Brownian Bridge Approach to Pricing Barrier Options

- We desire an unbiased estimate which can be calculated efficiently.
- The above-mentioned payoff should be multiplied by the probability p that a continuous sample path does not hit the barrier conditional on the sampled prices.
- This methodology is called the Brownian bridge approach.
- Formally, we have

$$p \equiv \text{Prob}[S(t) < H, 0 \leq t \leq T \mid S(t_0), S(t_1), \ldots, S(t_n)].$$
Brownian Bridge Approach to Pricing Barrier Options (continued)

• As a barrier is hit over a time interval if and only if the maximum stock price over that period is at least \(H \),

\[
p = \text{Prob} \left[\max_{0 \leq t \leq T} S(t) < H \mid S(t_0), S(t_1), \ldots, S(t_n) \right].
\]

• Luckily, the conditional distribution of the maximum over a time interval given the beginning and ending stock prices is known.
Brownian Bridge Approach to Pricing Barrier Options (continued)

Lemma 22 Assume S follows $dS/S = \mu \, dt + \sigma \, dW$ and define

$$
\zeta(x) \equiv \exp \left[-\frac{2 \ln(x/S(t)) \ln(x/S(t+\Delta t))}{\sigma^2 \Delta t} \right].
$$

(1) If $H > \max(S(t), S(t+\Delta t))$, then

$$
\text{Prob} \left[\max_{t \leq u \leq t+\Delta t} S(u) < H \, \bigg| \, S(t), S(t+\Delta t) \right] = 1 - \zeta(H).
$$

(2) If $h < \min(S(t), S(t+\Delta t))$, then

$$
\text{Prob} \left[\min_{t \leq u \leq t+\Delta t} S(u) > h \, \bigg| \, S(t), S(t+\Delta t) \right] = 1 - \zeta(h).
$$
Brownian Bridge Approach to Pricing Barrier Options (continued)

- Lemma 22 gives the probability that the barrier is not hit in a time interval, given the starting and ending stock prices.

- For our up-and-out call, choose $n = 1$.

- As a result,

\[
p = \begin{cases}
1 - \exp \left[-\frac{2 \ln(H/S(0)) \ln(H/S(T))}{\sigma^2 T} \right], & \text{if } H > \max(S(0), S(T)), \\
0, & \text{otherwise}.
\end{cases}
\]
Brownian Bridge Approach to Pricing Barrier Options (continued)

1: $C := 0$;
2: for $i = 1, 2, 3, \ldots , N$ do
3: \hspace{1cm} $P := S \times e^{(r-q-\sigma^2/2)T+\sigma\sqrt{T}\xi(\cdot)}$;
4: \hspace{1cm} if $(S < H$ and $P < H)$ or $(S > H$ and $P > H$) then
5: \hspace{2cm} $C := C + \max(P-X,0) \times \left\{1 - \exp\left[-\frac{2\ln(H/S) \times \ln(H/P)}{\sigma^2 T}\right]\right\}$;
6: \hspace{1cm} end if
7: end for
8: return Ce^{-rT}/N;
Brownian Bridge Approach to Pricing Barrier Options (concluded)

• The idea can be generalized.

• For example, we can handle more complex barrier options.

• Consider an up-and-out call with barrier H_i for the time interval $(t_i, t_{i+1}]$, $0 \leq i < n$.

• This option thus contains n barriers.

• Multiply the probabilities for the n time intervals to obtain the desired probability adjustment term.
Variance Reduction

- The statistical efficiency of Monte Carlo simulation can be measured by the variance of its output.
- If this variance can be lowered without changing the expected value, fewer replications are needed.
- Methods that improve efficiency in this manner are called variance-reduction techniques.
- Such techniques become practical when the added costs are outweighed by the reduction in sampling.
Variance Reduction: Antithetic Variates

- We are interested in estimating \(E[g(X_1, X_2, \ldots, X_n)] \).
- Let \(Y_1 \) and \(Y_2 \) be random variables with the same distribution as \(g(X_1, X_2, \ldots, X_n) \).
- Then

\[
\text{Var} \left[\frac{Y_1 + Y_2}{2} \right] = \frac{\text{Var}[Y_1]}{2} + \frac{\text{Cov}[Y_1, Y_2]}{2}.
\]

- \(\text{Var}[Y_1]/2 \) is the variance of the Monte Carlo method with two independent replications.
- The variance \(\text{Var}[(Y_1 + Y_2)/2] \) is smaller than \(\text{Var}[Y_1]/2 \) when \(Y_1 \) and \(Y_2 \) are negatively correlated.
Variance Reduction: Antithetic Variates (continued)

- For each simulated sample path X, a second one is obtained by *reusing* the random numbers on which the first path is based.
- This yields a second sample path Y.
- Two estimates are then obtained: One based on X and the other on Y.
- If N independent sample paths are generated, the antithetic-variates estimator averages over $2N$ estimates.
Variance Reduction: Antithetic Variates (continued)

• Consider process \(dX = a_t \, dt + b_t \sqrt{dt} \, \xi \).

