
Recurrence Relations

(Difference Equations)
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Pure mathematics is the subject in which

we do not know what we are talking about,

or whether what we are saying is true.

— Bertrand Russell (1872–1970)
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Recurrence Relations Arise Naturally

• When a problem has a recursive nature, recurrence

relations often arise.

– A problem can be solved by solving 2 subproblems of

the same nature.

• When an algorithm is of the divide-and-conquer type, a

recurrence relation describes its running time.

– Sorting, fast Fourier transform, etc.

• Certain combinatorial objects are constructed

recursively.
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First-Order Linear Homogeneous Recurrence Relations

• Consider the recurrence relation

an+1 = dan,

where n ≥ 0 and d is a constant.

• The general solution is given by

an = Cdn

for any constant C.

– It satisfies the relation: Cdn+1 = dCdn.

• There are infinitely many solutions, one for each choice

of C.
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First-Order Linear Homogeneous Recurrence Relations
(concluded)

• Now suppose we impose the initial condition a0 = A.

• Then the (unique) particular solution is an = Adn.

– Because A = a0 = Cd0 = C.

• Note that an = nan−1 is not a first-order linear

homogeneous recurrence relation.

– Its solution is n! when a0 = 1.
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First-Order Linear Nonhomogeneous Recurrence
Relations

• Consider the recurrence relation

an+1 + dan = f(n).

– n ≥ 0.

– d is a constant.

– f(n) : N → N.

• A general solution no longer exists.

c⃝2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 521



kth-Order Linear Homogeneous Recurrence Relations
with Constant Coefficients

• Consider the kth-order recurrence relation

Cnan + Cn−1an−1 + · · ·+ Cn−kan−k = 0, (72)

where Cn, Cn−1, . . . , Cn−k ∈ R, Cn ̸= 0, and Cn−k ̸= 0.

• Add k initial conditions for a0, a1, . . . , ak−1.

• Clearly,

ak, ak+1, . . .

are well-defined.

• Indeed, an can be calculated with O(kn) operations.
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kth-Order Linear Homogeneous Recurrence Relations
with Constant Coefficients (concluded)

• A solution y for an is general if for any particular

solution y∗, the undetermined coefficients of y can be

found so that y is identical to y∗.

• Any general solution for an that satisfies the k initial

conditions and Eq. (72) is a particular solution.

• In fact, it is the unique particular solution because any

solution agreeing at n = 0, 1, . . . , k − 1 must agree for all

n ≥ 0.
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Conditions for the General Solution

Theorem 71 Let a
(1)
n , a

(2)
n , . . . , a

(k)
n be k particular solutions

of Eq. (72). If ∣∣∣∣∣∣∣∣∣∣∣∣

a
(1)
0 a

(2)
0 · · · a

(k)
0

a
(1)
1 a

(2)
1 · · · a

(k)
1

...
...

. . .
...

a
(1)
k−1 a

(2)
k−1 · · · a

(k)
k−1

∣∣∣∣∣∣∣∣∣∣∣∣
̸= 0, (73)

then an = c1a
(1)
n + c2a

(2)
n + · · ·+ cka

(k)
n is the general

solution, where c1, c2, . . . , ck are arbitrary constants.a

aSamuel Goldberg, Introduction to Difference Equations (1986).
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Fundamental Sets

• The particular solutions of Eq. (72) on p. 522,

a(1)n , a(2)n , . . . , a(k)n ,

that also satisfy inequality (73) in Theorem 71 (p. 525)

are said to form a fundamental set of solutions.

• Solving a linear homogeneous recurrence equation thus

reduces to finding a fundamental set!
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kth-Order Linear Homogeneous Recurrence Relations
with Constant Coefficients: Distinct Roots

• Let r1, r2, . . . , rk be the (characteristic) roots of the

characteristic equation

Cnx
k + Cn−1x

k−1 + · · ·+ Cn−k = 0. (74)

• If r1, r2, . . . , rk are distinct, then the general solution has

the form

an = c1r
n
1 + c2r

n
2 + · · ·+ ckr

n
k ,

for constants c1, c2, . . . , ck determined by the initial

conditions.
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The Proof

• Assume an has the form crn for nonzero c and r.

