
A General Method for Constructing Binomial Modelsa

• We are given a continuous-time process,

dy = α(y, t) dt+ σ(y, t) dW.

• Need to make sure the binomial model’s drift and

diffusion converge to the above process.

• Set the probability of an up move to

α(y, t)∆t+ y − yd
yu − yd

.

• Here yu ≡ y + σ(y, t)
√
∆t and yd ≡ y − σ(y, t)

√
∆t

represent the two rates that follow the current rate y.

aNelson and Ramaswamy (1990).
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A General Method (continued)

• The displacements are identical, at σ(y, t)
√
∆t .

• But the binomial tree may not combine as

σ(y, t)
√
∆t− σ(yu, t+∆t)

√
∆t

̸= −σ(y, t)
√
∆t+ σ(yd, t+∆t)

√
∆t

in general.

• When σ(y, t) is a constant independent of y, equality

holds and the tree combines.
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A General Method (continued)

• To achieve this, define the transformation

x(y, t) ≡
∫ y

σ(z, t)−1 dz.

• Then x follows

dx = m(y, t) dt+ dW

for some m(y, t) (see text).

• The key is that the diffusion term is now a constant, and

the binomial tree for x combines.

• The transformation that turns a 1-dim stochastic process

into one with a constant diffusion term is unique.a

aChiu (R98723059) (2012).
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A General Method (concluded)

• The probability of an up move remains

α(y(x, t), t)∆t+ y(x, t)− yd(x, t)

yu(x, t)− yd(x, t)
,

where y(x, t) is the inverse transformation of x(y, t)

from x back to y.

• Note that

yu(x, t) ≡ y(x+
√
∆t, t+∆t),

yd(x, t) ≡ y(x−
√
∆t, t+∆t).
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Examples

• The transformation is∫ r

(σ
√
z)−1 dz =

2
√
r

σ

for the CIR model.

• The transformation is∫ S

(σz)−1 dz =
lnS

σ

for the Black-Scholes model.

• The familiar binomial option pricing model in fact

discretizes lnS not S.
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On One-Factor Short Rate Models

• By using only the short rate, they ignore other rates on

the yield curve.

• Such models also restrict the volatility to be a function

of interest rate levels only.

• The prices of all bonds move in the same direction at

the same time (their magnitudes may differ).

• The returns on all bonds thus become highly correlated.

• In reality, there seems to be a certain amount of

independence between short- and long-term rates.
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On One-Factor Short Rate Models (continued)

• One-factor models therefore cannot accommodate

nondegenerate correlation structures across maturities.

• Derivatives whose values depend on the correlation

structure will be mispriced.

• The calibrated models may not generate term structures

as concave as the data suggest.

• The term structure empirically changes in slope and

curvature as well as makes parallel moves.

• This is inconsistent with the restriction that all

segments of the term structure be perfectly correlated.
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On One-Factor Short Rate Models (concluded)

• Multi-factor models lead to families of yield curves that

can take a greater variety of shapes and can better

represent reality.

• But they are much harder to think about and work with.

• They also take much more computer time—the curse of

dimensionality.

• These practical concerns limit the use of multifactor

models to two-factor ones.
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Options on Coupon Bondsa

• Assume a one-factor short rate model.

• The price of a European option on a coupon bond can

be calculated from those on zero-coupon bonds.

• Consider a European call expiring at time T on a bond

with par value $1.

• Let X denote the strike price.

• The bond has cash flows c1, c2, . . . , cn at times

t1, t2, . . . , tn, where ti > T for all i.

aJamshidian (1989).
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Options on Coupon Bonds (continued)

• The payoff for the option is

max

{[
n∑

i=1

ciP (r(T ), T, ti)

]
−X, 0

}
.

• At time T , there is a unique value r∗ for r(T ) that

renders the coupon bond’s price equal the strike price

X.

• This r∗ can be obtained by solving

X =
n∑

i=1

ciP (r, T, ti)

numerically for r.
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Options on Coupon Bonds (continued)

• The solution is unique for one-factor models whose bond

price is a monotonically decreasing function of r.

• Let

Xi ≡ P (r∗, T, ti),

the value at time T of a zero-coupon bond with par

value $1 and maturing at time ti if r(T ) = r∗.