• Let \(g \) be a function of \(n \) samples \(X_1, X_2, \ldots, X_n \) on the sample path.

• We are interested in \(E[g(X_1, X_2, \ldots, X_n)] \).

• Suppose one simulation run has realizations \(\xi_1, \xi_2, \ldots, \xi_n \) for the normally distributed fluctuation term \(\xi \).

• This generates samples \(x_1, x_2, \ldots, x_n \).

• The estimate is then \(g(\mathbf{x}) \), where \(\mathbf{x} \equiv (x_1, x_2, \ldots, x_n) \).
Variance Reduction: Antithetic Variates (concluded)

- The antithetic-variates method does not sample \(n \) more numbers from \(\xi \) for the second estimate \(g(x') \).

- Instead, generate the sample path \(x' \equiv (x'_1, x'_2, \ldots, x'_n) \) from \(-\xi_1, -\xi_2, \ldots, -\xi_n \).

- Compute \(g(x') \).

- Output \((g(x) + g(x'))/2 \).

- Repeat the above steps for as many times as required by accuracy.
Variance Reduction: Conditioning

- We are interested in estimating $E[X]$.
- Suppose here is a random variable Z such that $E[X | Z = z]$ can be efficiently and precisely computed.
- $E[X] = E[E[X | Z]]$ by the law of iterated conditional expectations.
- Hence the random variable $E[X | Z]$ is also an unbiased estimator of $E[X]$.
Variance Reduction: Conditioning (concluded)

- As
 \[\text{Var}[E[X \mid Z]] \leq \text{Var}[X], \]
 \[E[X \mid Z] \] has a smaller variance than observing \(X \) directly.

- First obtain a random observation \(z \) on \(Z \).

- Then calculate \(E[X \mid Z = z] \) as our estimate.
 - There is no need to resort to simulation in computing \(E[X \mid Z = z] \).

- The procedure can be repeated a few times to reduce the variance.
Control Variates

• Use the analytic solution of a similar yet simpler problem to improve the solution.

• Suppose we want to estimate $E[X]$ and there exists a random variable Y with a known mean $\mu \equiv E[Y]$.

• Then $W \equiv X + \beta(Y - \mu)$ can serve as a “controlled” estimator of $E[X]$ for any constant β.

 – However β is chosen, W remains an unbiased estimator of $E[X]$ as

 $$E[W] = E[X] + \beta E[Y - \mu] = E[X].$$
Control Variates (continued)

- Note that

\[\text{Var}[W] = \text{Var}[X] + \beta^2 \text{Var}[Y] + 2\beta \text{Cov}[X,Y], \]

(95)

- Hence \(W \) is less variable than \(X \) if and only if

\[\beta^2 \text{Var}[Y] + 2\beta \text{Cov}[X,Y] < 0. \]

(96)
Control Variates (concluded)

• The success of the scheme clearly depends on both β and the choice of Y.
 – For example, arithmetic average-rate options can be priced by choosing Y to be the otherwise identical geometric average-rate option’s price and $\beta = -1$.

• This approach is much more effective than the antithetic-variates method.
Choice of Y

- In general, the choice of Y is ad hoc,a and experiments must be performed to confirm the wisdom of the choice.
- Try to match calls with calls and puts with puts.b
- On many occasions, Y is a discretized version of the derivative that gives μ.
 - Discretely monitored geometric average-rate option vs. the continuously monitored geometric average-rate option given by formulas (36) on p. 384.

aBut see Dai (B82506025, R86526008, D8852600), Chiu (R94922072), and Lyuu (2015).

bContributed by Ms. Teng, Huei-Wen (R91723054) on May 25, 2004.
Optimal Choice of β

- For some choices, the discrepancy can be significant, such as the lookback option.a

- Equation (95) on p. 786 is minimized when

$$\beta = -\frac{\text{Cov}[X, Y]}{\text{Var}[Y]}.$$

 - It is called beta in the book.

- For this specific β,

$$\text{Var}[W] = \text{Var}[X] - \frac{\text{Cov}[X, Y]^2}{\text{Var}[Y]} = (1 - \rho_{X,Y}^2) \text{Var}[X],$$

 where $\rho_{X,Y}$ is the correlation between X and Y.

aContributed by Mr. Tsai, Hwai (R92723049) on May 12, 2004.
Optimal Choice of β (continued)

• Note that the variance can never be increased with the optimal choice.

• Furthermore, the stronger X and Y are correlated, the greater the reduction in variance.

• For example, if this correlation is nearly perfect (± 1), we could control X almost exactly.
Optimal Choice of β (continued)

• Typically, neither $\text{Var}[Y]$ nor $\text{Cov}[X,Y]$ is known.

• Therefore, we cannot obtain the maximum reduction in variance.

• We can guess these values and hope that the resulting W does indeed have a smaller variance than X.

• A second possibility is to use the simulated data to estimate these quantities.
 – How to do it efficiently in terms of time and space?
Optimal Choice of β (concluded)

- Observe that $-\beta$ has the same sign as the correlation between X and Y.