• After substitution into recurrence equation (72) on

p. 522, r satisfies characteristic equation (74).

• Let r1, r2, . . . , rk be the k distinct (nonzero) roots.

• Hence an = rni is a solution for 1 ≤ i ≤ k.

• Solutions rni form a fundamental set because
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The Proof (continued)

∣∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1

r1 r2 · · · rk
...

...
. . .

...

rk−1
1 rk−1

2 · · · rk−1
k

∣∣∣∣∣∣∣∣∣∣∣∣
̸= 0.

• The k × k matrix is called a Vandermonde matrix,

which is nonsingular whenever r1, r2, . . . , rk are distinct.a

aThis is a standard result in linear algebra.
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The Proof (concluded)

• Hence

an = c1r
n
1 + c2r

n
2 + · · ·+ ckr

n
k

is the general solution.

• The k coefficients c1, c2, . . . , ck are determined uniquely

by the k initial conditions a0, a1, . . . , ak−1:
a0

a1
...

ak−1

 =


1 1 · · · 1

r1 r2 · · · rk
...

...
. . .

...

rk−1
1 rk−1

2 · · · rk−1
k




c1

c2
...

ck

 . (75)
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The Fibonacci Relation

• Consider an+2 = an+1 + an.

• The initial conditions are a0 = 0 and a1 = 1.a

• The characteristic equation is r2 − r − 1 = 0, with two

roots (1±
√
5 )/2.b

• The fundamental set is hence{(
1 +

√
5

2

)n

,

(
1−

√
5

2

)n}
.

aClearly an can be calculated with O(n) operations.
bThe golden ratio (1 +

√
5 )/2 has fascinated mathematicians since

Pythagoras (570 B.C.–495 B.C.).
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The Fibonacci Relation (continued)

• For example, an = ( 1+
√
5

2 )n satisfies the Fibonacci

relation, as(
1 +

√
5

2

)n+2

=

(
1 +

√
5

2

)n+1

+

(
1 +

√
5

2

)n

.

• The general solution is hence

an = c1

(
1 +

√
5

2

)n

+ c2

(
1−

√
5

2

)n

. (76)
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The Fibonacci Relation (concluded)

• Solve

0 = a0 = c1 + c2

1 = a1 = c1
1 +

√
5

2
+ c2

1−
√
5

2

for c1 = 1/
√
5 and c2 = −1/

√
5 .

• The particular solution is finally

an =
1√
5

(
1 +

√
5

2

)n

− 1√
5

(
1−

√
5

2

)n

, (77)

known as the Binet formula.a

aSo an can now be calculated with O(logn) operations (there is no

need to expand
√
5 )!
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Don’t Believe It?

a2 =
1√
5

(
1 +

√
5

2

)2

− 1√
5

(
1−

√
5

2

)2

=
1√
5

1 + 2
√
5 + 5

4
− 1√

5

1− 2
√
5 + 5

4
= 1.

a3 =
1√
5

(
1 +

√
5

2

)3

− 1√
5

(
1−

√
5

2

)3

=
1√
5

1 + 3
√
5 + 15 + 5

√
5

8
− 1√

5

1− 3
√
5 + 15− 5

√
5

8

= 2.
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Initial Conditions

• Different initial conditions give rise to different solutions.

• Suppose a0 = 1 and a1 = 2.

• Then solve

1 = a0 = c1 + c2,

2 = a1 = c1
1 +

√
5

2
+ c2

1−
√
5

2
,

for c1 = [ (1 +
√
5 )/2 ]2/

√
5 and

c2 = −[ (1−
√
5 )/2 ]2/

√
5 to obtain

an =
1√
5

(
1 +

√
5

2

)n+2

− 1√
5

(
1−

√
5

2

)n+2

. (78)

c⃝2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 535



Initial Conditions (concluded)

• Suppose a0 = a1 = 1 instead.

