Further Time Improvement for Calls

All zeros
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Optimal Algorithm

e We can reduce the running time to O(n) and the

memory requirement to O(1).

e Note that

p(n—j+1)
(1-p)Jj

©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 268



Optimal Algorithm (continued)

e The following program computes b(j;n,p) in b|j|:

e It runs in O(n) steps.

cblal = () p?(1 —p)" %

. for j=a+1,a+2,... ,ndo
blj]:=0[j—1]xpx(n—7j+1)/((1—p)xj);

. end for
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Optimal Algorithm (concluded)

With the b(j;n,p) available, the risk-neutral valuation

formula (32) on p. 255 is trivial to compute.

But we only need a single variable to store the b(j;n,p)s

as they are being sequentially computed.

This linear-time algorithm computes the discounted

expected value of max(S, — X,0).

The above technique cannot be applied to American

options because of early exercise.

So binomial tree algorithms for American options

usually run in O(n?) time.
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The Bushy Tree
Sun—lﬁg

U -d

SJ3

>2n
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Toward the Black-Scholes Formula
e The binomial model seems to suffer from two unrealistic
assumptions.
— The stock price takes on only two values in a period.
— Trading occurs at discrete points in time.
e As n increases, the stock price ranges over ever larger

numbers of possible values, and trading takes place

nearly continuously.?

e Any proper calibration of the model parameters makes

the BOPM converge to the continuous-time model.

e We now skim through the proof.

2Continuous-time trading may create arbitrage opportunities (Bud-
ish, Cramton, and Shim, 2015)!
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Toward the Black-Scholes Formula (continued)

Let 7 denote the time to expiration of the option

measured in years.
Let r be the continuously compounded annual rate.

With n periods during the option’s life, each period

represents a time interval of 7/n.

Need to adjust the period-based u, d, and interest rate
7 to match the empirical results as n — oo.

First, # = r7/n.

— The period gross return R = e”.
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Toward the Black-Scholes Formula (continued)

o [et
s,
S

denote the expected value of the continuously

compounded rate of return per period.

o Let

denote the variance of that return.
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Toward the Black-Scholes Formula (continued)

e Under the BOPM, it is not hard to show that

) qIn(u/d) + Ind,
52 q(1 - q)In*(u/d).

e Assume the stock’s true continuously compounded rate

of return over 7 years has mean pr and variance o*r.

e Call o the stock’s (annualized) volatility.
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Toward the Black-Scholes Formula (continued)

e The BOPM converges to the distribution only if

ni = nlqln(u/d) +1Ind] — ur,

no? = ng(l—q)ln*(u/d) — o>

e We need one more condition to have a solution for u, d, q.
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Toward the Black-Scholes Formula (continued)

e Impose
ud = 1.

— It makes nodes at the same horizontal level of the
tree have identical price (review p. 267).
— Other choices are possible (see text).

e Exact solutions for u, d, q are feasible if Eqs. (34)—(35)

are replaced by equations: 3 equations for 3 variables.?

2Chance (2008).
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Toward the Black-Scholes Formula (continued)

e The above requirements can be satisfied by

U — eO’\/T/TL’ d—=e° T/?’L’ g =

+ . (36)

o7
o\ n

1
2

e With Egs. (36), it can be checked that

np =

no>
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Toward the Black-Scholes Formula (continued)

e The choices (36) result in the CRR binomial model.?

e A more common choice for the probability is actually

 R—d
= —a

by Eq. (29) on p. 236.

e Their numerical properties are essentially identical.

2Cox, Ross, and Rubinstein (1979).
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Toward the Black-Scholes Formula (continued)

e The no-arbitrage inequalities d < R < u may not hold
under Egs. (36) on p. 278 or Eq. (29) on p. 236.

— If this happens, the probabilities lie outside [0,1].?
e The problem disappears when n satisfies
eoVT/m 5 erT/m
i.e., when n > r?7r/0? (check it).

— So it goes away if n is large enough.

— Other solutions will be presented later.

aMany papers and programs forget to check this condition!
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Toward the Black-Scholes Formula (continued)

e What is the limiting probabilistic distribution of the

continuously compounded rate of return In(S,/5)?

e The central limit theorem says In(S;/S) converges to
N (ut,o1).2

e So InS, approaches N(ut +1n S, o%7).

e Conclusion: S, has a lognormal distribution in the limit.

2The normal distribution with mean pr and variance o?r.