- Hence, if X and Y are positively correlated, $\beta < 0$, then X is adjusted downward whenever $Y > \mu$ and upward otherwise.

- The opposite is true when X and Y are negatively correlated, in which case $\beta > 0$.

- Suppose a suboptimal $\beta + \epsilon$ is used instead.

- The variance increases by only $\epsilon^2 \text{Var}[Y]$.

aHan and Lai (2010).
A Pitfall

- A potential pitfall is to sample X and Y independently.
- In this case, $\text{Cov}[X, Y] = 0$.
- Equation (95) on p. 786 becomes
 \[\text{Var}[W] = \text{Var}[X] + \beta^2 \text{Var}[Y]. \]
- So whatever Y is, the variance is *increased*!
- Lesson: X and Y must be correlated.
Problems with the Monte Carlo Method

- The error bound is only probabilistic.
- The probabilistic error bound of \sqrt{N} does not benefit from regularity of the integrand function.
- The requirement that the points be independent random samples are wasteful because of clustering.
- In reality, pseudorandom numbers generated by completely deterministic means are used.
- Monte Carlo simulation exhibits a great sensitivity on the seed of the pseudorandom-number generator.
Matrix Computation
To set up a philosophy against physics is rash; philosophers who have done so have always ended in disaster.

— Bertrand Russell
Definitions and Basic Results

• Let $A \equiv [a_{ij}]_{1 \leq i \leq m, 1 \leq j \leq n}$, or simply $A \in \mathbb{R}^{m \times n}$, denote an $m \times n$ matrix.

• It can also be represented as $[a_1, a_2, \ldots, a_n]$ where $a_i \in \mathbb{R}^m$ are vectors.

 – Vectors are column vectors unless stated otherwise.

• A is a square matrix when $m = n$.

• The rank of a matrix is the largest number of linearly independent columns.
Definitions and Basic Results (continued)

• A square matrix A is said to be symmetric if $A^T = A$.

• A real $n \times n$ matrix

$$A \equiv [a_{ij}]_{i,j}$$

is diagonally dominant if $|a_{ii}| > \sum_{j\neq i} |a_{ij}|$ for $1 \leq i \leq n$.

– Such matrices are nonsingular.

• The identity matrix is the square matrix

$$I \equiv \text{diag}[1, 1, \ldots, 1].$$
Definitions and Basic Results (concluded)

• A matrix has full column rank if its columns are linearly independent.

• A real symmetric matrix A is positive definite if

$$x^TAx = \sum_{i,j} a_{ij}x_ix_j > 0$$

for any nonzero vector x.

• A matrix A is positive definite if and only if there exists a matrix W such that $A = W^TW$ and W has full column rank.
Cholesky Decomposition

• Positive definite matrices can be factored as

\[A = LL^T, \]

called the Cholesky decomposition.

– Above, \(L \) is a lower triangular matrix.
Generation of Multivariate Distribution

• Let \(\mathbf{x} \equiv [x_1, x_2, \ldots, x_n]^T \) be a vector random variable with a positive definite covariance matrix \(C \).

• As usual, assume \(E[\mathbf{x}] = 0 \).

• This covariance structure can be matched by \(P\mathbf{y} \).
 – \(C = PP^T \) is the Cholesky decomposition of \(C \).\(^a\)
 – \(\mathbf{y} \equiv [y_1, y_2, \ldots, y_n]^T \) is a vector random variable with a covariance matrix equal to the identity matrix.

\(^a\)What if \(C \) is not positive definite? See Lai (R93942114) and Lyuu (2007).
Generation of Multivariate Normal Distribution

• Suppose we want to generate the multivariate normal distribution with a covariance matrix $C = PP^T$.
 – First, generate independent standard normal distributions y_1, y_2, \ldots, y_n.
 – Then
 $$P[y_1, y_2, \ldots, y_n]^T$$
 has the desired distribution.
 – These steps can then be repeated.
Multivariate Derivatives Pricing

• Generating the multivariate normal distribution is essential for the Monte Carlo pricing of multivariate derivatives (pp. 710ff).

• For example, the rainbow option on k assets has payoff

$$\max(\max(S_1, S_2, \ldots, S_k) - X, 0)$$

at maturity.

• The closed-form formula is a multi-dimensional integral.\(^a\)

\(^a\)Johnson (1987); Chen (D95723006) and Lyuu (2009).
Multivariate Derivatives Pricing (concluded)

• Suppose \(\frac{dS_j}{S_j} = r \, dt + \sigma_j \, dW_j, \, 1 \leq j \leq k \), where \(C \) is the correlation matrix for \(dW_1, dW_2, \ldots, dW_k \).

• Let \(C = PP^T \).

• Let \(\xi \) consist of \(k \) independent random variables from \(N(0, 1) \).

• Let \(\xi' = P\xi \).