• Then solve

1 = a0 = c1 + c2,

1 = a1 = c1
1 +

√
5

2
+ c2

1−
√
5

2
,

for c1 = [ (1 +
√
5 )/2 ]/

√
5 and c2 = −[ (1−

√
5 )/2 ]/

√
5

to obtain

an =
1√
5

(
1 +

√
5

2

)n+1

− 1√
5

(
1−

√
5

2

)n+1

. (79)
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Generating Function for the Fibonacci Numbers

• From an+2 = an+1 + an, we obtain

∞∑
n=0

an+2x
n+2 =

∞∑
n=0

(an+1x
n+2 + anx

n+2).

• Let f(x) be the generating function for { an }n=0,1,2,....

• Then

f(x)− a0 − a1x = x[ f(x)− a0 ] + x2f(x).

• Hence

f(x) =
−a0x+ a0 + a1x

1− x− x2
. (80)
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A Formula for the Fibonacci Numbers

an =

(
n− 1

0

)
+

(
n− 2

1

)
+

(
n− 3

2

)
+ · · ·+

(
n− ⌈n/2⌉
⌈n/2⌉ − 1

)
.

• From Eq. (80) on p. 537, the generating function isa

−a0x+ a0 + a1x

1− x− x2

=
x

1− x(1 + x)

= x+ x2(1 + x) + x3(1 + x)2 + · · ·

+xn−1(1 + x)n−2 + xn(1 + x)n−1 + · · ·

= · · ·+
[(n− ⌈n/2⌉

⌈n/2⌉ − 1

)
+ · · ·+

(n− 2

1

)
+

(n− 1

0

)]
xn + · · · .

aRecall that a0 = 0 and a1 = 1.
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Number of Binary Sequences without Consecutive 0s

• Let an denote the number of binary sequences of length

n without consecutive 0s.

• There are an−1 valid sequences with the nth symbol

being 1.

• There are an−2 valid sequences with the nth symbol

being 0 because any such sequence must end with 10.

• Hence an = an−1 + an−2, a Fibonacci sequence.

• Because a1 = 2 and a2 = 3, we must have a0 = 1 to

retrofit the Fibonacci sequence.

• The formula is Eq. (78) on p. 535.
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Number of Subsets without Consecutive Numbers

• How many subsets of { 1, 2, . . . , n } contain no 2

consecutive integers?

• A binary sequences b1b2 · · · bn of length n can be

interpreted as the set { i : bi = 0 } ⊆ { 1, 2, . . . , n }.

• So a subset of { 1, 2, . . . , n } without consecutive integers

implies a binary sequence without consecutive 0s, and

vice versa.

• Hence there are an subsets of { 1, 2, . . . , n } that contain

no 2 consecutive integers, where

– an is the Fibonacci number with a0 = 1 and a1 = 2.
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Number of Subsets without Consecutive Numbers
(continued)

• From formula (78) on p. 535,

an =
1√
5

(
1 +

√
5

2

)n+2

− 1√
5

(
1−

√
5

2

)n+2

is the Fibonacci number with a0 = 1 and a1 = 2.

• The number can also be derived from Eq. (14) on p. 89:

⌈n/2⌉∑
m=0

(
n−m+ 1

m

)
=

(
n+ 1

0

)
+

(
n

1

)
+· · ·+

(
n− ⌈n/2⌉+ 1

⌈n/2⌉

)
.
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Number of Subsets without Consecutive Numbers
(concluded)

• Hence, as a bonus,

1√
5

(
1 +

√
5

2

)n+2

− 1√
5

(
1−

√
5

2

)n+2

=

⌈n/2⌉∑
m=0

(
n−m+ 1

m

)
.
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Number of Subsets without Cyclically Consecutive
Numbers

• How many subsets of { 1, 2, . . . , n } contain no 2

consecutive integers when 1 and n are considered

consecutive?

