Numerical Examples

Assume
— Sp =100, yo = In Sy = 4.60517.
r = 0.
n = 1.
h3 = 0.0001096, v = hg = 0.010469.

Yn = v//n = 0.010469.
8o = 0.000006575, 81 = 0.9, 85 = 0.04, and ¢ = 0.
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Numerical Examples (continued)

e A daily variance of 0.0001096 corresponds to an annual

volatility of

V365 x 0.0001096 ~ 20%.

e Let h?(i,j) denote the variance at node (3, 7).

o Initially, h2(0,0) = hZ = 0.0001096.
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Numerical Examples (continued)

Let h2

max
(4,5)-
Let h2. (i,7) denote the minimum variance at node

(2,7)-

Initially, h?

max

(i,7) denote the maximum variance at node

(0,0) = K%, (0,0) = h3.

min

The resulting three-day tree is depicted on p. 861.
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©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 861



A top number inside a gray box refers to the minimum
2

variance hZ . for the node.

A bottom number inside a gray box refers to the

maximum variance h2__ for the node.

Variances are multiplied by 100,000 for readability.

A top number inside a white box refers to the n
2

min*

corresponding to h

A bottom number inside a white box refers to the n
2

max-

corresponding to h
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Numerical Examples (continued)

Let us see how the numbers are calculated.
Start with the root node, node (0,0).

Try n =1 in Eqgs. (102)—(104) on p. 845 first to obtain

Du, 0.4974,
Pm 0,
Dd 0.5026.

As they are valid probabilities, the three branches from

the root node use single jumps.
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Numerical Examples (continued)

Move on to node (1,1).

It has one predecessor node—node (0,0)—and it takes

an up move to reach the current node.

So apply updating rule (106) on p. 851 with £ =1 and
h? = h?(0,0).

The result is h%(1,1) = 0.000109645.
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Numerical Examples (continued)

e Because [h(1,1)/v] =2, we try n =2 in
Eqgs. (102)—(104) on p. 845 first to obtain
p, = 0.1237,
Dy = 0.7499,
Pd = 0.1264.

e As they are valid probabilities, the three branches from
node (1,1) use double jumps.
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Numerical Examples (continued)

Carry out similar calculations for node (1,0) with
¢ =0 in updating rule (106) on p. 851.

Carry out similar calculations for node (1,—1) with
¢ = —1 in updating rule (106).

Single jump 1 = 1 works for both nodes.
The resulting variances are

h*(1,0) = 0.000105215,
h%(1,—1) = 0.000109553.
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Numerical Examples (continued)

Node (2,0) has 2 predecessor nodes, (1,0) and (1,—1).
Both have to be considered in deriving the variances.
Let us start with node (1,0).

Because it takes a middle move to reach the current
node, we apply updating rule (106) on p. 851 with £ =0
and h? = h?(1,0).

The result is h7,; = 0.000101269.

©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 867



Numerical Examples (continued)

Now move on to the other predecessor node (1,—1).

Because it takes an up move to reach the current node,
apply updating rule (106) on p. 851 with £ =1 and
h? = h?(1,-1).

The result is h7,; = 0.000109603.

We hence record

0.000101269,
0.000109603.
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Numerical Examples (continued)

e Consider state h?_ (2,0) first.

max

e Because [ hmax(2,0)/v ] = 2, we first try n =2 in
Eqgs. (102)—(104) on p. 845 to obtain

Da 0.1237,

Dim 0.7500,
Pa 0.1263.

e As they are valid probabilities, the three branches from
node (2,0) with the maximum variance use double

jumps.
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Numerical Examples (continued)

e Now consider state h2. (2,0).

e Because [ hmin(2,0)/7] =1, we first try n =1 in
Eqgs. (102)—(104) on p. 845 to obtain
Py = 0.4596,
b = 0.0760,
pa = 0.4644.

e As they are valid probabilities, the three branches from

node (2,0) with the minimum variance use single jumps.
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Numerical Examples (continued)

Node (2,—1) has 3 predecessor nodes.
Start with node (1,1).

Because it takes a down move to reach the current node,
we apply updating rule (106) on p. 851 with ¢/ = —1
and h? = h?(1,1).2

e The result is hi,; = 0.0001227.

