Recurrence Relations (Difference Equations) Pure mathematics is the subject in which we do not know what we are talking about, or whether what we are saying is true. — Bertrand Russell (1872–1970)

Recurrence Relations Arise Naturally

- When a problem has a recursive nature, recurrence relations often arise.
 - A problem can be solved by solving 2 subproblems of the same nature.
- When an algorithm is of the divide-and-conquer type, a recurrence relation describes its running time.
 - Sorting, fast Fourier transform, etc.
- Certain combinatorial objects are constructed recursively.

First-Order Linear Homogeneous Recurrence Relations

• Consider the recurrence relation

$$a_{n+1} = da_n,$$

where $n \ge 0$ and d is a constant.

• The **general solution** is given by

$$a_n = Cd^n$$

for any constant C.

- It satisfies the relation: $Cd^{n+1} = dCd^n$.
- There are infinitely many solutions, one for each choice of C.

First-Order Linear Homogeneous Recurrence Relations (concluded)

- Now suppose we impose the **initial condition** $a_0 = A$.
- Then the (unique) **particular solution** is $a_n = Ad^n$.

- Because
$$A = a_0 = Cd^0 = C$$
.

• Note that $a_n = na_{n-1}$ is not a first-order linear homogeneous recurrence relation.

- Its solution is n! when $a_0 = 1$.

First-Order Linear Nonhomogeneous Recurrence Relations

• Consider the recurrence relation

$$a_{n+1} + da_n = f(n).$$

$$-n \ge 0.$$

- -d is a constant.
- $-f(n):\mathbb{N}\to\mathbb{N}.$
- A general solution no longer exists.

kth-Order Linear Homogeneous Recurrence Relations with Constant Coefficients

• Consider the *k*th-order recurrence relation

$$C_n a_n + C_{n-1} a_{n-1} + \dots + C_{n-k} a_{n-k} = 0, \qquad (72)$$

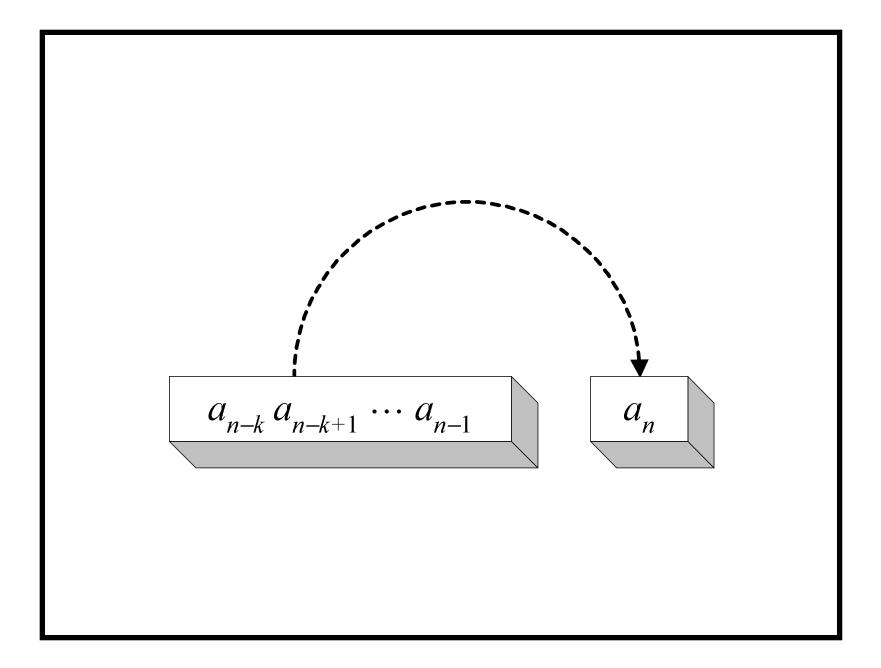
where $C_n, C_{n-1}, \ldots, C_{n-k} \in \mathbb{R}, C_n \neq 0$, and $C_{n-k} \neq 0$.

- Add k initial conditions for $a_0, a_1, \ldots, a_{k-1}$.
- Clearly,

$$a_k, a_{k+1}, \ldots$$

are well-defined.

• Indeed, a_n can be calculated with O(kn) operations.



kth-Order Linear Homogeneous Recurrence Relations with Constant Coefficients (concluded)

- A solution y for a_n is general if for any particular solution y*, the undetermined coefficients of y can be found so that y is identical to y*.
- Any general solution for a_n that satisfies the k initial conditions and Eq. (72) is a particular solution.
- In fact, it is the *unique* particular solution because any solution agreeing at n = 0, 1, ..., k − 1 must agree for all n ≥ 0.