• Let an be the solution for the problem on p. 540.

• So an is the Fibonacci number with a0 = 1 and a1 = 2

(formula appeared in Eq. (78) on p. 535).

• Now assume n ≥ 3.

• There are an−1 acceptable subsets that do not contain n.
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Number of Subsets without Cyclically Consecutive
Numbers (continued)

• If n is included, an acceptable subset cannot contain 1

or n− 1.

• Hence there are an−3 such subsets.

• The total is therefore Ln ≡ an−1 + an−3, the Lucas

number.a

• It can be easily checked that

Ln = an−1 + an−3

= an−2 + an−3 + an−4 + an−5

= Ln−1 + Ln−2.

aCorrected by Mr. Gong-Ching Lin (B00703082) on May 19, 2012.
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Number of Subsets without Cyclically Consecutive
Numbers (continued)

• Furthermore, L0 = 2 and L1 = 1.

– L3 = a2 + a0 = 3 + 1 = 4 and

L4 = a3 + a1 = 5 + 2 = 7.

– So

L2 = L4 − L3 = 3,

L1 = L3 − L2 = 1,

L0 = L2 − L1 = 2.
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Number of Subsets without Cyclically Consecutive
Numbers (continued)

• The general solution is

Ln = c1

(
1 +

√
5

2

)n

+ c2

(
1−

√
5

2

)n

by Eq. (76) on p. 532.

• Solve

2 = L0 = c1 + c2,

1 = L1 = c1
1 +

√
5

2
+ c2

1−
√
5

2
,

for c1 = 1 and c2 = 1.
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Number of Subsets without Cyclically Consecutive
Numbers (concluded)

• The solution is finally

Ln =

(
1 +

√
5

2

)n

+

(
1−

√
5

2

)n

.
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Number of Palindromes Revisited

• A palindrome is a composition for m ∈ Z+ that reads

the same left to right as right to left (p. 102).

• Let an denote the number of palindromes for n.

• Clearly, a1 = 1 and a2 = 2.

• Given each palindrome for n, we can do two things.

– Add 1 to the first and last summands to obtain a

palindrome for n+ 2.

– Insert summand 1 to the start and end to obtain a

palindrome for n+ 2.

• Hence an+2 = 2an, n ≥ 1.
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The Proof (continued)

• The characteristic equation r2 − 2 = 0 has two roots

±
√
2.

• The general solution is hence

an = c1(
√
2 )n + c2(−

√
2 )n.

• Solvea

1 = a1 =
√
2 (c1 − c2),

2 = a2 = 2(c1 + c2),

for c1 = (1 + 1√
2
)/2 and c2 = (1− 1√

2
)/2.

aThis time, we are not retrofitting.
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The Proof (concluded)

• The number of palindromes for n therefore equals

an =
1 + 1√

2

2
(
√
2)n +

1− 1√
2

2
(−

√
2)n

=


1+ 1√

2

2
2n/2 +

1− 1√
2

2
2n/2, if n is even,

1+ 1√
2

2

√
2 2(n−1)/2 −

1− 1√
2

2

√
2 2(n−1)/2, if n is odd,

=

 2n/2, if n is even,

2(n−1)/2, if n is odd,

= 2⌊n/2⌋.

• This matches Theorem 19 (p. 104).
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An Example: A Third-Order Relation

• Consider

2an+3 = an+2 + 2an+1 − an

with a0 = 0, a1 = 1, and a2 = 2.

• The characteristic equation 2r3 − r2 − 2r + 1 = 0 has

three distinct real roots: 1, −1, and 0.5.

• The general solution is

an = c11
n + c2(−1)n + c3(1/2)

n

= c1 + c2(−1)n + c3(1/2)
n.

c⃝2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 551



An Example: A Third-Order Relation (concluded)

• Solve the three initial conditions with Eq. (75) on p. 530,
0

1

2

 =


1 1 1

1 −1 0.5

12 (−1)2 0.52




c1

c2

c3

 .