©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 281



Toward the Black-Scholes Formula (continued)

Lemma 10 The continuously compounded rate of return

In(S,/S) approaches the normal distribution with mean

2

(r —0?/2) 7 and variance o*7 in a risk-neutral economy.

e Let g equal the risk-neutral probability
p= (e”/” —d)/(u—d).

o et n — 0.2

8See Lemma 9.3.3 of the textbook.
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Toward the Black-Scholes Formula (continued)

e The expected stock price at expiration in a risk-neutral
economy 1s®

Se’f"T

e The stock’s expected annual rate of return® is thus the
riskless rate r.

2By Lemma 10 (p. 282) and Eq. (25) on p. 162.
PIn the sense of (1/7)In E[S;/S] (arithmetic average rate of return)

not (1/7)E[In(S7/S)] (geometric average rate of return). In the latter
case, it would be » — 02 /2 by Lemma 10.
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Toward the Black-Scholes Formula (concluded)?

Theorem 11 (The Black-Scholes Formula)

C = SN(z)—Xe ""N(x—ovT1),
P = Xe ""N(—z+o0+v1)— SN(—x),

In(S/X)+ (r+02/2) 7
o\/T '
(See Eq. (33) on p. 255 for the meaning of x.)

X

20n a United flight from San Francisco to Tokyo on March 7, 2010,

a real-estate manager mentioned this formula to me!
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BOPM and Black-Scholes Model

e The Black-Scholes formula needs 5 parameters: S, X, o,

T, and 7.

e Binomial tree algorithms take 6 inputs: S, X, u, d, 7,

and n.

e The connections are

U
d
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Call wvalue Call wvalue

. AAAAAAA
i VVVVVV

5 10 15 20 25 30 35
n

e S =100, X =100 (left), and X = 95 (right).
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BOPM and Black-Scholes Model (concluded)

The binomial tree algorithms converge reasonably fast.
The error is O(1/n).2
Oscillations are inherent, however.

Oscillations can be dealt with by the judicious choices of
v and d.P

2Chang and Palmer (2007).
bSee Exercise 9.3.8 of the textbook.
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Implied Volatility

e Volatility is the sole parameter not directly observable.
e The Black-Scholes formula can be used to compute the
market’s opinion of the volatility.?

— Solve for o given the option price, S, X, 7, and r

with numerical methods.

— How about American options?

aImplied volatility is hard to compute when 7 is small (why?).
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Implied Volatility (concluded)

Implied volatility is
the wrong number to put in the wrong formula to
get the right price of plain-vanilla options.?
Implied volatility is often preferred to historical
volatility in practice.

— Using the historical volatility is like driving a car

with your eyes on the rearview mirror?

2Rebonato (2004).
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Problems: the Smile

e Options written on the same underlying asset usually do

not produce the same implied volatility.

e A typical pattern is a “smile” in relation to the strike
price.
— The implied volatility is lowest for at-the-money
options.

— It becomes higher the further the option is in- or

out-of-the-money.

e Other patterns have also been observed.
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Problems; the Smile (concluded)

To address this issue, volatilities are often combined to

produce a composite implied volatility.
This practice is not sound theoretically.

The existence of different implied volatilities for options
on the same underlying asset shows the Black-Scholes

model cannot be literally true.

So?
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Binomial Tree Algorithms for American Puts
Early exercise has to be considered.

The binomial tree algorithm starts with the terminal

payofts

max (0, X — Su’d" )

and applies backward induction.

At each intermediate node, it compares the payoff if

exercised and the continuation value.

It keeps the larger one.

©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 292



Bermudan Options

Some American options can be exercised only at discrete

time points instead of continuously.
They are called Bermudan options.

Their pricing algorithm is identical to that for American

options.

But early exercise is considered for only those nodes

when early exercise is permitted.
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Time-Dependent Instantaneous Volatility?

e Suppose the (instantaneous) volatility can change over
time but otherwise predictable: o(t) instead of o.

e In the limit, the variance of In(S,/S) is

QLTG%ﬂdt

rather than o27.

e The annualized volatility to be used in the Black-Scholes

formula should now be

%ﬁﬂ@ﬁ.

@Merton (1973).
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Time-Dependent Instantaneous Volatility (concluded)

e There is no guarantee that the implied volatility is

constant.

e For the binomial model,u and d depend on time:

- ed(t)\/T/'rL,
d = e—a(t)\/T/n.

e How to make the binomial tree combine??

2Amin (1991); Chen (R98922127) (2011).
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Time-Dependent Short Rates

e Suppose the short rate (i.e., the one-period spot rate)
changes over time but otherwise predictable.

e The riskless rate r in the Black-Scholes formula should

be the spot rate with a time to maturity equal to 7.

e In other words,

S,

. i

r — 1=0 :
T

where r; is the continuously compounded short rate

measured in periods for period .2

e Will the binomial tree fail to combine?