2Note that it is not ¢ = —2.
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Numerical Examples (continued)

e Now move on to predecessor node (1,0).

e Because it also takes a down move to reach the current
node, we apply updating rule (106) on p. 851 with
¢ =—1 and h? = h?%(1,0).

e The result is h7 ; = 0.000105609.
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Numerical Examples (continued)

Finally, consider predecessor node (1,—1).

Because it takes a middle move to reach the current
node, we apply updating rule (106) on p. 851 with £ =0
and h? = h%(1,-1).

The result is h7,; = 0.000105173.

We hence record

0.000105173,
0.0001227.
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Numerical Examples (continued)

e Consider state h?_ (2,—1).

max

e Because [ hmax(2,—1)/7] =2, we first try n =2 in
Eqgs. (102)—(104) on p. 845 to obtain

Du 0.1385,
Dim, 0.7201,
Dd 0.1414.

e As they are valid probabilities, the three branches from
node (2,—1) with the maximum variance use double

jumps.
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Numerical Examples (continued)

e Next, consider state h2. (2,—1).

e Because | hpin(2,—1)/7] =1, we first try n =1 in
Eqgs. (102)—(104) on p. 845 to obtain
Du 0.4773,
Do 0.0404,
Dd 0.4823.

e As they are valid probabilities, the three branches from
node (2,—1) with the minimum variance use single

jumps.
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Numerical Examples (concluded)

e Other nodes at dates 2 and 3 can be handled similarly.

e In general, if a node has k£ predecessor nodes, then up to
2k variances will be calculated using the updating rule.
— This is because each predecessor node keeps two

variance numbers.

e But only the maximum and minimum variances will be
kept.
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Negative Aspects of the RT Algorithm Revisited®

e Recall the problems mentioned on p. 857.

e In our case, combinatorial explosion occurs when

1 — 1-0.9
n > 51: =

2.5
By 0.04

(see the next plot).

e Suppose we are willing to accept the exponential
running time and pick n = 100 to seek accuracy.

e But the problem of shortened maturity forces the tree to

stop at date 9!

2Lyuu and Wu (R90723065) (2003, 2005).

©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 877



Dotted line: n = 3; dashed line: n = 4; solid line: n = 5.
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Backward Induction on the RT Tree

After the RT tree is constructed, it can be used to price

options by backward induction.

2

max

Recall that each node keeps two variances h and

We now increase that number to K equally spaced
variances between h2 .. and h?. at each node.

max min

Besides the minimum and maximum variances, the other

K — 2 variances in between are linearly interpolated.®

2In practice, log-linear interpolation works better (Lyuu and Wu
(R90723065) (2005)). Log-cubic interpolation works even better (Liu
(R92922123) (2005)).
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Backward Induction on the RT Tree (continued)

For example, if K = 3, then a variance of
10.5436 x 107°

will be added between the maximum and minimum

variances at node (2,0) on p. 861.7

In general, the kth variance at node (i, 7) is

Do (15, 7) — M3 (4, 5)
]’L2 ' .. k max\ ¥ min\ "’
mln(Z7])+ K —1 ’

k=0,1,... K—1.

Each interpolated variance’s jump parameter and
branching probabilities can be computed as before.

aRepeated on p. 881.
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Backward Induction on the RT Tree (concluded)

e Suppose a variance falls between two of the K variances

during backward induction.

e Linear interpolation of the option prices corresponding
to the two bracketing variances will be used as the

approximate option price.

e The above ideas are reminiscent of the ones on p. 391,

where we dealt with Asian options.
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Numerical Examples

We next use the numerical example on p. 881 to price a
European call option with a strike price of 100 and
expiring at date 3.

Recall that the riskless interest rate is zero.

Assume K = 2; hence there are no interpolated

variances.

The pricing tree is shown on p. 884 with a call price of
0.66346.

— The branching probabilities needed in backward
induction can be found on p. 885.
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Numerical Examples (continued)

Let us derive some of the numbers on p. 884.

A gray line means the updated variance falls strictly
between h2 . and h?

max min*

The option price for a terminal node at date 3 equals

max(S3 — 100, 0), independent of the variance level.
Now move on to nodes at date 2.