• The solutions are c1 = 2.5, c2 = 1/6, and c3 = −8/3.
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The Case of Complex Roots

• Consider

an = 2(an−1 − an−2)

with a0 = 1 and a1 = 2.

• The characteristic equation r2 − 2r + 2 = 0 has two

distinct complex roots 1± i.

• The general solution is

an = c1(1 + i)n + c2(1− i)n.
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The Case of Complex Roots (concluded)

• Solve the two initial conditions for c1 = (1− i)/2 and

c2 = (1 + i)/2.

• The particular solution becomesa

an = (1 + i)n−1 + (1− i)n−1

= (
√
2 )n[ cos(nπ/4) + sin(nπ/4) ].

aAn equivalent one is an = (
√
2 )n+1 cos((n− 1)π/4) by Mr. Tunglin

Wu (B00902040) on May 17, 2012.
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kth-Order Linear Homogeneous Recurrence Relations
with Constant Coefficients: Repeated Real Roots

• Consider the recurrence relation

Cnan + Cn−1an−1 + · · ·+ Cn−kan−k = 0,

where Cn, Cn−1, . . . are real constants, Cn ̸= 0, Cn−k ̸= 0.

• Let r be a characteristic root of multiplicity m, where

2 ≤ m ≤ k, of the characteristic equation

f(x) = Cnx
k + Cn−1x

k−1 + · · ·+ Cn−k = 0.

• The general solution that involves r has the form

(A0 +A1n+A2n
2 + · · ·+Am−1n

m−1) rn, (81)

with A0, A1, . . . , Am−1 are constants to be determined.
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The Proof

• If f(x) has a root r of multiplicity m, then

f(r) = f ′(r) = · · · = f (m−1)(r) = 0.

• Because r ̸= 0 is a root of multiplicity m, it is easy to

check that

0 = rn−kf(r),

0 = r(rn−kf(r))′,

0 = r(r(rn−kf(r))′)′,

...

0 =

m−1︷ ︸︸ ︷
r(· · · r(r( rn−kf(r)

m−1︷ ︸︸ ︷
)′)′ · · · )′ .
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The Proof (continued)

• Note that we differentiate and then multiply by r before

iterating.

• These give

0 = Cnr
n
+ Cn−1r

n−1
+ · · · + Cn−kr

n−k
,

0 = Cnnr
n
+ Cn−1(n − 1) r

n−1
+ · · · + Cn−k(n − k) r

n−k
,

0 = Cnn
2
r
n
+ Cn−1(n − 1)

2
r
n−1

+ · · · + Cn−k(n − k)
2
r
n−k

,

.

.

.
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The Proof (continued)

• Now, an = nkrn, 0 ≤ k ≤ m− 1, is indeed a solution

because the kth row above says

0

= Cnn
krn + Cn−1(n− 1)krn−1 + · · ·+ Cn−k(n− k)krn−k

= Cnan + Cn−1an−1 + · · ·+ Cn−kan−k.
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The Proof (continued)

• From Eq. (73) on p. 525, rn, nrn, n2rn, . . . , nm−1rn form

a fundamental set ifa∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 · · · 0

r r · · · r

r2 2r2 · · · 2m−1r2

...
...

. . .
...

rm−1 (m− 1) rm−1 · · · (m− 1)m−1rm−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
̸= 0.

• But it is a Vandermonde matrix in disguise.

aThe ith row sets n = i− 1, i = 1, 2, . . . ,m.
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The Proof (concluded)

• In fact, after deleting the first row and column, the

determinant equals

(m− 1)! r1+2+···+(m−1)

×

∣∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1

1 2 · · · 2m−2

...
...

. . .
...