• Similar to Eq. (94) on p. 752,

\[
S_{i+1} = S_i e^{(r-\sigma_j^2/2) \Delta t + \sigma_j \sqrt{\Delta t} \, \xi'_j}, \quad 1 \leq j \leq k.
\]
Least-Squares Problems

• The least-squares (LS) problem is concerned with

$$\min_{x \in \mathbb{R}^n} \| Ax - b \|,$$

where $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, $m \geq n$.

• The LS problem is called regression analysis in statistics and is equivalent to minimizing the mean-square error.

• Often written as

$$Ax = b.$$
Polynomial Regression

• In polynomial regression, \(x_0 + x_1 x + \cdots + x_n x^n \) is used to fit the data \(\{ (a_1, b_1), (a_2, b_2), \ldots, (a_m, b_m) \} \).

• This leads to the LS problem,

\[
\begin{bmatrix}
1 & a_1 & a_1^2 & \cdots & a_1^n \\
1 & a_2 & a_2^2 & \cdots & a_2^n \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & a_m & a_m^2 & \cdots & a_m^n
\end{bmatrix}
\begin{bmatrix}
x_0 \\
x_1 \\
\vdots \\
x_n
\end{bmatrix}
=
\begin{bmatrix}
b_1 \\
b_2 \\
\vdots \\
b_m
\end{bmatrix}.
\]

• Consult the text for solutions.
American Option Pricing by Simulation

- The continuation value of an American option is the conditional expectation of the payoff from keeping the option alive now.
- The option holder must compare the immediate exercise value and the continuation value.
- In standard Monte Carlo simulation, each path is treated independently of other paths.
- But the decision to exercise the option cannot be reached by looking at one path alone.
The Least-Squares Monte Carlo Approach

- The continuation value can be estimated from the cross-sectional information in the simulation by using least squares.\(^{a}\)

- The result is a function (of the state) for estimating the continuation values.

- Use the function to estimate the continuation value for each path to determine its cash flow.

- This is called the least-squares Monte Carlo (LSM) approach.

\(^{a}\text{Longstaff and Schwartz (2001).}\)
The Least-Squares Monte Carlo Approach (concluded)

- The LSM is provably convergent.a

- The LSM can be easily parallelized.b
 - Partition the paths into subproblems and perform LSM on each of them independently.
 - The speedup is close to linear (i.e., proportional to the number of CPUs).

- Surprisingly, accuracy is not affected.

aClément, Lamberton, and Protter (2002); Stentoft (2004).
bHuang (B96902079, R00922018) (2013) and Chen (B97902046, R01922005) (2014); Chen (B97902046, R01922005), Huang (B96902079, R00922018) (2013) and Lyuu (2015).
A Numerical Example

- Consider a 3-year American put on a non-dividend-paying stock.
- The put is exercisable at years 0, 1, 2, and 3.
- The strike price $X = 105$.
- The annualized riskless rate is $r = 5\%$.
- The current stock price is 101.
 - The annual discount factor hence equals 0.951229.
- We use only 8 price paths to illustrate the algorithm.
A Numerical Example (continued)

<table>
<thead>
<tr>
<th>Path</th>
<th>Year 0</th>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>101</td>
<td>97.6424</td>
<td>92.5815</td>
<td>107.5178</td>
</tr>
<tr>
<td>2</td>
<td>101</td>
<td>101.2103</td>
<td>105.1763</td>
<td>102.4524</td>
</tr>
<tr>
<td>3</td>
<td>101</td>
<td>105.7802</td>
<td>103.6010</td>
<td>124.5115</td>
</tr>
<tr>
<td>4</td>
<td>101</td>
<td>96.4411</td>
<td>98.7120</td>
<td>108.3600</td>
</tr>
<tr>
<td>5</td>
<td>101</td>
<td>124.2345</td>
<td>101.0564</td>
<td>104.5315</td>
</tr>
<tr>
<td>6</td>
<td>101</td>
<td>95.8375</td>
<td>93.7270</td>
<td>99.3788</td>
</tr>
<tr>
<td>7</td>
<td>101</td>
<td>108.9554</td>
<td>102.4177</td>
<td>100.9225</td>
</tr>
<tr>
<td>8</td>
<td>101</td>
<td>104.1475</td>
<td>113.2516</td>
<td>115.0994</td>
</tr>
</tbody>
</table>
A Numerical Example (continued)

- We use the basis functions $1, x, x^2$.
 - Other basis functions are possible.a

- The plot next page shows the final estimated optimal exercise strategy given by LSM.

- We now proceed to tackle our problem.