@That is, one-period forward rate.
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Trading Days and Calendar Days

e Interest accrues based on the calendar day.

e But o is usually calculated based on trading days only.
— Stock price seems to have lower volatilities when the

exchange is closed.?

e How to harmonize these two different times into the
Black-Scholes formula and binomial tree algorithms?"

2Fama (1965); K. French (1980); K. French and Roll (1986).
PRecall p. 147 about dating issues.
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Trading Days and Calendar Days (continued)

e Think of o as measuring the annualized volatility of

stock price one year from now.
e Suppose a year has m (say 253) trading days.

e We can replace o in the Black-Scholes formula with?

X

365  number of trading days to expiration
o :
m  number of calendar days to expiration

2D. French (1984).
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Trading Days and Calendar Days (concluded)

e This works only for European options.

e How about binomial tree algorithms??

2Contributed by Mr. Lu, Zheng-Liang (D00922011) in 2015.
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Options on a Stock That Pays Dividends

e Larly exercise must be considered.

e Proportional dividend payout model is tractable (see
text).

— The dividend amount is a constant proportion of the

prevailing stock price.

e In general, the corporate dividend policy is a complex

1ssue.
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Known Dividends
Constant dividends introduce complications.

Use D to denote the amount of the dividend.

Suppose an ex-dividend date falls in the first period.

At the end of that period, the possible stock prices are
Su—D and Sd— D.

Follow the stock price one more period.

The number of possible stock prices is not three but
four: (Su— D)wu, (Su— D)d, (Sd — D)u, (Sd— D)d.

— The binomial tree no longer combines.
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An Ad-Hoc Approximation

Use the Black-Scholes formula with the stock price
reduced by the PV of the dividends.?

This essentially decomposes the stock price into a

riskless one paying known dividends and a risky one.
The riskless component at any time is the PV of future
dividends during the life of the option.

— Then, o is the volatility of the process followed by

the risky component.

The stock price, between two adjacent ex-dividend

dates, follows the same lognormal distribution.

aRoll (1977).
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An Ad-Hoc Approximation (concluded)

e Start with the current stock price minus the PV of

future dividends before expiration.

e Develop the binomial tree for the new stock price as if

there were no dividends.

e Then add to each stock price on the tree the PV of all

future dividends before expiration.

e American option prices can be computed as before on

this tree of stock prices.
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The Ad-Hoc Approximation vs. P. 302 (Step 1)

(S — D/R)u?
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The Ad-Hoc Approximation vs. P. 302 (Step 2)

(S — D/R)u?

(S— D/R) + D/R
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The Ad-Hoc Approximation vs. P. 302?

e The trees are different.

e The stock prices at maturity are also different.
— (Su—D)u, (Su—D)d,(Sd— D)u,(Sd— D)d
(p. 302).
— (S —=D/R)u*, (S — D/R)ud, (S — D/R)d? (ad hoc).

e Note that, as d < R < u,

(Su—D)u > (S—D/R)u?
(Sd—D)d < (S— D/R)d?,

2Contributed by Mr. Yang, Jui-Chung (D97723002) on March 18,
20009.
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The Ad-Hoc Approximation vs. P. 302 (concluded)

e So the ad hoc approximation has a smaller dynamic

range.

e This explains why in practice the volatility is usually

increased when using the ad hoc approximation.
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A General Approach?

A new tree structure.
No approximation assumptions are made.

A mathematical proof that the tree can always be
constructed.

The actual performance is quadratic except in
pathological cases (see pp. 707ff).

Other approaches include adjusting o and approximating
the known dividend with a dividend yield.P

2Dai (B82506025, R86526008, D8852600) and Lyuu (2004).
PGeske and Shastri (1985). It works well for American options but

not European options (Dai (B82506025, R86526008, D8852600), 2009).
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Continuous Dividend Yields

e Dividends are paid continuously.
— Approximates a broad-based stock market portfolio.
e The payment of a continuous dividend yield at rate q
reduces the growth rate of the stock price by q.

— A stock that grows from S to S, with a continuous

dividend yield of ¢ would grow from S to S,e?”
without the dividends.

e A European option has the same value as one on a stock

with price Se 97 that pays no dividends.?

aIn pricing European options, only the distribution of S, matters.
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Continuous Dividend Yields (continued)

e So the Black-Scholes formulas hold with S replaced by
Se=47:2
C=8Se " N(x)— Xe ""N(x—o\T1), (37)

P=Xe ""N(—x+o07)— Se " N(—x),
(37')

In(S/X)+ (r—q+02/2) 1
o\/T '

X

e Formulas (37) and (37") remain valid as long as the

dividend yield is predictable.