• Note that P (r, T, ti) ≥ Xi if and only if ≤ r∗.
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Options on Coupon Bonds (concluded)

• As X =
∑

i ciXi, the option’s payoff equals

max

{[
n∑

i=1

ciP (r(T ), T, ti)

]
−

[∑
i

ciXi

]
, 0

}

=
n∑

i=1

ci ×max(P (r(T ), T, ti)−Xi, 0).

• Thus the call is a package of n options on the

underlying zero-coupon bond.

• Why can’t we do the same thing for Asian options?a

aContributed by Mr. Yang, Jui-Chung (D97723002) on May 20, 2009.
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No-Arbitrage Term Structure Models
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How much of the structure of our theories

really tells us about things in nature,

and how much do we contribute ourselves?

— Arthur Eddington (1882–1944)

c⃝2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 1047



Motivations

• Recall the difficulties facing equilibrium models

mentioned earlier.

– They usually require the estimation of the market

price of risk.

– They cannot fit the market term structure.

– But consistency with the market is often mandatory

in practice.
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No-Arbitrage Modelsa

• No-arbitrage models utilize the full information of the

term structure.

• They accept the observed term structure as consistent

with an unobserved and unspecified equilibrium.

• From there, arbitrage-free movements of interest rates or

bond prices over time are modeled.

• By definition, the market price of risk must be reflected

in the current term structure; hence the resulting

interest rate process is risk-neutral.

aHo and Lee (1986). Thomas Lee is a “billionaire founder” of Thomas

H. Lee Partners LP, according to Bloomberg on May 26, 2012.
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No-Arbitrage Models (concluded)

• No-arbitrage models can specify the dynamics of

zero-coupon bond prices, forward rates, or the short rate.

• Bond price and forward rate models are usually

non-Markovian (path dependent).

• In contrast, short rate models are generally constructed

to be explicitly Markovian (path independent).

• Markovian models are easier to handle computationally.
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The Ho-Lee Modela

• The short rates at any given time are evenly spaced.

• Let p denote the risk-neutral probability that the short

rate makes an up move.

• We shall adopt continuous compounding.

aHo and Lee (1986).
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↗

r3

↗ ↘

r2

↗ ↘ ↗

r1 r3 + v3

↘ ↗ ↘

r2 + v2

↘ ↗

r3 + 2v3

↘
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The Ho-Lee Model (continued)

• The Ho-Lee model starts with zero-coupon bond prices

P (t, t+ 1), P (t, t+ 2), . . . at time t identified with the

root of the tree.

• Let the discount factors in the next period be

Pd(t+ 1, t+ 2), Pd(t+ 1, t+ 3), . . . if short rate moves down

Pu(t+ 1, t+ 2), Pu(t+ 1, t+ 3), . . . if short rate moves up

• By backward induction, it is not hard to see that for

n ≥ 2,

Pu(t+ 1, t+ n) = Pd(t+ 1, t+ n) e−(v2+···+vn)

(132)

(see text).
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The Ho-Lee Model (continued)

• It is also not hard to check that the n-period

zero-coupon bond has yields

yd(n) ≡ − lnPd(t+ 1, t+ n)

n− 1

yu(n) ≡ − lnPu(t+ 1, t+ n)

n− 1
= yd(n) +

v2 + · · ·+ vn
n− 1

• The volatility of the yield to maturity for this bond is

therefore

κn ≡
√

pyu(n)2 + (1− p) yd(n)2 − [ pyu(n) + (1− p) yd(n) ]2

=
√

p(1− p) (yu(n)− yd(n))

=
√

p(1− p)
v2 + · · ·+ vn

n− 1
.
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The Ho-Lee Model (concluded)

• In particular, the short rate volatility is determined by

taking n = 2:

σ =
√
p(1− p) v2. (133)

• The variance of the short rate therefore equals

p(1− p)(ru − rd)
2,

where ru and rd are the two successor rates.a

aContrast this with the lognormal model (107) on p. 916.
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The Ho-Lee Model: Volatility Term Structure

• The volatility term structure is composed of

κ2, κ3, . . . .

– It is independent of

r2, r3, . . . .

• It is easy to compute the vis from the volatility

structure, and vice versa (review p. 1054).

• The ris can be computed by forward induction.

