Brownian Bridge Approach to Pricing Barrier Options

e We desire an unbiased estimate which can be calculated

efficiently.

e The above-mentioned payoff should be multiplied by the
probability p that a continuous sample path does not

hit the barrier conditional on the sampled prices.

e This methodology is called the Brownian bridge
approach.

e Formally, we have

p = Prob[S(t) < H,0 <t < T|S(to), S(t1),...,S(tn)].
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Brownian Bridge Approach to Pricing Barrier Options
(continued)

e As a barrier is hit over a time interval if and only if the

maximum stock price over that period is at least H,

=P e
p rob ogltaéXTS(t) < H|S(ty),S(t1),...,S(tn)
e Luckily, the conditional distribution of the maximum
over a time interval given the beginning and ending

stock prices is known.
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Brownian Bridge Approach to Pricing Barrier Options
(continued)

Lemma 22 Assume S follows dS/S = pdt + odW and define

((x) = exp {— QIH(x/S(t))al;lg/S(t ) ] .

(1) If H > max(S(t), S(t + At)), then

Prob [ max  S(u) < H ‘ S(t), S(t + At)] — 1 — ¢(H).

t<u<t+At

(2) If h < min(S(t),S(t + At)), then

t<u<t+At

Prob [ min  S(u) > h‘ S(t), S(t + At)] =1—¢(h).
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Brownian Bridge Approach to Pricing Barrier Options
(continued)

Lemma 22 gives the probability that the barrier is not
hit in a time interval, given the starting and ending

stock prices.
For our up-and-out call, choose n = 1.

As a result,

1 — exp {— 2In(H/S(0) In(H/5(T)) } . if H > max(S(0), S(T)),

0, otherwise.
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Brownian Bridge Approach to Pricing Barrier Options
(continued)

. C = 0;
: fort=1,2,3,... ,N do
P = § x e(r—1-0%/2) T+avT €0,
if (S<H and P< H)or (> H and P > H) then
C := C+max(P—X,0)x {1 — exp [— QID(H/‘S;)J;H(H/P) } };
end if
: end for
. return Ce "' /N;
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Brownian Bridge Approach to Pricing Barrier Options
(concluded)

The idea can be generalized.

For example, we can handle more complex barrier

options.

Consider an up-and-out call with barrier H; for the
time interval (¢;,t;411], 0 <i <mn.

This option thus contains n barriers.

Multiply the probabilities for the n time intervals to
obtain the desired probability adjustment term.
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Variance Reduction

The statistical efficiency of Monte Carlo simulation can

be measured by the variance of its output.

If this variance can be lowered without changing the

expected value, fewer replications are needed.

Methods that improve efficiency in this manner are

called variance-reduction techniques.

Such techniques become practical when the added costs

are outweighed by the reduction in sampling.
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Variance Reduction: Antithetic Variates
We are interested in estimating E[g(X1, Xo,..., X,)].

Let Y7 and Y5 be random variables with the same
distribution as g(X1, Xo,...,X,).

Then

2 2 2

Var [

Y1 —|—Y2] . Var[Yl] 1 COV[Yl,YQ]

— Var| Y7 ]/2 is the variance of the Monte Carlo
method with two independent replications.

The variance Var| (Y1 4+ Y3)/2] is smaller than
Var[ Y7 ]/2 when Y7 and Y5 are negatively correlated.
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Variance Reduction: Antithetic Variates (continued)

e For each simulated sample path X, a second one is
obtained by reusing the random numbers on which the
first path is based.

e This yields a second sample path Y.

e T'wo estimates are then obtained: One based on X and
the other on Y.

e If N independent sample paths are generated, the
antithetic-variates estimator averages over 2N

estimates.
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Variance Reduction: Antithetic Variates (continued)

e Consider process dX = a; dt + b/ dt €.

e Let g be a function of n samples X7, X5,...,X,, on
the sample path.

We are interested in E[g(X7, Xo,...,X,)].

Suppose one simulation run has realizations
£1,&2,...,&, for the normally distributed fluctuation

term &.
This generates samples z1,x2,...,T,.

The estimate is then g(x), where © = (x1,22... ,x,).
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Variance Reduction: Antithetic Variates (concluded)

e The antithetic-variates method does not sample n more

numbers from ¢ for the second estimate g(x').