1 (m− 1) · · · (m− 1)m−2

∣∣∣∣∣∣∣∣∣∣∣∣
̸= 0.
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Nonhomogeneous Recurrence Relations

• Consider

Cnan + Cn−1an−1 + · · ·+ Cn−kan−k = f(n). (82)

• If an = an−1 + f(n), then the solution is

an = a0 +
∑n

i=1 f(i).

– A closed-form formula exists if one for
∑n

i=1 f(i)

does.

• In general, no failure-free methods exist except for

specific f(n)s.

– Consult pp. 441–2 of the textbook (4th ed.).
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Examples (c, c1, c2, . . . Are Arbitrary Constants)

an+1 − an = 0 an = c

an+1 − an = 1 an = n+ c

an+1 − an = n an = n(n− 1)/2 + c

an+2 − 3an+1 + 2an = 0 an = c1 + c22
n

an+2 − 3an+1 + 2an = 1 an = c1 + c22
n − n

an+2 − an = 0 an = c1 + c2(−1)n

an+1 = an/(1 + an) an = c/(1 + cn)
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Trial and Error

• Consider an+1 = 2an + 2n with a1 = 1.

• Calculations show that a2 = 4 and a3 = 12.

• Conjecture:

an = n2n−1. (83)

• Verify that, indeed,

(n+ 1) 2n = 2(n2n−1) + 2n,

and a1 = 1.
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Application: Number of Edges of a Hasse Diagram

• Let an be the number of edges of the Hasse diagram for

the partial order (2{1,2,...,n},⊆).

• Consider the Hasse diagrams H1 for (2{1,2,...,n},⊆) and

H2 for ({T ∪ {n+ 1} : T ⊆ {1, 2, . . . , n}},⊆).

– H1 and H2 are “isomorphic.”

• The Hasse diagram for (2{1,2,...,n+1},⊆) is constructed

by adding an edge from each node T of H1 to node

T ∪ {n+ 1} of H2.

• Hence an+1 = 2an + 2n with a1 = 1.

• The desired number has been solved in Eq. (83) on

p. 563.
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Illustration with (2{1,2,3},⊆)

{
1
,
2
}


{
}


{1
}

{2
}


{
1
,
2,3
}


{3
}


{1,3
}
 {2,3
}
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Trial and Error Again

• Consider an+1 −Aan = B.

• Calculations show that

a1 = Aa0 +B,

a2 = Aa1 +B = A2a0 +B(A+ 1),

a3 = Aa2 +B = A3a0 +B(A2 +A+ 1).

• Conjecture (easily verified by substitution):

an =

 Ana0 +B An−1
A−1 , if A ̸= 1

a0 +Bn, if A = 1
. (84)
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Financial Application: Compound Interesta

• Consider an+1 = (1 + r) an.

– Deposit grows at a period interest rate of r > 0.

– The initial deposit is a0 dollars.

• The solution is obviously

an = (1 + r)na0.

• The deposit therefore grows exponentially with time.

a“In the fifteenth century mathematics was mainly concerned with

questions of commercial arithmetic and the problems of the architect,”

wrote Joseph Alois Schumpeter (1883–1950) in Capitalism, Socialism

and Democracy (1942).
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Financial Application: Amortization

• Consider an+1 = (1 + r) an −M .

– The initial loan amount is a0 dollars.

– The monthly payment is M dollars.

– The outstanding loan principal after the nth

payment is an+1.

• By Eq. (84) on p. 566, the solution is

an = (1 + r)na0 −M
(1 + r)n − 1

r
.
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The Proof (concluded)

• What is the unique monthly payment M for the loan to

be closed after k months?

• Set ak = 0 to obtain

ak = (1 + r)ka0 −M
(1 + r)k − 1

r
= 0.

• Hence

M =
(1 + r)ka0r

(1 + r)k − 1
.

• This is standard calculation for home mortgages and

annuities.a

aLyuu (2002).
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Trial and Error a Third Time

• Consider the more general an+1 −Aan = BCn.

• Calculations show that

a1 = Aa0 +B,

a2 = Aa1 +BC = A2a0 +B(A+ C),

a3 = Aa2 +BC2 = A3a0 +B(A2 +AC + C2).