The option price at node (2,3) depends on those at
nodes (3,5), (3,3), and (3,1).
It therefore equals

0.1387 X 5.37392 + 0.7197 X 3.19054 + 0.1416 x 1.05240 = 3.19054.
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Numerical Examples (continued)

Option prices for other nodes at date 2 can be computed
similarly.
For node (1,1), the option price for both variances is

0.1237 x 3.19054 + 0.7499 x 1.05240 + 0.1264 x 0.14573 = 1.20241.

Node (1,0) is most interesting.

We knew that a down move from it gives a variance of
0.000105609.

This number falls between the minimum variance
0.000105173 and the maximum variance 0.0001227 at
node (2,—1) on p. 881.
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Numerical Examples (continued)

The option price corresponding to the minimum

variance is 0.

The option price corresponding to the maximum

variance 1s 0.14573.

The equation
x x 0.000105173 + (1 — x) x 0.0001227 = 0.000105609

is satisfied by x = 0.9751.

So the option for the down state is approximated by

zx 0+ (1—2) x 0.14573 = 0.00362.
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Numerical Examples (continued)

e The up move leads to the state with option price
1.05240.

e The middle move leads to the state with option price
0.48366.

e The option price at node (1,0) is finally calculated as

0.4775 x 1.05240 + 0.0400 x 0.48366 4 0.4825 x 0.00362 = 0.52360.
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Numerical Examples (continued)

e A variance following an interpolated variance may
exceed the maximum variance or be exceeded by the

minimum variance.

e When this happens, the option price corresponding to
the maximum or minimum variance will be used during

backward induction.?

2Cakici and Topyan (2000).
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Numerical Examples (concluded)

But an interpolated variance may choose a branch that
goes into a node that is not reached in forward

induction.?
In this case, the algorithm fails.

The Ritchken-Trevor algorithm does not have this
problem as all interpolated variances are involved in the

forward-induction phase.

It may be hard to calculate the implied 51 and (5 from

option prices.”

2Lyuu and Wu (R90723065) (2005).
PChang (R93922034) (2006).
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Complexities of GARCH Models?

The Ritchken-Trevor algorithm explodes exponentially if
n is big enough (p. 857).

e The mean-tracking tree of Lyuu and Wu (2005) makes
sure explosion does not happen if n is not too large.”

e The next page summarizes the situations for many

GARCH option pricing models.
— Our earlier treatment is for NGARCH only.

2Lyuu and Wu (R90723065) (2003, 2005).
bSimilar to, but earlier than, the binomial-trinomial tree on pp. 667ff.
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Complexities of GARCH Models (concluded)?

Model Explosion Non-explosion
NGARCH B1+ Ban > 1 B+ B2(v/rn+A+c¢)? <1
LGARCH B1 + Ban > 1 B1+ B2(v/n+N)? <1
AGARCH B1 + Ban > 1 B1+ Ba(vn+X)? <1
GJR-GARCH 81 + fB2n > 1 B1+ (B2 + B3)(vn+X1)* <1
TS-GARCH B1 + B2yv/n > 1 B1+ B2(A++/n) <1
TGARCH B1+ f2v/n > 1 B1+ (B2 +B3)(A++/n) <1
Heston-Nandi (1 + B2(c — %)2 >1 B1+p62c2<1

& ¢ < %
VGARCH B+ (B2/4) > 1 B <1

2Chen (R95723051) (2008); Chen (R95723051), Lyuu, and Wen
(D94922003) (2012).
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Introduction to Term Structure Modeling
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The fox often ran to the hole
by which they had come in,

to find out if his body was still thin enough

to slip through it.

— Grimm’s Fairy Tales
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And the worst thing you can have

is models and spreadsheets.
— Warren Buffet, May 3, 2008
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Outline
e Use the binomial interest rate tree to model stochastic
term structure.
— Illustrates the basic ideas underlying future models.

— Applications are generic in that pricing and hedging
methodologies can be easily adapted to other models.

e Although the idea is similar to the earlier one used in

option pricing, the current task is more complicated.

— The evolution of an entire term structure, not just a

single stock price, is to be modeled.