Instead, generate the sample path ' = (7,25 ...,z
from _£17 _627 SR _gn

Compute g(x’).

Output (g(x) + g(x’))/2.

Repeat the above steps for as many times as required by

accuracy.
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Variance Reduction: Conditioning

We are interested in estimating FE| X |.

Suppose here is a random variable Z such that

E| X | Z = z]| can be efficiently and precisely computed.
E|X|=F[E|X|Z]] by the law of iterated conditional

expectations.

Hence the random variable E| X | Z] is also an unbiased
estimator of F[X |.
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Variance Reduction: Conditioning (concluded)

As
Var| E| X | Z]] < Var[ X |,

E[X|Z] has a smaller variance than observing X

directly.
First obtain a random observation z on Z.

Then calculate E[X |Z = z] as our estimate.
— There is no need to resort to simulation in computing

E[X|Z=2].

The procedure can be repeated a few times to reduce

the variance.
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Control Variates

e Use the analytic solution of a similar yet simpler

problem to improve the solution.

e Suppose we want to estimate E[X | and there exists a

random variable Y with a known mean py= F[Y].
e Then W = X + B(Y — u) can serve as a “controlled”
estimator of E[X | for any constant g.

— However [ is chosen, W remains an unbiased
estimator of F[X | as

E[W]=E[X]+BE[Y — u] = E[X].
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Control Variates (continued)

e Note that

Var[ W] = Var[ X | + 8% Var[ Y] + 28 Cov[ X, Y],
(95)

e Hence W is less variable than X if and only if

B?Var[Y] +28Cov[X,Y] < 0. (96)
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Control Variates (concluded)

e The success of the scheme clearly depends on both j
and the choice of Y.

— For example, arithmetic average-rate options can be
priced by choosing Y to be the otherwise identical
geometric average-rate option’s price and 5 = —1.

e This approach is much more effective than the
antithetic-variates method.
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Choice of Y

e In general, the choice of Y is ad hoc,?* and experiments

must be performed to confirm the wisdom of the choice.

e Try to match calls with calls and puts with puts.”

e On many occasions, Y is a discretized version of the

derivative that gives p.

— Discretely monitored geometric average-rate option
vs. the continuously monitored geometric

average-rate option given by formulas (36) on p. 384.

aBut see Dai (B82506025, R86526008, D8852600), Chiu (R94922072),
and Lyuu (2015).
PContributed by Ms. Teng, Huei-Wen (R91723054) on May 25, 2004.
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Optimal Choice of

e For some choices, the discrepancy can be significant,

such as the lookback option.?

e Equation (95) on p. 786 is minimized when
B =—Cov|X,Y |/Var|Y].
— It is called beta in the book.

e For this specific 3,

Cov[ X, Y |*

Var| W] = Var| X | —

Var[Y] (1- IO_2X,Y) Var[ X |,

where px y 1s the correlation between X and Y.

2Contributed by Mr. Tsai, Hwai (R92723049) on May 12, 2004.
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Optimal Choice of 5 (continued)

e Note that the variance can never be increased with the

optimal choice.

e Furthermore, the stronger X and Y are correlated, the

greater the reduction in variance.

e For example, if this correlation is nearly perfect (41),

we could control X almost exactly.
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Optimal Choice of S (continued)

Typically, neither Var[Y | nor Cov| X,Y | is known.

Therefore, we cannot obtain the maximum reduction in

variance.

We can guess these values and hope that the resulting
W does indeed have a smaller variance than X.

A second possibility is to use the simulated data to

estimate these quantities.

— How to do it efficiently in terms of time and space?
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Optimal Choice of 5 (concluded)

Observe that —( has the same sign as the correlation
between X and Y.

Hence, if X and Y are positively correlated, 5 < 0,
then X is adjusted downward whenever Y > u and

upward otherwise.

The opposite is true when X and Y are negatively
correlated, in which case 5 > 0.

Suppose a suboptimal 5 + € is used instead.

e The variance increases by only ¢?Var[Y].?

2Han and Lai (2010).
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A Pitfall

A potential pitfall is to sample X and Y independently.
In this case, Cov| X,Y | = 0.

Equation (95) on p. 786 becomes

Var[W] = Var[ X | + 3% Var[Y].

