

• In general, hedge a position in a security with delta Δ1

by shorting Δ1/Δ2 units of a security with delta Δ2.
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Theta (Time Decay)

• Defined as the rate of change of a security’s value with

respect to time, or Θ ≡ −∂f/∂τ = ∂f/∂t.

• For a European call on a non-dividend-paying stock,

Θ = −SN ′(x)σ
2
√
τ

− rXe−rτN(x− σ
√
τ) < 0.

– The call loses value with the passage of time.

• For a European put,

Θ = −SN ′(x)σ
2
√
τ

+ rXe−rτN(−x+ σ
√
τ).

– Can be negative or positive.
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Dotted curve: in-the-money call or out-of-the-money put.

Solid curves: at-the-money options.

Dashed curve: out-of-the-money call or in-the-money put.
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Gamma

• Defined as the rate of change of its delta with respect to

the price of the underlying asset, or Γ ≡ ∂2Π/∂S2.

• Measures how sensitive delta is to changes in the price of

the underlying asset.

• In practice, a portfolio with a high gamma needs be

rebalanced more often to maintain delta neutrality.

• Roughly, delta ∼ duration, and gamma ∼ convexity.

• The gamma of a European call or put on a

non-dividend-paying stock is

N ′(x)/(Sσ
√
τ) > 0.
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Dotted lines: in-the-money call or out-of-the-money put.

Solid lines: at-the-money option.

Dashed lines: out-of-the-money call or in-the-money put.
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Vegaa (Lambda, Kappa, Sigma)

• Defined as the rate of change of a securitys value with

respect to the volatility of the underlying asset

Λ ≡ ∂f

∂σ
.

• Volatility often changes over time.

• A security with a high vega is very sensitive to small

changes or estimation error in volatility.

• The vega of a European call or put on a

non-dividend-paying stock is S
√
τ N ′(x) > 0.

– So higher volatility always increases the option value.

aVega is not Greek.
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Vega (continued)

• If the stock pays a continuous dividend yield of q, then

Λ = Se−qτ
√
τ N ′(x),

where x is defined in Eq. (40) on p. 321.

• Vega is maximized when x = 0, i.e., when

S = Xe−(r−q+σ2/2) τ .

• Vega declines very fast as S moves away from that peak.
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Vega (continued)

• Now consider a risk reversal (p. 314) consisting of an

X1-strike call C and a short X2-strike put P , X1 ≥ X2.

• The options’ vegas cancel out when

x1 = −x2,

where xi are defined in Eq. (41) on p. 322.

• This leads to Eq. (42) on p. 322.

– The same condition leads to zero delta for the

strangle C + P (p. 322).
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Vega (concluded)

• Note that if S �= X , τ → 0 implies

Λ → 0

(which answers the question on p. 288 for the

Black-Scholes model).

• The Black-Scholes formula (p. 284) implies

C → S,

P → Xe−rτ ,

as σ → ∞.

• These boundary conditions may be handy for certain

numerical methods.
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Variance Vegaa

• Defined as the rate of change of a securitys value with

respect to the variance (square of volatility) of the

underlying asset

V ≡ ∂f

∂σ2
.

• It is easy to verify that

V =
Λ

2σ
.

aDemeterfi, Derman, Kamal, and Zou (1999).
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Dotted curve: in-the-money call or out-of-the-money put.

Solid curves: at-the-money option.

Dashed curve: out-of-the-money call or in-the-money put.
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Rho

• Defined as the rate of change in its value with respect to

interest rates

ρ ≡ ∂f

∂r
.

• The rho of a European call on a non-dividend-paying

stock is

Xτe−rτN(x− σ
√
τ) > 0.

• The rho of a European put on a non-dividend-paying

stock is

−Xτe−rτN(−x+ σ
√
τ) < 0.
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Dotted curves: in-the-money call or out-of-the-money put.

Solid curves: at-the-money option.

Dashed curves: out-of-the-money call or in-the-money put.
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