— Interest rates of various maturities cannot evolve

arbitrarily, or arbitrage profits may occur.
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Issues

e A stochastic interest rate model performs two tasks.

— Provides a stochastic process that defines future term

structures without arbitrage profits.

— “Consistent” with the observed term structures.
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History

Methodology founded by Merton (1970).

Modern interest rate modeling is often traced to 1977
when Vasicek and Cox, Ingersoll, and Ross developed

simultaneously their influential models.

Early models have fitting problems because they may

not price today’s benchmark bonds correctly.

An alternative approach pioneered by Ho and Lee (1986)
makes fitting the market yield curve mandatory.

Models based on such a paradigm are called (somewhat
misleadingly) arbitrage-free or no-arbitrage models.
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Binomial Interest Rate Tree

Goal is to construct a no-arbitrage interest rate tree

consistent with the yields and/or yield volatilities of

zero-coupon bonds of all maturities.
— This procedure is called calibration.?

Pick a binomial tree model in which the logarithm of the

future short rate obeys the binomial distribution.

— Exactly like the CRR tree.

The limiting distribution of the short rate at any future

time is hence lognormal.

aDerman (2004), “complexity without calibration is pointless.”
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Binomial Interest Rate Tree (continued)

A binomial tree of future short rates is constructed.

Every short rate is followed by two short rates in the
following period (p. 902).

In the figure on p. 902, node A coincides with the start
of period j during which the short rate r is in effect.

At the conclusion of period j, a new short rate goes into
effect for period 5 + 1.
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period 7 — 1 I period j I period 5 + 1

time 7 — 1 time j
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Binomial Interest Rate Tree (continued)

e This may take one of two possible values:
— ry: the “low” short-rate outcome at node B.

— 7h: the “high” short-rate outcome at node C.

e Each branch has a 50% chance of occurring in a

risk-neutral economy.

e We require that the paths combine as the binomial

process unfolds.

e This model can be traced to Salomon Brothers.?

2Tuckman (2002).
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Binomial Interest Rate Tree (continued)

e The short rate r can go to r, and r, with equal

risk-neutral probability 1/2 in a period of length At.

e Hence the volatility of Inr after At time is
(107)

(see Exercise 23.2.3 in text).

e Above, o is annualized, whereas r, and r, are period

based.
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Binomial Interest Rate Tree (continued)

Note that

T_h — eZax/E

T
Thus greater volatility, hence uncertainty, leads to larger
rn/re and wider ranges of possible short rates.

The ratio r,/ry may depend on time if the volatility is a

function of time.

Note that 7, /r, has nothing to do with the current
short rate r if o is independent of r.
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Binomial Interest Rate Tree (continued)

In general there are j possible rates® in period 7,

2

rqi, T'5U;5, ’I“j’Uj,

20‘]'\/E (108)

’UjEe

is the multiplicative ratio for the rates in period j (see

figure on next page).
We shall call r; the baseline rates.

The subscript j In o; is meant to emphasize that the

short rate volatility may be time dependent.

aNot 7 + 1.
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Baseline rates
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Binomial Interest Rate Tree (concluded)

In the limit, the short rate follows the following process,
r(t) = p(t) e” W, (109)

in which the (percent) short rate volatility o(t) is a

deterministic function of time.

The expected value of r(t) equals p(t)e”®*(#/2),

Hence a declining short rate volatility is usually imposed
to preclude the short rate from assuming implausibly
high values.

Incidentally, this is how the binomial interest rate tree

achieves mean reversion.
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Memory Issues

Path independency: The term structure at any node is
independent of the path taken to reach it.

So only the baseline rates r; and the multiplicative

ratios v; need to be stored in computer memory.
This takes up only O(n) space.?

Storing the whole tree would take up O(n?) space.

— Daily interest rate movements for 30 years require
roughly (30 x 365)%/2 ~ 6 x 10" double-precision
floating-point numbers (half a gigabyte!).

aThroughout, n denotes the depth of the tree.
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Set Things in Motion

e The abstract process is now in place.

e We need the annualized rates of return of the riskless
bonds that make up the benchmark yield curve and

their volatilities.

e In the U.S., for example, the on-the-run yield curve
obtained by the most recently issued Treasury securities

may be used as the benchmark curve.
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Set Things in Motion (concluded)

e The term structure of (yield) volatilities® can be
estimated from:

— Historical data (historical volatility).
— Or interest rate option prices such as cap prices

(implied volatility).

e The binomial tree should be found that is consistent

with both term structures.

e Here we focus on the term structure of interest rates.