So whatever Y is, the variance is tncreased!

Lesson: X and Y must be correlated.
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Problems with the Monte Carlo Method
The error bound is only probabilistic.

The probabilistic error bound of v N does not benefit
from regularity of the integrand function.

The requirement that the points be independent random

samples are wasteful because of clustering.

In reality, pseudorandom numbers generated by

completely deterministic means are used.

Monte Carlo simulation exhibits a great sensitivity on

the seed of the pseudorandom-number generator.
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Matriz Computation
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To set up a philosophy against physics is rash;

philosophers who have done so

have always ended in disaster.
— Bertrand Russell
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Definitions and Basic Results

Let A =[ai;jJi<i<m,i<j<n, Or simply A € R™"",

denote an m X n matrix.

It can also be represented as [ai,as,... ,a,| where

a; € R™ are vectors.

— Vectors are column vectors unless stated otherwise.
A is a square matrix when m = n.

The rank of a matrix is the largest number of linearly

independent columns.
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Definitions and Basic Results (continued)
e A square matrix A is said to be symmetric if AT = A.

e A real n X n matrix

A=ajli

is diagonally dominant if |a;; | > >, |ai;| for
1 <7< n.

— Such matrices are nonsingular.

e The identity matrix is the square matrix

I =diag[1,1,...,1].
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Definitions and Basic Results (concluded)

e A matrix has full column rank if its columns are linearly

independent.

e A real symmetric matrix A is positive definite if

T Ax = Z a;;z;x; >0

]
for any nonzero vector x.

e A matrix A is positive definite if and only if there exists
a matrix W such that A = W*™W and W has full

column rank.
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Cholesky Decomposition

e Positive definite matrices can be factored as
A=LL",

called the Cholesky decomposition.

— Above, L is a lower triangular matrix.
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Generation of Multivariate Distribution

e Let *x =[x1,22,...,2,]|" be a vector random variable

with a positive definite covariance matrix C.
e As usual, assume E[x]=0.

e This covariance structure can be matched by Py.

— (' = PP" is the Cholesky decomposition of C.?

T is a vector random variable

— Y= [y17y27°'° 7yn]
with a covariance matrix equal to the identity matrix.

@What if C is not positive definite? See Lai (R93942114) and Lyuu
(2007).
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Generation of Multivariate Normal Distribution

e Suppose we want to generate the multivariate normal

distribution with a covariance matrix ¢ = PP".

— First, generate independent standard normal
distributions y1,vys2, ..., Yp.

— Then

]T

P[y17y27' - Yn
has the desired distribution.

— These steps can then be repeated.
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Multivariate Derivatives Pricing

Generating the multivariate normal distribution is
essential for the Monte Carlo pricing of multivariate
derivatives (pp. 710ff).

For example, the rainbow option on k assets has payoft
max(max(Sy, S2,...,5) — X,0)

at maturity.

e The closed-form formula is a multi-dimensional integral.?

aJohnson (1987); Chen (D95723006) and Lyuu (2009).

©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 803



Multivariate Derivatives Pricing (concluded)

Suppose dS;/S; =rdt+o;dW;, 1 < j <k, where C is
the correlation matrix for dWy,dW,, ... ,dW;.

Let C' = PP".

Let & consist of k£ independent random variables from
N(0,1).

Let ¢ = P¢.
Similar to Eq. (94) on p. 752,

Si—l—l _ Sie(r—a?/Z) At+o VAL 5;, 1< ] < k.
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Least-Squares Problems

e The least-squares (LS) problem is concerned with

min || Az -0 ||,
xER™

where Ae¢ R™*", be R™, m > n.

e The LS problem is called regression analysis in statistics

and is equivalent to minimizing the mean-square error.

e Often written as
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Polynomial Regression

e In polynomial regression, rg + z1x + - - + x,x" is used
to fit the data {(a1,01),(a2,b2),...,(am,bm) }-

e This leads to the LS problem,

2 n
1 a a7 --- aj

2 n
1 ax a5 -+ a3

2 n
1 an ai, a.,

e Consult the text for solutions.
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American Option Pricing by Simulation

The continuation value of an American option is the
conditional expectation of the payoff from keeping the

option alive now.