• The volatility structure is supplied by the market.
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The Ho-Lee Model: Bond Price Process

• In a risk-neutral economy, the initial discount factors

satisfy

P (t, t+n) = (pPu(t+1, t+n)+(1−p)Pd(t+1, t+n))P (t, t+1).

• Combine the above with Eq. (132) on p. 1053 and

assume p = 1/2 to obtaina

Pd(t+ 1, t+ n) =
P (t, t+ n)

P (t, t+ 1)

2× exp[ v2 + · · ·+ vn ]

1 + exp[ v2 + · · ·+ vn ]
,

(134)

Pu(t+ 1, t+ n) =
P (t, t+ n)

P (t, t+ 1)

2

1 + exp[ v2 + · · ·+ vn ]
.

(134′)

aIn the limit, only the volatility matters.
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The Ho-Lee Model: Bond Price Process (concluded)

• The bond price tree combines.

• Suppose all vi equal some constant v and δ ≡ ev > 0.

• Then

Pd(t+ 1, t+ n) =
P (t, t+ n)

P (t, t+ 1)

2δn−1

1 + δn−1
,

Pu(t+ 1, t+ n) =
P (t, t+ n)

P (t, t+ 1)

2

1 + δn−1
.

• Short rate volatility σ equals v/2 by Eq. (133) on

p. 1055.

• Price derivatives by taking expectations under the

risk-neutral probability.
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The Ho-Lee Model: Yields and Their Covariances

• The one-period rate of return of an n-period

zero-coupon bond is

r(t, t+ n) ≡ ln

(
P (t+ 1, t+ n)

P (t, t+ n)

)
.

• Its value is either ln Pd(t+1,t+n)
P (t,t+n) or ln Pu(t+1,t+n)

P (t,t+n) .

• Thus the variance of return is

Var[ r(t, t+ n) ] = p(1− p)((n− 1) v)2 = (n− 1)2σ2.
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The Ho-Lee Model: Yields and Their Covariances
(concluded)

• The covariance between r(t, t+ n) and r(t, t+m) is

(n− 1)(m− 1)σ2

(see text).

• As a result, the correlation between any two one-period

rates of return is unity.

• Strong correlation between rates is inherent in all

one-factor Markovian models.
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The Ho-Lee Model: Short Rate Process

• The continuous-time limit of the Ho-Lee model is

dr = θ(t) dt+ σ dW.

• This is Vasicek’s model with the mean-reverting drift

replaced by a deterministic, time-dependent drift.

• A nonflat term structure of volatilities can be achieved if

the short rate volatility is also made time varying,

dr = θ(t) dt+ σ(t) dW.

• This corresponds to the discrete-time model in which vi

are not all identical.
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The Ho-Lee Model: Some Problems

• Future (nominal) interest rates may be negative.

• The short rate volatility is independent of the rate level.
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Problems with No-Arbitrage Models in General

• Interest rate movements should reflect shifts in the

model’s state variables (factors) not its parameters.

• Model parameters, such as the drift θ(t) in the

continuous-time Ho-Lee model, should be stable over

time.

• But in practice, no-arbitrage models capture yield curve

shifts through the recalibration of parameters.

– A new model is thus born everyday.
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Problems with No-Arbitrage Models in General
(concluded)

• This in effect says the model estimated at some time

does not describe the term structure of interest rates

and their volatilities at other times.

• Consequently, a model’s intertemporal behavior is

suspect, and using it for hedging and risk management

may be unreliable.
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The Black-Derman-Toy Modela

• This model is extensively used by practitioners.

• The BDT short rate process is the lognormal binomial

interest rate process described on pp. 912ff.b

• The volatility structure is given by the market.

• From it, the short rate volatilities (thus vi) are

determined together with ri.

aBlack, Derman, and Toy (BDT) (1990), but essentially finished in

1986 according to Mehrling (2005).
bRepeated on next page.
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r4

↗
r3

↗ ↘
r2 r4v4

↗ ↘ ↗
r1 r3v3

↘ ↗ ↘
r2v2 r4v24

↘ ↗
r3v23

↘
r4v34
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The Black-Derman-Toy Model (concluded)

• Our earlier binomial interest rate tree, in contrast,

assumes vi are given a priori.

• Lognormal models preclude negative short rates.
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The BDT Model: Volatility Structure

• The volatility structure defines the yield volatilities of

zero-coupon bonds of various maturities.