20r simply the volatility (term) structure.
y Yy
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Model Term Structures

The model price is computed by backward induction.
Refer back to the figure on p. 902.

Given that the values at nodes B and C are Pg and FPc,

respectively, the value at node A is then

Pg + Pc
2(1+ 1)

+ cash flow at node A.

We compute the values column by column without
explicitly expanding the binomial interest rate tree (see

next page).

This takes O(n?) time and O(n) space.
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Cash flows:
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Term Structure Dynamics

An n-period zero-coupon bond’s price can be computed
by assigning $1 to every node at period n and then

applying backward induction.

Repeating this step for n = 1,2,..., one obtains the
market discount function implied by the tree.

The tree therefore determines a term structure.

It also contains a term structure dynamics.

— Taking any node in the tree as the current state
induces a binomial interest rate tree and, again, a

term structure.
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Sample Term Structure

e We shall construct interest rate trees consistent with the

sample term structure in the following table.
— This was called calibration (the reverse of pricing).

e Assume the short rate volatility is such that

T'h
v=— = 1.5,
Ty

independent of time.

Period 1 2 3

Spot rate (%) 4 4.2 4.3
One-period forward rate (%) 4 4.4 4.5
Discount factor 0.96154 0.92101 0.88135
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An Approximate Calibration Scheme

Start with the implied one-period forward rates and
then equate the expected short rate with the forward

rate (see Exercise 5.6.6 in text).

For the first period, the forward rate is today’s
one-period spot rate.

In general, let f; denote the forward rate in period j.

This forward rate can be derived from the market

discount function via

(see Exercise 5.6.3 in text).
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An Approximate Calibration Scheme (continued)
ot rate 15
probability 2~0U~1 (771) | this means

e Since the ith short rate r;v 11 <i <4, occurs with

2\’
= (12r) 5 (10

e This binomial interest rate tree is trivial to set up, in
O(n) time.
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An Approximate Calibration Scheme (continued)

e The ensuing tree for the sample term structure appears
in figure next page.

e For example, the price of the zero-coupon bond paying
$1 at the end of the third period is

1 1 1 1 1 1 1 1
2% o (Towss * (oams * Toma) * Tovas * (iosa * To0ms))
4 1.04 1.0352 1.0288 1.0432 1.0528 1.0432 1.0648

or 0.88155, which exceeds discount factor 0.88135.

e The tree is thus not calibrated.
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Implied forward rates: 4.0% 4.4% 4.5%

| >l >ie >
period 1 period 2  period 3
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An Approximate Calibration Scheme (concluded)

e Indeed, this bias is inherent: The tree overprices the
bonds (see Exercise 23.2.4 in text).

e Suppose we replace the baseline rates r; by r,v;.
e Then the resulting tree underprices the bonds.?

e The true baseline rates are thus bounded between r;

and TiV;.

2Lyuu and Wang (F95922018) (2009, 2011).

©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 920



Issues in Calibration

The model prices generated by the binomial interest rate

tree should match the observed market prices.
Perhaps the most crucial aspect of model building.

Treat the backward induction for the model price of the
m-period zero-coupon bond as computing some function

f(ry,) of the unknown baseline rate r,, for period m.

A root-finding method is applied to solve f(r,,) = P for

Tm given the zero’s price P and 7r1,72,... ,"m—1-

This procedure is carried out for m =1,2,... ,n.

It runs in O(n3) time.
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Binomial Interest Rate Tree Calibration

Calibration can be accomplished in O(n?) time by the

use of forward induction.?

The scheme records how much $1 at a node contributes

to the model price.
This number is called the state price, the Arrow-Debreu
price, or Green’s function.

— It is the price of a state contingent claim that pays
$1 at that particular node (state) and 0 elsewhere.