The option holder must compare the immediate exercise

value and the continuation value.

In standard Monte Carlo simulation, each path is

treated independently of other paths.

But the decision to exercise the option cannot be

reached by looking at one path alone.
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The Least-Squares Monte Carlo Approach

The continuation value can be estimated from the
cross-sectional information in the simulation by using

least squares.®

The result is a function (of the state) for estimating the

continuation values.

Use the function to estimate the continuation value for

each path to determine its cash flow.

This is called the least-squares Monte Carlo (LSM)
approach.

2Longstaff and Schwartz (2001).
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The Least-Squares Monte Carlo Approach (concluded)

e The LSM is provably convergent.?

e The LSM can be easily parallelized.®

— Partition the paths into subproblems and perform

LSM on each of them independently.

— The speedup is close to linear (i.e., proportional to
the number of CPUs).

e Surprisingly, accuracy is not affected.

2Clément, Lamberton, and Protter (2002); Stentoft (2004).
bHuang (B96902079, R00922018) (2013) and Chen (B979020486,

R01922005) (2014); Chen (B97902046, R01922005), Huang (B96902079,
R00922018) (2013) and Lyuu (2015).
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A Numerical Example

Consider a 3-year American put on a

non-dividend-paying stock.

The put is exercisable at years 0, 1, 2, and 3.
The strike price X = 105.

The annualized riskless rate is r = 5%.

The current stock price is 101.

— The annual discount factor hence equals 0.951229.

We use only 8 price paths to illustrate the algorithm.
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A Numerical Example (continued)

Path

Year 0

Stock price paths

Year 1

Year 2

Year 3

1 101
101
101
101
101
101
101
101

97.6424
101.2103
105.7802
96.4411
124.2345
95.8375
108.9554
104.1475

92.5815
105.1763
103.6010
98.7120
101.0564
93.7270
102.4177
113.2516

107.5178
102.4524
124.5115
108.3600
104.5315
99.3788
100.9225
115.0994
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A Numerical Example (continued)

We use the basis functions 1, z, z2.

— Other basis functions are possible.?

The plot next page shows the final estimated optimal
exercise strategy given by LSM.

We now proceed to tackle our problem.

The idea is to calculate the cash flow along each path,

using information from all paths.

@Laguerre polynomials, Hermite polynomials, Legendre polynomials,
Chebyshev polynomials, Gedenbauer polynomials, and Jacobi polynomi-

als.
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A Numerical Example (continued)

Cash flows at year 3
Path Year 0 Year1l Year2 Year3
1 — — — 0
— — — 2.5476
— — — 0
0
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A Numerical Example (continued)

The cash flows at year 3 are the exercise value if the put

is in the money.
Only 4 paths are in the money: 2, 5, 6, 7.

Some of the cash flows may not occur if the put is
exercised earlier, which we will find out step by step.

Incidentally, the European counterpart has a value of

2.5476 + 0.4685 + 5.6212 + 4.0775
0.9512293 x + g * — 1.3680.
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A Numerical Example (continued)

We move on to year 2.

For each state that is in the money at year 2, we must
decide whether to exercise it.

There are 6 paths for which the put is in the money: 1,
3,4,5,6, 7.

Only in-the-money paths will be used in the regression

because they are where early exercise is relevant.

— If there were none, we would move on to year 1.
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A Numerical Example (continued)

e Let x denote the stock prices at year 2 for those 6 paths.

e Let y denote the corresponding discounted future cash

flows (at year 3) if the put is not exercised at year 2.
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A Numerical Example (continued)

Regression at year 2

L Y
92.5815 0 x 0.951229

103.6010 0 x 0.951229
98.7120 0 x 0.951229
101.0564 0.4685 x 0.951229
93.7270 5.6212 x 0.951229
102.4177 4.0775 x 0.951229
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A Numerical Example (continued)

We regress y on 1, x, and z2.

The result is

f(x) =22.08 —0.313114 x 2 + 0.00106918 x z2.

f(x) estimates the continuation value conditional on the

stock price at year 2.