@Merton (1973).
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Continuous Dividend Yields (continued)

e To run binomial tree algorithms, replace u with ue %2

and d with de=9°t, where At = 7/n.

— The reason: The stock price grows at an expected

rate of  — ¢ in a risk-neutral economy.

e Other than the changes, binomial tree algorithms stay

the same.

— In particular, p should use the original v and d!*

2Contributed by Ms. Wang, Chuan-Ju (F95922018) on May 2, 2007.
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Continuous Dividend Yields (concluded)

e Alternatively, pick the risk-neutral probability as

6(7“—q) At d
u—d

(38)

where At = 7/n.

— The reason: The stock price grows at an expected

rate of r — ¢ in a risk-neutral economy.
e The u and d remain unchanged.

e Other than the change in Eq. (38), binomial tree

algorithms stay the same as if there were no dividends.
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Risk Reversals?®

e From formulas (37) and (37") on p. 311, one can verify
that C' = P when

X = Selr=9)7,

e A risk reversal consists of a short out-of-the-money put

and a long out-of-the-money call with the same maturity.

e Furthermore, the portfolio has zero value.

e A short risk reversal position is also called a collar.”

aNeftci (2008).
PBennett (2014).
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Sensitivity Analysis of Options
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Cleopatra’s nose, had it been shorter,
the whole face of the world

would have been changed.
— Blaise Pascal (1623-1662)
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Sensitivity Measures (“The Greeks")

e How the value of a security changes relative to changes

in a given parameter is key to hedging.

— Duration, for instance.

o Let x = ln(S/X);L\(/T;UQﬂ)T (recall p. 284).

e Recall that
e_y2/2

the density function of standard normal distribution.

> 0,
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Defined as
_9f
=55

— f 1is the price of the derivative.

— S is the price of the underlying asset.

The delta of a portfolio of derivatives on the same
underlying asset is the sum of their individual deltas.?

The delta used in the BOPM (p. 230) is the discrete
analog.

e The delta of a long stock is apparently 1.

2Elementary calculus.
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Delta (continued)

The delta of a European call on a non-dividend-paying

stock equals

oC
N |
55 () >0

The delta of a European put equals

oP
25 = N(@) —1=-N(-x) <0.

So the deltas of a call and an otherwise identical put

cancel each other when N(z) = 1/2, i.e., when?

X = Selrto?/A), (39)

2The straddle (p. 192) C' + P then has zero delta!
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Delta (call) Delta (put)

40 40

Stock price Stock price

Delta (call) Delta (put)

100 150 200 250 300 350 100 150 200 250 300 350

Time to expiration (days) Time to expiration (days)

Dotted curve: in-the-money call or out-of-the-money put.

Solid curves: at-the-money options.

Dashed curves: out-of-the-money calls or in-the-money puts.
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Delta (continued)

e Suppose the stock pays a continuous dividend yield of g.

o Let

X In(S/X) + g\%q +0%/2) T (40)

(recall p. 311).
e Then
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Delta (continued)

Consider an Xj-strike call and an Xs-strike put,
X1 > Xo.

They are otherwise identical.

v = In(S/X;) + ((77“\;(]4— 02/2) 7'. (41)

Then their deltas sum to zero when x1 = —x5.2

That implies

S _ &e—(Qr—2q—|—02)T
X1 S '

2The strangle (p. 194) C + P then has zero delta!
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Delta (continued)

e Suppose we demand X; = X5 = X and have a straddle.

e Then
X = Selr—a+o?/2)r
leads to a straddle with zero delta.

— This generalizes Eq. (39) on p. 319.

e When C(X1)’s delta and P(X3)’s delta sum to zero,
does the portfolio C(X71) — P(X3) have zero value?
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Delta (concluded)

e The risk reversal has value

Se 9" N(z1) — X1e 7 ""N(z1 — o\/T)
—Xoe 7 ""N(—z2 +0vT) + Se I N(—x3)
2S¢ 9T N(x1) — X167 T N(x1 — o/T) — X2e  ""N(x1 + 0/T)
2S¢ 9" N(x1) — X1 " N(x1 — 0/T)
g2

_ 2 =200 T N () 4 o /7).
X1

e This is not identically zero so not a risk reversal (p. 314).

e L.g., with r = ¢ =0 and 7 large, it is about
25 — (S2/X1)e” T =25 — Xo.
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Delta Neutrality

e A position with a total delta equal to 0 is delta-neutral.
— A delta-neutral portfolio is immune to small price
changes in the underlying asset.
e Creating one serves for hedging purposes.