• Let the yield volatility of the i-period zero-coupon bond

be denoted by κi.

• Pu is the price of the i-period zero-coupon bond one

period from now if the short rate makes an up move.

• Pd is the price of the i-period zero-coupon bond one

period from now if the short rate makes a down move.
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The BDT Model: Volatility Structure (concluded)

• Corresponding to these two prices are the following

yields to maturity,

yu ≡ P−1/(i−1)
u − 1,

yd ≡ P
−1/(i−1)
d − 1.

• The yield volatility is defined as

κi ≡
ln(yu/yd)

2

(recall Eq. (113) on p. 962).
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The BDT Model: Calibration

• The inputs to the BDT model are riskless zero-coupon

bond yields and their volatilities.

• For economy of expression, all numbers are period based.

• Suppose inductively that we have calculated

(r1, v1), (r2, v2), . . . , (ri−1, vi−1).

– They define the binomial tree up to period i− 1.

• We now proceed to calculate ri and vi to extend the

tree to period i.
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The BDT Model: Calibration (continued)

• Assume the price of the i-period zero can move to Pu

or Pd one period from now.

• Let y denote the current i-period spot rate, which is

known.

• In a risk-neutral economy,

Pu + Pd

2(1 + r1)
=

1

(1 + y)i
. (135)

• Obviously, Pu and Pd are functions of the unknown ri

and vi.
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The BDT Model: Calibration (continued)

• Viewed from now, the future (i− 1)-period spot rate at

time 1 is uncertain.

• Recall that yu and yd represent the spot rates at the

up node and the down node, respectively (p. 1069).

• With κ2
i denoting their variance, we have

κi =
1

2
ln

(
Pu

−1/(i−1) − 1

Pd
−1/(i−1) − 1

)
. (136)
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The BDT Model: Calibration (continued)

• We will employ forward induction to derive a

quadratic-time calibration algorithm.a

• Recall that forward induction inductively figures out, by

moving forward in time, how much $1 at a node

contributes to the price (review p. 939(a)).

• This number is called the state price and is the price of

the claim that pays $1 at that node and zero elsewhere.

aChen (R84526007) and Lyuu (1997); Lyuu (1999).
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The BDT Model: Calibration (continued)

• Let the unknown baseline rate for period i be ri = r.

• Let the unknown multiplicative ratio be vi = v.

• Let the state prices at time i− 1 be

P1, P2, . . . , Pi.

• They correspond to rates

r, rv, . . . , rvi−1

for period i, respectively.

• One dollar at time i has a present value of

f(r, v) ≡ P1

1 + r
+

P2

1 + rv
+

P3

1 + rv2
+ · · ·+ Pi

1 + rvi−1
.
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The BDT Model: Calibration (continued)

• The yield volatility is

g(r, v) ≡
1

2
ln


(

Pu,1

1+rv
+

Pu,2

1+rv2 + · · ·+ Pu,i−1

1+rvi−1

)−1/(i−1)
− 1(

Pd,1

1+r
+

Pd,2

1+rv
+ · · ·+ Pd,i−1

1+rvi−2

)−1/(i−1)
− 1

 .

• Above, Pu,1, Pu,2, . . . denote the state prices at time

i− 1 of the subtree rooted at the up node (like r2v2 on

p. 1066).

• And Pd,1, Pd,2, . . . denote the state prices at time i− 1

of the subtree rooted at the down node (like r2 on

p. 1066).
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The BDT Model: Calibration (concluded)

• Note that every node maintains 3 state prices.

• Now solve

f(r, v) =
1

(1 + y)i
,

g(r, v) = κi,

for r = ri and v = vi.

• This O(n2)-time algorithm appears in the text.
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The BDT Model: Continuous-Time Limit

• The continuous-time limit of the BDT model is

d ln r =

(
θ(t) +

σ′(t)

σ(t)
ln r

)
dt+ σ(t) dW.

• The short rate volatility clearly should be a declining

function of time for the model to display mean reversion.

– That makes σ′(t) < 0.