We next compare the immediate exercise value and the

continuation value.
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A Numerical Example (continued)

Optimal early exercise decision at year 2
Path  Exercise Continuation

1 124185  f(92.5815) = 2.2558

1.3990 f(103.6010) = 1.1168
6.2880  f(98.7120) = 1.5901

11.2730  f(93.7270) = 2.1253

) =
) =
3.9436  f£(101.0564) = 1.3568
) =
2.5823  £(102.4177) = 0.3326
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A Numerical Example (continued)

e Amazingly, the put should be exercised in all 6 paths: 1,
3,4,5,6, 7.

e Now, any positive cash flow at year 3 should be set to
zero or overridden for these paths as the put is exercised

before year 3.

— They are paths 5, 6, 7.

e The cash flows on p. 815 become the ones on next slide.
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A Numerical Example (continued)

Cash flows at years 2 & 3
Path  Year 0 Year 1l Year 2 Year 3
1 — — 12.4185 0
— — 0 2.5476

— — 1.3990

6.2880

3.9436

11.2730

2.5823

0
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A Numerical Example (continued)

We move on to year 1.

For each state that is in the money at year 1, we must
decide whether to exercise it.

There are 5 paths for which the put is in the money: 1,
2,4, 6, 8.

Only in-the-money paths will be used in the regression

because they are where early exercise is relevant.

— If there were none, we would move on to year 0.
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A Numerical Example (continued)

e Let x denote the stock prices at year 1 for those 5 paths.

e Let y denote the corresponding discounted future cash
flows if the put is not exercised at year 1.

e From p. 823, we have the following table.
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A Numerical Example (continued)

Regression at year 1
x Y
97.6424 12.4185 x 0.951229
101.2103  2.5476 x 0.9512297

96.4411 6.2880 x 0.951229

95.8375 11.2730 x 0.951229

104.1475 0
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A Numerical Example (continued)

We regress y on 1, x, and z2.

The result is

f(x) = —420.964 + 9.78113 x x — 0.0551567 x z°.

f(x) estimates the continuation value conditional on the

stock price at year 1.

We next compare the immediate exercise value and the

continuation value.
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A Numerical Example (continued)

Optimal early exercise decision at year 1
Path  Exercise Continuation
1 7.3576 f(97.6424) = 8.2230
3.7897 £(101.2103) = 3.9882

8.9089 £(96.4411) = 9.3329

9.1625 £(95.8375) = 9.83042

0.8525  f(104.1475) = —0.551885
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A Numerical Example (continued)

The put should be exercised for 1 path only: 8.
— Note that f(104.1475) < 0.

Now, any positive future cash flow should be set to zero

or overridden for this path.

— But there is none.
The cash flows on p. 823 become the ones on next slide.

They also confirm the plot on p. 814.
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A Numerical Example (continued)

Cash flows at years 1, 2, & 3

Path Year 0 Yearl Year 2 Year 3
1 — 12.4185 0
- 0 2.5476

— 1.3990

6.2880

3.9436

11.2730

2.5823

0
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A Numerical Example (continued)

e We move on to year 0.

e The continuation value is, from p 830,

(12.4185 x 0.9512292 + 2.5476 x 0.951229°

+1.3990 x 0.951229% 4 6.2880 x 0.951229°

+3.9436 x 0.951229% 4 11.2730 x 0.9512297

1+2.5823 x 0.951229% 4 0.8525 x 0.951229)/8
—  4.66263.
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A Numerical Example (concluded)

e As this is larger than the immediate exercise value of
105 — 101 = 4,
the put should not be exercised at year 0.

e Hence the put’s value is estimated to be 4.66263.

e Compare this with the European put’s value of 1.3680
(p. 816).
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Time Series Analysis
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The historian is a prophet in reverse.

— Friedrich von Schlegel (1772-1829)
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GARCH Option Pricing?

e Options can be priced when the underlying asset’s

return follows a GARCH process.

e Let S; denote the asset price at date t.

e Let h? be the conditional variance of the return over

the period [t,t+4 1] given the information at date t.

— “One day” is merely a convenient term for any

elapsed time At.

2ARCH (autoregressive conditional heteroskedastic) is due to Engle
(1982), co-winner of the 2003 Nobel Prize in Economic Sciences. GARCH
(generalized ARCH ) is due to Bollerslev (1986) and Taylor (1986). A
Bloomberg quant said to me on Feb 29, 2008, that GARCH is seldom

used in trading.
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GARCH Option Pricing (continued)

e Adopt the following risk-neutral process for the price

dynamics:?