- The idea is to calculate the cash flow along each path, using information from \textit{all} paths.

aLaguerre polynomials, Hermite polynomials, Legendre polynomials, Chebyshev polynomials, Gedenbauer polynomials, and Jacobi polynomials.
A Numerical Example (continued)

Cash flows at year 3

<table>
<thead>
<tr>
<th>Path</th>
<th>Year 0</th>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>2.5476</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td>0.4685</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td>5.6212</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td>4.0775</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>
A Numerical Example (continued)

- The cash flows at year 3 are the exercise value if the put is in the money.
- Only 4 paths are in the money: 2, 5, 6, 7.
- Some of the cash flows may not occur if the put is exercised earlier, which we will find out step by step.
- Incidentally, the European counterpart has a value of

\[
0.951229^3 \times \frac{2.5476 + 0.4685 + 5.6212 + 4.0775}{8} = 1.3680.
\]
A Numerical Example (continued)

- We move on to year 2.
- For each state that is in the money at year 2, we must decide whether to exercise it.
- There are 6 paths for which the put is in the money: 1, 3, 4, 5, 6, 7.
- Only in-the-money paths will be used in the regression because they are where early exercise is relevant.
 - If there were none, we would move on to year 1.
A Numerical Example (continued)

• Let \(x \) denote the stock prices at year 2 for those 6 paths.

• Let \(y \) denote the corresponding discounted future cash flows (at year 3) if the put is not exercised at year 2.
A Numerical Example (continued)

Regression at year 2

<table>
<thead>
<tr>
<th>Path</th>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>92.5815</td>
<td>0×0.951229</td>
</tr>
<tr>
<td>2</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>3</td>
<td>103.6010</td>
<td>0×0.951229</td>
</tr>
<tr>
<td>4</td>
<td>98.7120</td>
<td>0×0.951229</td>
</tr>
<tr>
<td>5</td>
<td>101.0564</td>
<td>0.4685×0.951229</td>
</tr>
<tr>
<td>6</td>
<td>93.7270</td>
<td>5.6212×0.951229</td>
</tr>
<tr>
<td>7</td>
<td>102.4177</td>
<td>4.0775×0.951229</td>
</tr>
<tr>
<td>8</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>
A Numerical Example (continued)

- We regress y on 1, x, and x^2.
- The result is
 \[f(x) = 22.08 - 0.313114 \times x + 0.00106918 \times x^2. \]
- $f(x)$ estimates the continuation value conditional on the stock price at year 2.
- We next compare the immediate exercise value and the continuation value.
A Numerical Example (continued)

Optimal early exercise decision at year 2

<table>
<thead>
<tr>
<th>Path</th>
<th>Exercise</th>
<th>Continuation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12.4185</td>
<td>$f(92.5815) = 2.2558$</td>
</tr>
<tr>
<td>2</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>3</td>
<td>1.3990</td>
<td>$f(103.6010) = 1.1168$</td>
</tr>
<tr>
<td>4</td>
<td>6.2880</td>
<td>$f(98.7120) = 1.5901$</td>
</tr>
<tr>
<td>5</td>
<td>3.9436</td>
<td>$f(101.0564) = 1.3568$</td>
</tr>
<tr>
<td>6</td>
<td>11.2730</td>
<td>$f(93.7270) = 2.1253$</td>
</tr>
<tr>
<td>7</td>
<td>2.5823</td>
<td>$f(102.4177) = 0.3326$</td>
</tr>
<tr>
<td>8</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>
A Numerical Example (continued)

• Amazingly, the put should be exercised in all 6 paths: 1, 3, 4, 5, 6, 7.

• Now, any positive cash flow at year 3 should be set to zero or overridden for these paths as the put is exercised before year 3.
 – They are paths 5, 6, 7.

• The cash flows on p. 815 become the ones on next slide.
A Numerical Example (continued)

Cash flows at years 2 & 3

<table>
<thead>
<tr>
<th>Path</th>
<th>Year 0</th>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>—</td>
<td>—</td>
<td>12.4185</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>—</td>
<td>—</td>
<td>0</td>
<td>2.5476</td>
</tr>
<tr>
<td>3</td>
<td>—</td>
<td>—</td>
<td>1.3990</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>—</td>
<td>—</td>
<td>6.2880</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>—</td>
<td>—</td>
<td>3.9436</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>—</td>
<td>—</td>
<td>11.2730</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>—</td>
<td>—</td>
<td>2.5823</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>—</td>
<td>—</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
A Numerical Example (continued)

• We move on to year 1.

• For each state that is in the money at year 1, we must decide whether to exercise it.

• There are 5 paths for which the put is in the money: 1, 2, 4, 6, 8.

• Only in-the-money paths will be used in the regression because they are where early exercise is relevant.
 – If there were none, we would move on to year 0.
A Numerical Example (continued)

- Let x denote the stock prices at year 1 for those 5 paths.
- Let y denote the corresponding discounted future cash flows if the put is not exercised at year 1.
- From p. 823, we have the following table.
A Numerical Example (continued)

Regression at year 1

<table>
<thead>
<tr>
<th>Path</th>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>97.6424</td>
<td>12.4185×0.951229</td>
</tr>
<tr>
<td>2</td>
<td>101.2103</td>
<td>2.5476×0.951229^2</td>
</tr>
<tr>
<td>3</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>4</td>
<td>96.4411</td>
<td>6.2880×0.951229</td>
</tr>
<tr>
<td>5</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>6</td>
<td>95.8375</td>
<td>11.2730×0.951229</td>
</tr>
<tr>
<td>7</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>8</td>
<td>104.1475</td>
<td>0</td>
</tr>
</tbody>
</table>
A Numerical Example (continued)