• Conjecture (easily verified by substitution):

an =

 Ana0 +B An−Cn

A−C if A ̸= C

Ana0 +BAn−1n if A = C
. (85)
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Application: Runs of Binary Strings

• A run is a maximal consecutive list of identical objects

(p. 106).

– Binary string “0 0 1 1 1 0” has 3 runs.

• Let rn denote the total number of runs determined by

the 2n binary strings of length n.

• First, r1 = 2.

– Each of “0” and “1” has 1 run.

• In general, suppose we append a bit to an (n− 1)-bit

string b1b2 · · · bn−1 to make b1b2 · · · bn−1bn.
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The Proof (continued)

• For those with bn−1 = bn (i.e., the last 2 bits are

identical), the total number of runs does not change.

– The total number of runs remains rn−1.

• For those with bn−1 ̸= bn (i.e., the last 2 bits are

distinct), the total number of runs increases by 1 for

each (n− 1)-bit string.

– There are 2n−1 of them.

– So the total number of runs becomes rn−1 + 2n−1.

• Hence

rn = 2rn−1 + 2n−1, n ≥ 2.
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The Proof (concluded)

• By Eq. (85) on p. 570,

rn = 2nr0 + 2n−1n.

• To make sure that r1 = 2, it is easy to see that r0 = 1/2.

• Hence

rn = 2n−1 + 2n−1n = 2n−1(n+ 1).

– The recurrence is identical to that for the number of

edges of a Hasse diagram (p. 564) except for the

initial condition.

– Its solution appeared in Eq. (83) on p. 563,

an = n2n−1.
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Method of Undetermined Coefficients

• Recall Eq. (82) on p. 561, repeated below:

Cnan + Cn−1an−1 + · · ·+ Cn−kan−k = f(n). (86)

• Let a
(h)
n denote the general solution of the associated

homogeneous relation (with f(n) = 0).

• Let a
(p)
n denote a particular solution of the

nonhomogeneous relation.

• Then

an = a(h)n + a(p)n .

• All the entries in the table on p. 562 fit the claim.
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Conditions for the General Solution

Similar to Theorem 71 (p. 525), we have the following

theorem.

Theorem 72 Let a
(p)
n be any particular solution of the

nonhomogeneous recurrence relation Eq. (86) on p. 574. Let

a(h)n = C1a
(1)
n + C2a

(2)
n + · · ·+ Cka

(k)
n

be the general solution of its homogeneous version as

specified in Theorem 71. Then a
(h)
n + a

(p)
n is the general

solution of Eq. (86) on p. 574.
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Solution Techniques

• Typically, one finds the general solution of its

homogeneous version a
(h)
n first.

• Then one finds a particular solution a
(p)
n of the

nonhomogeneous recurrence relation Eq. (86) on p. 574.

• Make sure a
(p)
n is “independent” of a

(h)
n .

• Finally, use the initial conditions to nail down the

coefficients of a
(h)
n .

• Output a
(h)
n + a

(p)
n .
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an+1 − Aan = B Revisited

• Recall that the general solution is a
(h)
n = cAn.

• A particular solution is

a(p)n =

 B/(1−A) if A ̸= 1

Bn if A = 1
.

• So an = cAn + a
(p)
n .

• In particular,

c = a0 − a
(p)
0 =

 a0 −B/(1−A) if A ̸= 1

a0 if A = 1
.
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an+1 − Aan = B Revisited (concluded)

• The solution matches Eq. (84) on p. 566.

• We can rewrite the solution as

an =

 An[ a0 − a
(p)
n ] + a

(p)
n , if A ̸= 1

a0 + a
(p)
n , if A = 1

. (87)
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Nonhomogeneous an − 3an−1 = 5× 7n with a0 = 2

• a
(h)
n = c× 3n, because the characteristic equation has

the nonzero root 3.