• In particular, constant volatility will not attain mean

reversion.
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Calibrating the BDT Model with the Differential Tree
(in seconds)a

Number Running Number Running Number Running

of years time of years time of years time

3000 398.880 39000 8562.640 75000 26182.080

6000 1697.680 42000 9579.780 78000 28138.140

9000 2539.040 45000 10785.850 81000 30230.260

12000 2803.890 48000 11905.290 84000 32317.050

15000 3149.330 51000 13199.470 87000 34487.320

18000 3549.100 54000 14411.790 90000 36795.430

21000 3990.050 57000 15932.370 120000 63767.690

24000 4470.320 60000 17360.670 150000 98339.710

27000 5211.830 63000 19037.910 180000 140484.180

30000 5944.330 66000 20751.100 210000 190557.420

33000 6639.480 69000 22435.050 240000 249138.210

36000 7611.630 72000 24292.740 270000 313480.390

75MHz Sun SPARCstation 20, one period per year.

aLyuu (1999).
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The Black-Karasinski Modela

• The BK model stipulates that the short rate follows

d ln r = κ(t)(θ(t)− ln r) dt+ σ(t) dW.

• This explicitly mean-reverting model depends on time

through κ( · ), θ( · ), and σ( · ).

• The BK model hence has one more degree of freedom

than the BDT model.

• The speed of mean reversion κ(t) and the short rate

volatility σ(t) are independent.

aBlack and Karasinski (1991).
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The Black-Karasinski Model: Discrete Time

• The discrete-time version of the BK model has the same

representation as the BDT model.

• To maintain a combining binomial tree, however,

requires some manipulations.

• The next plot illustrates the ideas in which

t2 ≡ t1 +∆t1,

t3 ≡ t2 +∆t2.
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↗

ln rd(t2)

↗ ↘

ln r(t1) ln rdu(t3) = ln rud(t3)

↘ ↗

ln ru(t2)

↘
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The Black-Karasinski Model: Discrete Time
(continued)

• Note that

ln rd(t2) = ln r(t1) + κ(t1)(θ(t1)− ln r(t1))∆t1 − σ(t1)
√

∆t1 ,

ln ru(t2) = ln r(t1) + κ(t1)(θ(t1)− ln r(t1))∆t1 + σ(t1)
√

∆t1 .

• To ensure that an up move followed by a down move
coincides with a down move followed by an up move,
impose

ln rd(t2) + κ(t2)(θ(t2)− ln rd(t2))∆t2 + σ(t2)
√

∆t2 ,

= ln ru(t2) + κ(t2)(θ(t2)− ln ru(t2))∆t2 − σ(t2)
√

∆t2 .
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The Black-Karasinski Model: Discrete Time
(concluded)

• They imply

κ(t2) =
1− (σ(t2)/σ(t1))

√
∆t2/∆t1

∆t2
.

(137)

• So from ∆t1, we can calculate the ∆t2 that satisfies the

combining condition and then iterate.

– t0 → ∆t0 → t1 → ∆t1 → t2 → ∆t2 → · · · → T

(roughly).a

aAs κ(t), θ(t), σ(t) are independent of r, the ∆tis will not depend on

r.
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Problems with Lognormal Models in General

• Lognormal models such as BDT and BK share the

problem that Eπ[M(t) ] = ∞ for any finite t if they

model the continuously compounded rate.

• Hence periodic compounding should be used.

• Another issue is computational.

• Lognormal models usually do not give analytical

solutions to even basic fixed-income securities.

• As a result, to price short-dated derivatives on long-term

bonds, the tree has to be built over the life of the

underlying asset instead of the life of the derivative.
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Problems with Lognormal Models in General
(concluded)

• This problem can be somewhat mitigated by adopting

different time steps: Use a fine time step up to the

maturity of the short-dated derivative and a coarse time

step beyond the maturity.a

• A down side of this procedure is that it has to be

tailor-made for each derivative.

• Finally, empirically, interest rates do not follow the

lognormal distribution.

aHull and White (1993).
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The Extended Vasicek Modela

• Hull and White proposed models that extend the

Vasicek model and the CIR model.

• They are called the extended Vasicek model and the

extended CIR model.

• The extended Vasicek model adds time dependence to

the original Vasicek model,

dr = (θ(t)− a(t) r) dt+ σ(t) dW.