- We regress y on 1, x, and x^2.
- The result is
 \[f(x) = -420.964 + 9.78113 \times x - 0.0551567 \times x^2. \]
- $f(x)$ estimates the continuation value conditional on the stock price at year 1.
- We next compare the immediate exercise value and the continuation value.
A Numerical Example (continued)

Optimal early exercise decision at year 1

<table>
<thead>
<tr>
<th>Path</th>
<th>Exercise</th>
<th>Continuation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7.3576</td>
<td>$f(97.6424) = 8.2230$</td>
</tr>
<tr>
<td>2</td>
<td>3.7897</td>
<td>$f(101.2103) = 3.9882$</td>
</tr>
<tr>
<td>3</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>4</td>
<td>8.5589</td>
<td>$f(96.4411) = 9.3329$</td>
</tr>
<tr>
<td>5</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>6</td>
<td>9.1625</td>
<td>$f(95.8375) = 9.83042$</td>
</tr>
<tr>
<td>7</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>8</td>
<td>0.8525</td>
<td>$f(104.1475) = -0.551885$</td>
</tr>
</tbody>
</table>
A Numerical Example (continued)

• The put should be exercised for 1 path only: 8.
 – Note that \(f(104.1475) < 0 \).

• Now, any positive future cash flow should be set to zero or overridden for this path.
 – But there is none.

• The cash flows on p. 823 become the ones on next slide.

• They also confirm the plot on p. 814.
A Numerical Example (continued)

Cash flows at years 1, 2, & 3

<table>
<thead>
<tr>
<th>Path</th>
<th>Year 0</th>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>—</td>
<td>0</td>
<td>12.4185</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>—</td>
<td>0</td>
<td>0</td>
<td>2.5476</td>
</tr>
<tr>
<td>3</td>
<td>—</td>
<td>0</td>
<td>1.3990</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>—</td>
<td>0</td>
<td>6.2880</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>—</td>
<td>0</td>
<td>3.9436</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>—</td>
<td>0</td>
<td>11.2730</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>—</td>
<td>0</td>
<td>2.5823</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>—</td>
<td>0.8525</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
A Numerical Example (continued)

- We move on to year 0.
- The continuation value is, from p 830,

\[
\frac{(12.4185 \times 0.951229^2 + 2.5476 \times 0.951229^3 \\
+ 1.3990 \times 0.951229^2 + 6.2880 \times 0.951229^2 \\
+ 3.9436 \times 0.951229^2 + 11.2730 \times 0.951229^2 \\
+ 2.5823 \times 0.951229^2 + 0.8525 \times 0.951229)/8}{8} = 4.66263.
\]
A Numerical Example (concluded)

- As this is larger than the immediate exercise value of

 \[105 - 101 = 4, \]

 the put should not be exercised at year 0.

- Hence the put’s value is estimated to be 4.66263.

- Compare this with the European put’s value of 1.3680 (p. 816).
Time Series Analysis
The historian is a prophet in reverse.
— Friedrich von Schlegel (1772–1829)
GARCH Option Pricing

- Options can be priced when the underlying asset’s return follows a GARCH process.
- Let S_t denote the asset price at date t.
- Let h_t^2 be the conditional variance of the return over the period $[t, t+1]$ given the information at date t.
 - “One day” is merely a convenient term for any elapsed time Δt.

ARCH (autoregressive conditional heteroskedastic) is due to Engle (1982), co-winner of the 2003 Nobel Prize in Economic Sciences. GARCH (generalized ARCH) is due to Bollerslev (1986) and Taylor (1986). A Bloomberg quant said to me on Feb 29, 2008, that GARCH is seldom used in trading.
GARCH Option Pricing (continued)

• Adopt the following risk-neutral process for the price dynamics:\(^a\)

\[
\ln \frac{S_{t+1}}{S_t} = r - \frac{h_t^2}{2} + h_t \epsilon_{t+1},
\]

(97)

where

\[
h_{t+1}^2 = \beta_0 + \beta_1 h_t^2 + \beta_2 h_t^2 (\epsilon_{t+1} - c)^2,
\]

(98)

\[
\epsilon_{t+1} \sim N(0, 1) \text{ given information at date } t,
\]

\[
r = \text{ daily riskless return},
\]

\[
c \geq 0.
\]

\(^a\)Duan (1995).
• The five unknown parameters of the model are \(c, h_0, \beta_0, \beta_1, \) and \(\beta_2 \).

• It is postulated that \(\beta_0, \beta_1, \beta_2 \geq 0 \) to make the conditional variance positive.

• There are other inequalities to satisfy (see text).

• The above process is called the nonlinear asymmetric GARCH (or NGARCH) model.
GARCH Option Pricing (continued)

• It captures the volatility clustering in asset returns first noted by Mandelbrot (1963).\(^a\)

 \(-\) When \(c = 0\), a large \(\epsilon_{t+1}\) results in a large \(h_{t+1}\), which in turns tends to yield a large \(h_{t+2}\), and so on.