S h?
t+1 = r — 7t + htet—i—l: (97)

1
nSt

50 + 61 h% + 52h?(€t+1 — 6)2, (98)
N(0,1) given information at date t,
daily riskless return,

0.

2Duan (1995).

©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 836



GARCH Option Pricing (continued)

e The five unknown parameters of the model are ¢, hg, O,

517 and 62'
e It is postulated that By, 81,02 > 0 to make the

conditional variance positive.
e There are other inequalities to satisfy (see text).

e The above process is called the nonlinear asymmetric

GARCH (or NGARCH) model.
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GARCH Option Pricing (continued)

e It captures the volatility clustering in asset returns first
noted by Mandelbrot (1963).?

— When ¢ = 0, a large €;11 results in a large h; 1,
which in turns tends to yield a large h;1 2, and so on.

e It also captures the negative correlation between the

asset return and changes in its (conditional) volatility.”

— For ¢ > 0, a positive €;41 (good news) tends to
decrease h;.1, whereas a negative €11 (bad news)
tends to do the opposite.

a

. large changes tend to be followed by large changes—of either

sign—and small changes tend to be followed by small changes ...”

PNoted by Black (1976): Volatility tends to rise in response to “bad
news” and fall in response to “good news.”
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GARCH Option Pricing (concluded)

e With y; =InS; denoting the logarithmic price, the
model becomes
hi
Yep1 = Ye T — o F hi€ryr. (99)
e The pair (y;, h?) completely describes the current state.

e The conditional mean and variance of y;,; are clearly

h2
E[ytﬂ\yt,h%] Yyt +1r — 775, (100)

Var[yi 1 |y, by ] h (101)
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GARCH Model: Inferences

e Suppose the parameters c, hg, By, 81, and [ are given.

e Then we can recover hi,ho,... ,h, and €1,¢e9,... €,

from the prices

507517"' 7Sn
under the GARCH model (97) on p. 836.

e This property is useful in statistical inferences.
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The Ritchken-Trevor (RT) Algorithm?
e The GARCH model is a continuous-state model.
e To approximate it, we turn to trees with discrete states.

e Path dependence in GARCH makes the tree for asset

prices explode exponentially (why?).

e We need to mitigate this combinatorial explosion.

2Ritchken and Trevor (1999).
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The Ritchken-Trevor Algorithm (continued)

Partition a day into n periods.
Three states follow each state (y;, h?) after a period.

As the trinomial model combines, each state at date ¢ is
followed by 2n + 1 states at date t 4 1 (recall p. 646).

These 2n + 1 values must approximate the distribution
of (yt+1,h§+1).

So the conditional moments (100)—(101) at date ¢ + 1
on p. 839 must be matched by the trinomial model to

guarantee convergence to the continuous-state model.
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The Ritchken-Trevor Algorithm (continued)

It remains to pick the jump size and the three branching
probabilities.

The role of o in the Black-Scholes option pricing model
is played by h; in the GARCH model.

As a jump size proportional to o/+/n is picked in the
BOPM, a comparable magnitude will be chosen here.

Define v = hg, though other multiples of hy are
possible, and

=

The jump size will be some integer multiple n of ~,.

We call n the jump parameter (p. 844).
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> 1 day
The seven values on the right approximate the distribution

of logarithmic price ¢ 1.
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The Ritchken-Trevor Algorithm (continued)

e The middle branch does not change the underlying
asset’s price.

e The probabilities for the up, middle, and down branches
are
R = (h/2)
242 2y
hi
n°y?
hi  r—(hi/2)

_ . 104
2122 217/ 1 (104)

(102)

1— , (103)
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The Ritchken-Trevor Algorithm (continued)

e It can be shown that:

— The trinomial model takes on 2n + 1 values at date
t+1 for yiaq.

— These values have a matching mean for ;11 .

— These values have an asymptotically matching

variance for ;41 .

e The central limit theorem guarantees convergence as n

increases (if the probabilities are valid).
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The Ritchken-Trevor Algorithm (continued)

e We can dispense with the intermediate nodes between
dates to create a (2n + 1)-nomial tree (p. 848).

e The resulting model is multinomial with 2n + 1
branches from any state (y;, h?).
e There are two reasons behind this manipulation.