The column of state prices will be established by moving

forward from time 0 to time n.

a Jamshidian (1991).
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Binomial Interest Rate Tree Calibration (continued)

e Suppose we are at time j and there are j + 1 nodes.
— The unknown baseline rate for period j is r =r;.
— The multiplicative ratio is v = v;.

— P, P>, ..., P; are the known state prices at earlier
time j — 1, corresponding to rates r,rv,...,rv' ! for

period j.

e By definition, Zgzl P; is the price of the (j — 1)-period

zero-coupon bond.

e We want to find r based on P;, P, ..., P; and the price

of the j-period zero-coupon bond.
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Binomial Interest Rate Tree Calibration (continued)

e One dollar at time j has a known market value of
1/[14 8(j)]’, where S(j) is the j-period spot rate.

e Alternatively, this dollar has a present value of

) P, P P P
r) = e :
g A+ (Atr)  (1+7m02) (1 + roi—1)

(see next plot).

e So we solve

1
9 = Ty so)p
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Binomial Interest Rate Tree Calibration (continued)

e Given a decreasing market discount function, a unique

positive solution for r is guaranteed.

The state prices at time j can now be calculated (see

panel (a) next page).

We call a tree with these state prices a binomial state

price tree (see panel (b) next page).

The calibrated tree is depicted on p. 928.
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0.112832

) 0232197

3.526%

0.333501

By
0327842
Implied forward rates: 0.107173

4.0% 4.4% 4.5%

< >l >l >
period 1 period 2 period 3

(b)
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) 2.595%

@ 6.514%

Implied forward rates: 4.0% 4.4% 4.5%

< >ie >ie >
period 1 period 2  period 3
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Binomial Interest Rate Tree Calibration (concluded)

e The Newton-Raphson method can be used to solve for

the 7 in Eq. (111) on p. 924 as ¢'(r) is easy to evaluate.

The monotonicity and the convexity of g(r) also

facilitate root finding.

The total running time is O(n?), as each root-finding

routine consumes O(j) time.

With a good initial guess,”* the Newton-Raphson method

converges in only a few steps.P

2Such as the r; = (14—2v~)j_1 f; on p. 917.
J
PLyuu (1999).
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A Numerical Example

One dollar at the end of the second period should have a
present value of 0.92101 by the sample term structure.

The baseline rate for the second period, ro, satisfies

0.480769 n 0.480769
147 14 1.9 X 17

= 0.92101.

The result is 7o = 3.526%.

This is used to derive the next column of state prices
shown in panel (b) on p. 927 as 0.232197, 0.460505, and
0.228308.

Their sum gives the correct market discount factor
0.92101.
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A Numerical Example (concluded)

The baseline rate for the third period, r3, satisfies

0.232197+ 0.460505 n 0.228308
1-+-T3 1+ 1.5 % T3 1-+-(1.5)2 X T3

= (0.88135.

The result is r3 = 2.895%.

Now, redo the calculation on p. 918 using the new rates:

1 1 1 1 1 1 1

1
- X X | X + ) + X + )
4 1.04 1.03526 1.02895  1.04343 1.05289 1.04343  1.06514

which equals 0.88135, an exact match.

The tree on p. 928 prices without bias the benchmark

securities.
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Spread of Nonbenchmark Bonds

Model prices calculated by the calibrated tree as a rule

do not match market prices of nonbenchmark bonds.

The incremental return over the benchmark bonds is

called spread.

If we add the spread uniformly over the short rates in

the tree, the model price will equal the market price.

We will apply the spread concept to option-free bonds

next.
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Spread of Nonbenchmark Bonds (continued)

We illustrate the idea with an example.

Start with the tree on p. 934.

Consider a security with cash flow C; at time ¢ for
1 =1,2,3.

Its model price is p(s), which is equal to

1

1 1 1 C3 C3
X |Cl+—x ———— x |Co+ — + +
1.04 + s 2 1.03526 + s 2 \ 1.02895 + s  1.04343 + s
1 1 1 C C
- X ———— x [Cg + - 3 + 3 :
2 1.05289 + s 2 \1.04343 + s 1.06514 + s

Given a market price of P, the spread is the s that
solves P = p(s).
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€D 2.895%+s

1Y 4.00%+s

@ 6514%
Implied forward rates: 4.0% 4.4% 4.5%
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period 1 period 2  period 3
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Spread of Nonbenchmark Bonds (continued)

The model price p(s) is a monotonically decreasing,

convex function of s.