• It also captures the negative correlation between the asset return and changes in its (conditional) volatility.\(^b\)

 \(-\) For \(c > 0\), a positive \(\epsilon_{t+1}\) (good news) tends to decrease \(h_{t+1}\), whereas a negative \(\epsilon_{t+1}\) (bad news) tends to do the opposite.

\(^a\)“... large changes tend to be followed by large changes—of either sign—and small changes tend to be followed by small changes ...”

\(^b\)Noted by Black (1976): Volatility tends to rise in response to “bad news” and fall in response to “good news.”
GARCH Option Pricing (concluded)

- With \(y_t \equiv \ln S_t \) denoting the logarithmic price, the model becomes

\[
y_{t+1} = y_t + r - \frac{h_t^2}{2} + h_t \epsilon_{t+1}.
\]
(99)

- The pair \((y_t, h_t^2)\) completely describes the current state.

- The conditional mean and variance of \(y_{t+1} \) are clearly

\[
E[y_{t+1} \mid y_t, h_t^2] = y_t + r - \frac{h_t^2}{2},
\]
(100)

\[
\text{Var}[y_{t+1} \mid y_t, h_t^2] = h_t^2.
\]
(101)
GARCH Model: Inferences

• Suppose the parameters $c, h_0, \beta_0, \beta_1,$ and β_2 are given.

• Then we can recover h_1, h_2, \ldots, h_n and $\epsilon_1, \epsilon_2, \ldots, \epsilon_n$ from the prices

\[S_0, S_1, \ldots, S_n \]

under the GARCH model (97) on p. 836.

• This property is useful in statistical inferences.
The Ritchken-Trevor (RT) Algorithma

- The GARCH model is a continuous-state model.
- To approximate it, we turn to trees with \textit{discrete} states.
- Path dependence in GARCH makes the tree for asset prices explode exponentially (why?).
- We need to mitigate this combinatorial explosion.

aRitchken and Trevor (1999).
The Ritchken-Trevor Algorithm (continued)

• Partition a day into n periods.

• Three states follow each state (y_t, h_t^2) after a period.

• As the trinomial model combines, each state at date t is followed by $2n + 1$ states at date $t + 1$ (recall p. 646).

• These $2n + 1$ values must approximate the distribution of (y_{t+1}, h_{t+1}^2).

• So the conditional moments (100)–(101) at date $t + 1$ on p. 839 must be matched by the trinomial model to guarantee convergence to the continuous-state model.
The Ritchken-Trevor Algorithm (continued)

- It remains to pick the jump size and the three branching probabilities.
- The role of σ in the Black-Scholes option pricing model is played by h_t in the GARCH model.
- As a jump size proportional to σ/\sqrt{n} is picked in the BOPM, a comparable magnitude will be chosen here.
- Define $\gamma \equiv h_0$, though other multiples of h_0 are possible, and
 \[\gamma_n \equiv \frac{\gamma}{\sqrt{n}}. \]
- The jump size will be some integer multiple η of γ_n.
- We call η the jump parameter (p. 844).
The seven values on the right approximate the distribution of logarithmic price y_{t+1}.
The Ritchken-Trevor Algorithm (continued)

- The middle branch does not change the underlying asset’s price.

- The probabilities for the up, middle, and down branches are

\[
p_u = \frac{h_t^2}{2\eta^2\gamma^2} + \frac{r - (h_t^2/2)}{2\eta\gamma\sqrt{n}}, \tag{102}
\]

\[
p_m = 1 - \frac{h_t^2}{\eta^2\gamma^2}, \tag{103}
\]

\[
p_d = \frac{h_t^2}{2\eta^2\gamma^2} - \frac{r - (h_t^2/2)}{2\eta\gamma\sqrt{n}}. \tag{104}
\]
The Ritchken-Trevor Algorithm (continued)

• It can be shown that:
 – The trinomial model takes on $2n + 1$ values at date $t + 1$ for y_{t+1}.
 – These values have a matching mean for y_{t+1}.
 – These values have an asymptotically matching variance for y_{t+1}.

• The central limit theorem guarantees convergence as n increases (if the probabilities are valid).
The Ritchken-Trevor Algorithm (continued)

• We can dispense with the intermediate nodes between dates to create a \((2n + 1)\)-nomial tree (p. 848).

• The resulting model is multinomial with \(2n + 1\) branches from any state \((y_t, h_t^2)\).

• There are two reasons behind this manipulation.
 – Interdate nodes are created merely to approximate the continuous-state model after one day.
 – Keeping the interdate nodes results in a tree that can be \(n\) times larger.\(^a\)

\(^a\)Contrast it with the case on p. 366.
This heptanomial tree is the outcome of the trinomial tree on p. 844 after its intermediate nodes are removed.
The Ritchken-Trevor Algorithm (continued)

• A node with logarithmic price $y_t + \ell \eta \gamma_n$ at date $t + 1$
 follows the current node at date t with price y_t, where

 $-n \leq \ell \leq n$.