• Like the Ho-Lee model, this is a normal model, and the

inclusion of θ(t) allows for an exact fit to the current

spot rate curve.

aHull and White (1990).
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The Extended Vasicek Model (concluded)

• Function σ(t) defines the short rate volatility, and a(t)

determines the shape of the volatility structure.

• Under this model, many European-style securities can be

evaluated analytically, and efficient numerical procedures

can be developed for American-style securities.
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The Hull-White Model

• The Hull-White model is the following special case,

dr = (θ(t)− ar) dt+ σ dW.

• When the current term structure is matched,a

θ(t) =
∂f(0, t)

∂t
+ af(0, t) +

σ2

2a

(
1− e−2at

)
.

aHull and White (1993).
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The Extended CIR Model

• In the extended CIR model the short rate follows

dr = (θ(t)− a(t) r) dt+ σ(t)
√
r dW.

• The functions θ(t), a(t), and σ(t) are implied from

market observables.

• With constant parameters, there exist analytical

solutions to a small set of interest rate-sensitive

securities.
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The Hull-White Model: Calibrationa

• We describe a trinomial forward induction scheme to

calibrate the Hull-White model given a and σ.

• As with the Ho-Lee model, the set of achievable short

rates is evenly spaced.

• Let r0 be the annualized, continuously compounded

short rate at time zero.

• Every short rate on the tree takes on a value

r0 + j∆r

for some integer j.

aHull and White (1993).
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The Hull-White Model: Calibration (continued)

• Time increments on the tree are also equally spaced at

∆t apart.

• Hence nodes are located at times i∆t for i = 0, 1, 2, . . . .

• We shall refer to the node on the tree with

ti ≡ i∆t,

rj ≡ r0 + j∆r,

as the (i, j) node.

• The short rate at node (i, j), which equals rj , is

effective for the time period [ ti, ti+1).
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The Hull-White Model: Calibration (continued)

• Use

µi,j ≡ θ(ti)− arj (138)

to denote the drift rate, or the expected change, of the

short rate as seen from node (i, j).

• The three distinct possibilities for node (i, j) with three

branches incident from it are displayed on p. 1093.a

• The interest rate movement described by the middle

branch may be an increase of ∆r, no change, or a

decrease of ∆r.
aA predecessor to Lyuu and Wu’s (R90723065) (2003, 2005) mean-

tracking idea, which is the precursor of the binomial-trinomial tree of

Dai (R86526008, D8852600) and Lyuu (2006, 2008, 2010).
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The Hull-White Model: Calibration (continued)

(i, j)

�
(i+ 1, j + 2)

*(i+ 1, j + 1)

- (i+ 1, j)(i, j)

*(i+ 1, j + 1)

- (i+ 1, j)

j(i+ 1, j − 1)

(i, j) - (i+ 1, j)

j(i+ 1, j − 1)

R
(i+ 1, j − 2)
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The Hull-White Model: Calibration (continued)

• The upper and the lower branches bracket the middle

branch.

• Define

p1(i, j) ≡ the probability of following the upper branch from node (i, j)

p2(i, j) ≡ the probability of following the middle branch from node (i, j)

p3(i, j) ≡ the probability of following the lower branch from node (i, j)

• The root of the tree is set to the current short rate r0.

• Inductively, the drift µi,j at node (i, j) is a function of

θ(ti).
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The Hull-White Model: Calibration (continued)

• Once θ(ti) is available, µi,j can be derived via

Eq. (138) on p. 1092.

• This in turn determines the branching scheme at every

node (i, j) for each j, as we will see shortly.

• The value of θ(ti) must thus be made consistent with

the spot rate r(0, ti+2).
a

aNot r(0, ti+1)!
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The Hull-White Model: Calibration (continued)

• The branches emanating from node (i, j) with their

accompanying probabilitiesa must be chosen to be

consistent with µi,j and σ.

• This is accomplished by letting the middle node be as

close as possible to the current value of the short rate

plus the drift.

• Let k be the number among { j − 1, j, j + 1 } that

makes the short rate reached by the middle branch, rk,

closest to

rj + µi,j∆t.

– But note that µi,j is still not computed yet.

ap1(i, j), p2(i, j), and p3(i, j).
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The Hull-White Model: Calibration (continued)

• Then the three nodes following node (i, j) are nodes

(i+ 1, k + 1), (i+ 1, k), (i+ 1, k − 1).