— A portfolio consisting of a call and —A shares of

stock is delta-neutral.
— Short A shares of stock to hedge a long call.
— Long A shares of stock to hedge a short call.

e In general, hedge a position in a security with delta A;

by shorting A;/As units of a security with delta As.
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Theta (Time Decay)

e Defined as the rate of change of a security’s value with

respect to time, or © = —90f/0r = df /0.
e For a Furopean call on a non-dividend-paying stock,
- SN'(z)o
2./T

— The call loses value with the passage of time.

0= —rXe ""N(x — ov/T) <0.

e For a European put,
SN'(z)o
2/T

— Can be negative or positive.

O —

+rXe ""N(—x + o\/T).
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Theta (call) Theta (put)

40 40

Stock price Stock price

Theta (call) Theta (put)

0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350

Time to expiration (days) Time to expiration (days)

Dotted curve: in-the-money call or out-of-the-money put.

Solid curves: at-the-money options.

Dashed curve: out-of-the-money call or in-the-money put.
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Gamma

Defined as the rate of change of its delta with respect to
the price of the underlying asset, or I' = 9*I1/05>.

Measures how sensitive delta is to changes in the price of

the underlying asset.

In practice, a portfolio with a high gamma needs be

rebalanced more often to maintain delta neutrality.
Roughly, delta ~ duration, and gamma ~ convexity.

The gamma of a European call or put on a

non-dividend-paying stock is

N'(z)/(So+/T) > 0.
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Gamma (call/put) Gamma (call/put)

40

Stock price Time to expiration (days)

Dotted lines: in-the-money call or out-of-the-money put.

Solid lines: at-the-money option.
Dashed lines: out-of-the-money call or in-the-money put.
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Vega® (Lambda, Kappa, Sigma)

Defined as the rate of change of a securitys value with

respect to the volatility of the underlying asset

:a_f
= o

Volatility often changes over time.

A security with a high vega is very sensitive to small

changes or estimation error in volatility.

The vega of a European call or put on a
non-dividend-paying stock is S\/7 N'(z) > 0.

— So higher volatility always increases the option value.

#Vega is not Greek.
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Vega (continued)

e If the stock pays a continuous dividend yield of ¢, then
A=Se /T N'(x),
where x is defined in Eq. (40) on p. 321.

e Vega is maximized when z = 0, i.e., when

q — Xe—(r—q—I—JQ/Q) T

e Vega declines very fast as S moves away from that peak.
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Vega (continued)

e Now consider a risk reversal (p. 314) consisting of an
Xq-strike call C' and a short Xs-strike put P, X; > Xs.

e The options’ vegas cancel out when
L1 = —T2,

where x; are defined in Eq. (41) on p. 322.
e This leads to Eq. (42) on p. 322.

— The same condition leads to zero delta for the
strangle C' + P (p. 322).
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Vega (concluded)

e Note that if S # X, 7 — 0 implies
A—=0

(which answers the question on p. 288 for the
Black-Scholes model).

e The Black-Scholes formula (p. 284) implies

cC - 5,
P — Xe T,
as o — Q.

e These boundary conditions may be handy for certain

numerical methods.
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Variance Vega?®

e Defined as the rate of change of a securitys value with
respect to the variance (square of volatility) of the

underlying asset

e It is easy to verify that

2Demeterfi, Derman, Kamal, and Zou (1999).
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Vega (call/put) Vega (call/put)

40

Stock price Time to expiration (days)

Dotted curve: in-the-money call or out-of-the-money put.

Solid curves: at-the-money option.
Dashed curve: out-of-the-money call or in-the-money put.
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Rho

e Defined as the rate of change in its value with respect to

interest rates
_of
=5
e The rho of a European call on a non-dividend-paying

stock 1s
X7e7""N(x — o/T) > 0.

e The rho of a European put on a non-dividend-paying

stock is

—X71e ""N(—x + 0yT) <0.
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Rho (call)

40 40

Stock price Stock price

Rho (call)

50 100 150 200 250 300 350 50 100 150 200 250 300 350

Time to expiration (days) Time to expiration (days)

Dotted curves: in-the-money call or out-of-the-money put.

Solid curves: at-the-money option.

Dashed curves: out-of-the-money call or in-the-money put.
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