• We propose a
(p)
n = a× 7n.

• Place a× 7n into the relation to obtain

a× 7n − 3a× 7n−1 = 5× 7n.

• Hence a = 35/4 and a
(p)
n = (35/4)× 7n = (5/4)× 7n+1.

• The general solution is an = c× 3n + (5/4)× 7n+1.

• Now, c = −27/4 because a0 = 2 = c+ (5/4)× 7.

• So the solution is an = −(27/4)× 3n + (5/4)× 7n+1.
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Nonhomogeneous an − 3an−1 = 5× 3n with a0 = 2

• As before, a
(h)
n = c× 3n.

• But this time a
(h)
n and f(n) = 5× 3n are not

“independent.”

• So propose a
(p)
n = an× 3n.

• Plug an× 3n into the relation to obtain

an× 3n − 3a(n− 1)× 3n−1 = 5× 3n.

• Hence a = 5 and a
(p)
n = 5n× 3n.

• The general solution is an = c× 3n + 5n× 3n.

• Finally we find that c = 2 with use of a0 = 2.
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Nonhomogeneous an+1 − 2an = n+ 1 with a0 = 4

• From Eq. (84) on p. 566, a
(h)
n = c× 2n.

• Guess a
(p)
n = an+ b.

• Substitute this particular solution into the relation to

yield

a(n+ 1) + b− 2(an+ b) = n+ 1.

• Rearrange the above to obtain

(−a− 1)n+ (a− b− 1) = 0.

• This holds for all n if a = −1 and b = −2.
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The Proof (concluded)

• Hence a
(p)
n = −n− 2.

• The general solution is

an = c× 2n − n− 2.

• Use the initial condition

4 = a0 = c− 2

to obtain c = 6.

• The solution to the complete relation is

an = 6× 2n − n− 2.
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Nonhomogeneous an+1 − an = 2n+ 3 with a0 = 1

• This equation is very similar to the previous one:

an+1 − 2an = n+ 1.

• First, a
(h)
n = d× 1n = d.

• If one guesses a
(p)
n = an+ b as before, then

an+1 − an = a(n+ 1) + b− an− b = a,

which cannot be right.a

• So we guess a
(p)
n = an2 + bn+ c.

aContributed by Mr. Yen-Chieh Sung (B01902011) on June 17, 2013.
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The Proof (continued)

• Substitute this particular solution into the relation to

yield

a(n+ 1)2 + b(n+ 1) + c− (an2 + bn+ c) = 2n+ 3.

• Simplify the above to obtain

2an+ (a+ b) = 2n+ 3.

• Hence a = 1 and b = 2.

• Hence a
(p)
n = n2 + 2n+ c.

• The general solution is an = n2 + 2n+ c.a

aWe merge d into c.
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The Proof (concluded)

• Use the initial condition

1 = a0 = c

to obtain c = 1.

• The solution to the complete relation is

an = n2 + 2n+ 1 = (n+ 1)2.

• It is very different from the solution to the previous

example: an = 6× 2n − n− 2.
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Nonhomogeneous an+2 − 3an+1 + 2an = 2 with
a0 = 0 and a1 = 2

• The characteristic equation r2 − 3r + 2 = 0 has roots 2

and 1.

• So a
(h)
n = c11

n + c22
n = c1 + c22

n.

• Guess a
(p)
n = an+ b.

• Substitute a
(p)
n into the relation to yield

a(n+ 2) + b− 3[ a(n+ 1) + b ] + 2(an+ b) = 2.

• Rearrange the above to obtain a = −2.

• Hence a
(p)
n = −2n+ b.
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The Proof (concluded)

• The general solution is now an = c1 + c22
n − 2n.a

• Use the initial conditions

0 = a0 = c1 + c2,

2 = a1 = c1 + 2c2 − 2.

to obtain c1 = −4 and c2 = 4.

• The solution to the complete relation is

an = −4 + 2n+2 − 2n.

aWe merge b into c1.
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