We will employ the Newton-Raphson root-finding
method to solve

p(s) =P =0
for s.

But a quick look at the equation for p(s) reveals that

evaluating p’(s) directly is infeasible.

Fortunately, the tree can be used to evaluate both p(s)

and p’(s) during backward induction.
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Spread of Nonbenchmark Bonds (continued)

Consider an arbitrary node A in the tree associated with

the short rate r.

In the process of computing the model price p(s), a

price pa(s) is computed at A.

Prices computed at A’s two successor nodes B and C are
discounted by r 4+ s to obtain pa(s) as follows,

pB(s) + pc(s)
2(1+1r+s)

pa(s) =

Y

where ¢ denotes the cash flow at A.
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Spread of Nonbenchmark Bonds (continued)

e To compute p/y (s) as well, node A calculates

(g) — PB() +P6() _ pu(s) +pc(s)

Pa\S :
201l +7r+s 2(1 4+ r + s)2
(eres) 20t

e This is easy if pz(s) and p(s) are also computed at
nodes B and C.

e When A is a terminal node, simply use the payoff

a

function for pa(s).

2Contributed by Mr. Chou, Ming-Hsin (R02723073) on May 28, 2014.
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pp(s)+ pe(s)
2(1+r+s)

pA(S):C+

o (s)= Ps($)+pe(s) — pp(s)+pe(s)
8 2(1+r+s) 2(1+r+s)2
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Spread of Nonbenchmark Bonds (continued)

e Apply the above procedure inductively to yield p(s) and
p’'(s) at the root (p. 938).

e This is called the differential tree method.?

— Similar ideas can be found in automatic
differentiation (AD)P and backpropagation® in

artificial neural networks.
e The total running time is O(n?).

e The memory requirement is O(n).

aLyuu (1999).
PRall (1981).
“Rumelhart, Hinton, and Williams (1986).
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Spread of Nonbenchmark Bonds (continued)

Number of Running Number of Number of Running Number of
partitions n time (8) iterations partitions time (s) iterations
500 7.850 10500 3503.410

1500 71.650 11500 4169.570

2500 198.770 12500 4912.680

3500 387.460 13500 5714.440

4500 641.400 14500 6589.360

5500 951.800 15500 7548.760

6500 1327.900 16500 8502.950

7500 1761.110 17500 9523.900

8500 2269.750

9500 2834.170

75MHz Sun SPARCstation 20.

ot
ot

oo ot ot ot ot Ot Ot O

5
5
5
5
5
5
5
5
5
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Spread of Nonbenchmark Bonds (concluded)

Consider a three-year, 5% bond with a market price of
100.569.

Assume the bond pays annual interest.

The spread can be shown to be 50 basis points over the
tree (p. 942).

Note that the idea of spread does not assume parallel

shifts in the term structure.

It also differs from the yield spread (p. 118) and static
spread (p. 119) of the nonbenchmark bond over an
otherwise identical benchmark bond.

©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 941



., 106.552

=4.026%
., 106.754

4 843%
...105.150

<5 789%
.. 103.436

. 103.118

Cash flows:
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More Applications of the Differential Tree: Calculating
Implied Volatility (in seconds)?

American call

American put

Number of

partitions

Running

time

Number of

iterations

Number of

partitions

Running

time

Number of

iterations

100
200
300
400
500
600
700
800

o O O © O ©o o ©

.008210
.033310
.072940
.129180
.201850
.290480
.394090
.522040

2

100
200
300
400
500
600
700
800

.013845
.036335
.120455
.214100
.333950
.323260
.435720
.569605

o O O © © ©o o O

3

Intel 166MHz Pentium, running on Microsoft Windows 95.

aLyuu (1999).
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Fixed-Income Options

Consider a two-year 99 European call on the three-year,

5% Treasury.
Assume the Treasury pays annual interest.

From p. 945 the three-year Treasury’s price minus the $5
interest at year 2 could be $102.046, $100.630, or
$98.579 two years from now.