— Interdate nodes are created merely to approximate

the continuous-state model after one day.

— Keeping the interdate nodes results in a tree that can

be n times larger.®

aContrast it with the case on p. 366.
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> 1 day >
This heptanomial tree is the outcome of the trinomial tree

on p. 844 after its intermediate nodes are removed.
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The Ritchken-Trevor Algorithm (continued)

e A node with logarithmic price y; + ¢nv, at date ¢+ 1

follows the current node at date ¢ with price v;, where

—n < ¥ <n.

e To reach that price in n periods, the number of up

moves must exceed that of down moves by exactly /.

e The probability that this happens is

n! L
P()= ), S PP

juajmajd ,]U j ]

with ju, jm,Jja = 0, n = ju + Jm + Ja, and £ = j, — ja-.
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The Ritchken-Trevor Algorithm (continued)

e A particularly simple way to calculate the P(¢)s starts
by noting that

(Put +pm +paz™")" = Y P(0)a’.
t=—n (105)

— Convince yourself that this trick does the

“accounting” correctly.

e So we expand (puT + pm + pax~1)"™ and retrieve the
probabilities by reading off the coefficients.

e It can be computed in O(n?) time, if not shorter.
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The Ritchken-Trevor Algorithm (continued)

e The updating rule (98) on p. 836 must be modified to

account for the adoption of the discrete-state model.

e The logarithmic price y; + ¢n7y, at date t+ 1 following

state (yg, h?) is associated with this variance:

t—|—1 60 + Blh + 52h2(€t—|—1 6)2, (106)

— Above,

Iy — (r = hi/2)
€11 = " L 0=0,+1,42,...,+n,

i1s a discrete random variable with 2n + 1 values.
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The Ritchken-Trevor Algorithm (continued)

Different conditional variances h? may require different
1 so that the probabilities calculated by
Eqgs. (102)—(104) on p. 845 lie between 0 and 1.

This implies varying jump sizes.
The necessary requirement p,, > 0 implies n > h;/~.

Hence we try

n=1he/y [ /v + 1 [ /7] +2,...

until valid probabilities are obtained or until their

nonexistence is confirmed.
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The Ritchken-Trevor Algorithm (continued)

The sufficient and necessary condition for valid

probabilities to exist is®

= (2/2)| _ B Smm@_\r—m?/z)u)_

2nyv/n T 2022 2nyv/n 2
Obviously, the magnitude of n tends to grow with h;.

The plot on p. 854 uses n =1 to illustrate our points
for a 3-day model.

For example, node (1,1) of date 1 and node (2,3) of
date 2 pick n = 2.

aWu (R90723065) (2003); Lyuu and Wu (R90723065) (2003, 2005).
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The Ritchken-Trevor Algorithm (continued)

e The topology of the tree is not a standard combining

multinomial tree.

e For example, a few nodes on p. 854 such as nodes (2,0)
and (2, —1) have multiple jump sizes.
e The reason is the path dependence of the model.

— Two paths can reach node (2,0) from the root node,
each with a different variance for the node.

— One of the variances results in n = 1, whereas the

other results in n = 2.
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The Ritchken-Trevor Algorithm (concluded)

The number of possible values of h? at a node can be

exponential.

— Because each path brings a different variance h?.

To address this problem, we record only the maximum

and minimum h? at each node.?

Therefore, each node on the tree contains only two
states (y¢, h%..) and (y;, h2 . ).

max min

Each of (y;, h2,.) and (y;, h%; ) carries its own 7 and

max min

set of 2n + 1 branching probabilities.

aCakici and Topyan (2000). But see p. 891 for a potential problem.
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Negative Aspects of the Ritchken-Trevor Algorithm?

e A small n may yield inaccurate option prices.

e But the tree will grow exponentially if n is large enough.

— Specifically, n > (1 — 31)/82 when r = ¢ = 0.

A large n has another serious problem: The tree cannot
grow beyond a certain date.

Thus the choice of n may be quite limited in practice.

The RT algorithm can be modified to be free of
shortened maturity and exponential complexity.”

aLyuu and Wu (R90723065) (2003, 2005).
bTts size is only O(n?) if n < (1/(1 — B1)/B2 — ¢)?!
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