• The resulting tree may have the geometry depicted on

p. 1098.

• The resulting tree combines because of the constant

jump sizes to reach k.
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The Hull-White Model: Calibration (continued)

• The probabilities for moving along these branches are

functions of µi,j , σ, j, and k:

p1(i, j) =
σ2∆t+ η2

2(∆r)2
+

η

2∆r
(139)

p2(i, j) = 1− σ2∆t+ η2

(∆r)2
(139′)

p3(i, j) =
σ2∆t+ η2

2(∆r)2
− η

2∆r
(139′′)

where

η ≡ µi,j∆t+ (j − k)∆r.
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The Hull-White Model: Calibration (continued)

• As trinomial tree algorithms are but explicit methods in

disguise, certain relations must hold for ∆r and ∆t to

guarantee stability.

• It can be shown that their values must satisfy

σ
√
3∆t

2
≤ ∆r ≤ 2σ

√
∆t

for the probabilities to lie between zero and one.

– For example, ∆r can be set to σ
√
3∆t .a

• Now it only remains to determine θ(ti).

aHull and White (1988).
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The Hull-White Model: Calibration (continued)

• At this point at time ti,

r(0, t1), r(0, t2), . . . , r(0, ti+1)

have already been matched.

• Let Q(i, j) denote the value of the state contingent

claim that pays one dollar at node (i, j) and zero

otherwise.

• By construction, the state prices Q(i, j) for all j are

known by now.

• We begin with state price Q(0, 0) = 1.
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The Hull-White Model: Calibration (continued)

• Let r̂(i) refer to the short rate value at time ti.

• The value at time zero of a zero-coupon bond maturing

at time ti+2 is then

e−r(0,ti+2)(i+2)∆t

=
∑
j

Q(i, j) e−rj∆t Eπ
[
e−r̂(i+1)∆t

∣∣∣ r̂(i) = rj

]
.(140)

• The right-hand side represents the value of $1 obtained

by holding a zero-coupon bond until time ti+1 and then

reinvesting the proceeds at that time at the prevailing

short rate r̂(i+ 1), which is stochastic.
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The Hull-White Model: Calibration (continued)

• The expectation (140) can be approximated by

Eπ
[
e−r̂(i+1)∆t

∣∣∣ r̂(i) = rj

]
≈ e−rj∆t

(
1− µi,j(∆t)2 +

σ2(∆t)3

2

)
. (141)

– This solves the chicken-egg problem!

• Substitute Eq. (141) into Eq. (140) and replace µi,j

with θ(ti)− arj to obtain

θ(ti) ≈

∑
j Q(i, j) e

−2rj∆t (
1 + arj(∆t)2 + σ2(∆t)3/2

)
− e

−r(0,ti+2)(i+2)∆t

(∆t)2
∑

j Q(i, j) e
−2rj∆t

.
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The Hull-White Model: Calibration (continued)

• For the Hull-White model, the expectation in Eq. (141)

on p. 1103 is actually known analytically by Eq. (21) on

p. 161:

Eπ
[
e−r̂(i+1)∆t

∣∣∣ r̂(i) = rj

]
= e−rj∆t+(−θ(ti)+arj+σ2∆t/2)(∆t)2 .

• Therefore, alternatively,

θ(ti) =
r(0, ti+2)(i+ 2)

∆t
+
σ2∆t

2
+
ln
∑

j Q(i, j) e−2rj∆t+arj(∆t)2

(∆t)2
.
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The Hull-White Model: Calibration (concluded)

• With θ(ti) in hand, we can compute µi,j , the

probabilities, and finally the state prices at time ti+1:

Q(i+ 1, j)

=
∑

(i, j∗) is connected to (i + 1, j) with probability pj∗

pj∗e
−rj∗∆tQ(i, j∗).

• There are at most 5 choices for j∗ (why?).

• The total running time is O(n2).

• The space requirement is O(n) (why?).
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Comments on the Hull-White Model

• One can try different values of a and σ for each option.

• Or have an a value common to all options but use a

different σ value for each option.

• Either approach can match all the option prices exactly.

• If the demand is for a single set of parameters that

replicate all option prices, the Hull-White model can be

calibrated to all the observed option prices by choosing

a and σ that minimize the mean-squared pricing error.a

aHull and White (1995).
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