Since these prices do not include the accrued interest,

we should compare the strike price against them.

The call is therefore in the money in the first two
scenarios, with values of $3.046 and $1.630, and out of

the money in the third scenario.
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. 2:895%
Q 102.046
L 3:526%  3:046 .‘
e 102.716 G
L 400% 2258  A343% L 400%
. 101.955 @ 100.630 O 1955

1:458 5789% 1630 0:096
©. 99350 p |
0774 6:514%
. 98.579
0:000
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“0.000

3:596%

102.716
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. 99.350
0:200

2.895%

102.046

10:000

4:343%

100.630

0:000

_6:514%

. 98.579
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Fixed-Income Options (continued)

The option value is calculated to be $1.458 on p. 945(a).
European interest rate puts can be valued similarly.

Consider a two-year 99 European put on the same

security.

At expiration, the put is in the money only when the

Treasury is worth $98.579 without the accrued interest.

The option value is computed to be $0.096 on p. 945(b).
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Fixed-Income Options (concluded)

The present value of the strike price is
PV(X) =99 x 0.92101 = 91.18.

The Treasury is worth B = 101.955.

The present value of the interest payments during the
life of the options is

PV(I) =5 x 0.96154 4 5 x 0.92101 = 9.41275.

The call and the put are worth C' = 1.458 and
P = 0.096, respectively.

Hence the put-call parity is preserved:

C =P+ B-PV()-PV(X).
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Delta or Hedge Ratio

How much does the option price change in response to

changes in the price of the underlying bond?

This relation is called delta (or hedge ratio) defined as

On — Oy
P,— Py

In the above P, and P, denote the bond prices if the
short rate moves up and down, respectively.

Similarly, Oy, and O, denote the option values if the
short rate moves up and down, respectively.
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Delta or Hedge Ratio (concluded)

e Since delta measures the sensitivity of the option value
to changes in the underlying bond price, it shows how to

hedge one with the other.
e Take the call and put on p. 945 as examples.

e Their deltas are

0.774 — 2.258

99.350 — 102.716
0.200 — 0.000

99.350 — 102.716

0.441,

~0.059,

respectively.
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Volatility Term Structures

The binomial interest rate tree can be used to calculate

the yield volatility of zero-coupon bonds.
Consider an n-period zero-coupon bond.

First find its yield to maturity yn (ye, respectively) at
the end of the initial period if the short rate rises

(declines, respectively).

The yield volatility for our model is defined as

1 1 (yh)
— 11 — .
2 Yo
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Volatility Term Structures (continued)

e For example, based on the tree on p. 928, the two-year
zero’s yield at the end of the first period is 5.289% if the

rate rises and 3.526% if the rate declines.

e Its yield volatility is therefore

1 <0.05289
n

2 0.03526

) = 20.273%.
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Volatility Term Structures (continued)
Consider the three-year zero-coupon bond.

If the short rate rises, the price of the zero one year from

now will be

1 1 1 1
— X X ( + > = 0.90096.

2 1.05289 1.04343  1.06514

Thus its yield is {/55a056 — 1 = 0.053531.

If the short rate declines, the price of the zero one year
from now will be

1 1 1 1
- — 0.93225.
5~ 1.03526 (1.02895 + 1.04343>
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Volatility Term Structures (continued)

Thus its yield is |/ 5g355: — 1 = 0.0357.

The yield volatility is hence

1 | (0.053531

2 0.0357

) — 20.256%,

slightly less than the one-year yield volatility.

This is consistent with the reality that longer-term
bonds typically have lower yield volatilities than

shorter-term bonds.?

The procedure can be repeated for longer-term zeros to
obtain their yield volatilities.

2The relation is reversed for price volatilities (duration).
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Spot rate volatility

200 300

Time period

Short rate volatility given flat %10 volatility term structure.
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Volatility Term Structures (concluded)

We started with v; and then derived the volatility term

structure.
In practice, the steps are reversed.

The volatility term structure is supplied by the user
along with the term structure.

The v;—hence the short rate volatilities via Eq. (108) on
p. 906—and the r; are then simultaneously determined.

The result is the Black-Derman-Toy model of Goldman
Sachs.?

2Black, Derman, and Toy (1990).
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