• To reach that price in n periods, the number of up moves must exceed that of down moves by exactly ℓ.

• The probability that this happens is

$$P(\ell) \equiv \sum_{j_u, j_m, j_d} \frac{n!}{j_u! j_m! j_d!} p_u^{j_u} p_m^{j_m} p_d^{j_d},$$

with $j_u, j_m, j_d \geq 0$, $n = j_u + j_m + j_d$, and $\ell = j_u - j_d$.
The Ritchken-Trevor Algorithm (continued)

- A particularly simple way to calculate the $P(\ell)$s starts by noting that

$$
(p_u x + p_m + p_d x^{-1})^n = \sum_{\ell=-n}^{n} P(\ell) x^\ell.
$$

(105)

- Convince yourself that this trick does the “accounting” correctly.

- So we expand $(p_u x + p_m + p_d x^{-1})^n$ and retrieve the probabilities by reading off the coefficients.

- It can be computed in $O(n^2)$ time, if not shorter.
The Ritchken-Trevor Algorithm (continued)

- The updating rule (98) on p. 836 must be modified to account for the adoption of the discrete-state model.

- The logarithmic price $y_t + \ell \eta \gamma_n$ at date $t + 1$ following state (y_t, h_t^2) is associated with this variance:

$$h_{t+1}^2 = \beta_0 + \beta_1 h_t^2 + \beta_2 h_t^2 (\epsilon'_{t+1} - c)^2,$$

(106)

- Above,

$$\epsilon'_{t+1} = \frac{\ell \eta \gamma_n - (r - h_t^2/2)}{h_t}, \quad \ell = 0, \pm 1, \pm 2, \ldots, \pm n,$$

is a discrete random variable with $2n + 1$ values.
The Ritchken-Trevor Algorithm (continued)

- Different conditional variances h_t^2 may require different η so that the probabilities calculated by Eqs. (102)–(104) on p. 845 lie between 0 and 1.
- This implies varying jump sizes.
- The necessary requirement $p_m \geq 0$ implies $\eta \geq h_t/\gamma$.
- Hence we try

$$\eta = \lceil h_t/\gamma \rceil, \lceil h_t/\gamma \rceil + 1, \lceil h_t/\gamma \rceil + 2, \ldots$$

until valid probabilities are obtained or until their nonexistence is confirmed.
The Ritchken-Trevor Algorithm (continued)

- The sufficient and necessary condition for valid probabilities to exist is

\[
\frac{|r - (h_t^2/2)|}{2\eta\gamma\sqrt{n}} \leq \frac{h_t^2}{2\eta^2\gamma^2} \leq \min \left(1 - \frac{|r - (h_t^2/2)|}{2\eta\gamma\sqrt{n}}, \frac{1}{2} \right).
\]

- Obviously, the magnitude of \(\eta \) tends to grow with \(h_t \).

- The plot on p. 854 uses \(n = 1 \) to illustrate our points for a 3-day model.

- For example, node \((1,1)\) of date 1 and node \((2,3)\) of date 2 pick \(\eta = 2 \).

\(^a\)Wu (R90723065) (2003); Lyuu and Wu (R90723065) (2003, 2005).
The Ritchken-Trevor Algorithm (continued)

• The topology of the tree is not a standard combining multinomial tree.

• For example, a few nodes on p. 854 such as nodes \((2, 0)\) and \((2, -1)\) have *multiple* jump sizes.

• The reason is the path dependence of the model.
 – Two paths can reach node \((2, 0)\) from the root node, each with a different variance for the node.
 – One of the variances results in \(\eta = 1\), whereas the other results in \(\eta = 2\).
The Ritchken-Trevor Algorithm (concluded)

- The number of possible values of h_t^2 at a node can be exponential.
 - Because each path brings a different variance h_t^2.
- To address this problem, we record only the maximum and minimum h_t^2 at each node.a
- Therefore, each node on the tree contains only two states (y_t, h_{max}^2) and (y_t, h_{min}^2).
- Each of (y_t, h_{max}^2) and (y_t, h_{min}^2) carries its own η and set of $2n + 1$ branching probabilities.

\[a \text{Cakici and Topyan (2000). But see p. 891 for a potential problem.} \]
Negative Aspects of the Ritchken-Trevor Algorithma

- A small \(n \) may yield inaccurate option prices.
- But the tree will grow exponentially if \(n \) is large enough.
 - Specifically, \(n > (1 - \beta_1)/\beta_2 \) when \(r = c = 0 \).
- A large \(n \) has another serious problem: The tree cannot grow beyond a certain date.
- Thus the choice of \(n \) may be quite limited in practice.
- The RT algorithm can be modified to be free of shortened maturity and exponential complexity.b

aLyuu and Wu (R90723065) (2003, 2005).
bIts size is only \(O(n^2) \) if \(n \leq (\sqrt{(1 - \beta_1)/\beta_2 - c})^2 \)!