Conditions for the General Solution

Theorem 71 Let $a_n^{(1)}, a_n^{(2)}, \ldots, a_n^{(k)}$ be k particular solutions of Eq. (72). If

$$\begin{vmatrix} a_{0}^{(1)} & a_{0}^{(2)} & \cdots & a_{0}^{(k)} \\ a_{1}^{(1)} & a_{1}^{(2)} & \cdots & a_{1}^{(k)} \\ \vdots & \vdots & \ddots & \vdots \\ a_{k-1}^{(1)} & a_{k-1}^{(2)} & \cdots & a_{k-1}^{(k)} \end{vmatrix} \neq 0,$$
(73)

then $a_n = c_1 a_n^{(1)} + c_2 a_n^{(2)} + \dots + c_k a_n^{(k)}$ is the general solution, where c_1, c_2, \dots, c_k are arbitrary constants.^a

^aSamuel Goldberg, Introduction to Difference Equations (1986).

Fundamental Sets

• The particular solutions of Eq. (72) on p. 522,

 $a_n^{(1)}, a_n^{(2)}, \dots, a_n^{(k)},$

that also satisfy inequality (73) in Theorem 71 (p. 525) are said to form a **fundamental set of solutions**.

• Solving a linear homogeneous recurrence equation thus reduces to finding a fundamental set!

kth-Order Linear Homogeneous Recurrence Relations with Constant Coefficients: Distinct Roots

• Let r_1, r_2, \ldots, r_k be the (characteristic) roots of the characteristic equation

$$C_n x^k + C_{n-1} x^{k-1} + \dots + C_{n-k} = 0.$$
 (74)

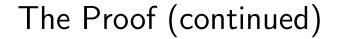
• If r_1, r_2, \ldots, r_k are distinct, then the general solution has the form

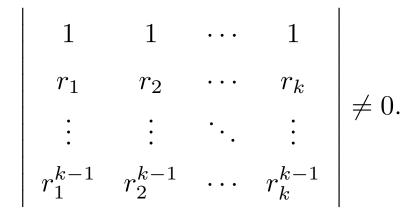
$$a_n = c_1 r_1^n + c_2 r_2^n + \dots + c_k r_k^n,$$

for constants c_1, c_2, \ldots, c_k determined by the initial conditions.

The Proof

- Assume a_n has the form cr^n for nonzero c and r.
- After substitution into recurrence equation (72) on p. 522, r satisfies characteristic equation (74).
- Let r_1, r_2, \ldots, r_k be the k distinct (nonzero) roots.
- Hence $a_n = r_i^n$ is a solution for $1 \le i \le k$.
- Solutions r_i^n form a fundamental set because





• The $k \times k$ matrix is called a Vandermonde matrix, which is nonsingular whenever r_1, r_2, \ldots, r_k are distinct.^a

^aThis is a standard result in linear algebra.

The Proof (concluded)

• Hence

$$a_n = c_1 r_1^n + c_2 r_2^n + \dots + c_k r_k^n$$

is the general solution.

• The k coefficients c_1, c_2, \ldots, c_k are determined uniquely by the k initial conditions $a_0, a_1, \ldots, a_{k-1}$:

$$\begin{bmatrix} a_{0} \\ a_{1} \\ \vdots \\ a_{k-1} \end{bmatrix} = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ r_{1} & r_{2} & \cdots & r_{k} \\ \vdots & \vdots & \ddots & \vdots \\ r_{1}^{k-1} & r_{2}^{k-1} & \cdots & r_{k}^{k-1} \end{bmatrix} \begin{bmatrix} c_{1} \\ c_{2} \\ \vdots \\ c_{k} \end{bmatrix}.$$
 (75)

The Fibonacci Relation

- Consider $a_{n+2} = a_{n+1} + a_n$.
- The initial conditions are $a_0 = 0$ and $a_1 = 1$.^a
- The characteristic equation is $r^2 r 1 = 0$, with two roots $(1 \pm \sqrt{5})/2$.^b
- The fundamental set is hence

$$\left\{ \left(\frac{1+\sqrt{5}}{2}\right)^n, \left(\frac{1-\sqrt{5}}{2}\right)^n \right\}.$$

^aClearly a_n can be calculated with O(n) operations. ^bThe **golden ratio** $(1 + \sqrt{5})/2$ has fascinated mathematicians since Pythagoras (570 B.C.-495 B.C.).

The Fibonacci Relation (continued)

• For example, $a_n = (\frac{1+\sqrt{5}}{2})^n$ satisfies the Fibonacci relation, as

$$\left(\frac{1+\sqrt{5}}{2}\right)^{n+2} = \left(\frac{1+\sqrt{5}}{2}\right)^{n+1} + \left(\frac{1+\sqrt{5}}{2}\right)^n.$$

• The general solution is hence

$$a_n = c_1 \left(\frac{1+\sqrt{5}}{2}\right)^n + c_2 \left(\frac{1-\sqrt{5}}{2}\right)^n.$$
 (76)

The Fibonacci Relation (concluded)

• Solve

$$0 = a_0 = c_1 + c_2$$

$$1 = a_1 = c_1 \frac{1 + \sqrt{5}}{2} + c_2 \frac{1 - \sqrt{5}}{2}$$

for $c_1 = 1/\sqrt{5}$ and $c_2 = -1/\sqrt{5}$.

• The particular solution is finally

$$a_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^n - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2} \right)^n, \quad (77)$$

known as the **Binet formula**.^a

^aSo a_n can now be calculated with $O(\log n)$ operations (there is no need to expand $\sqrt{5}$)!

Don't Believe It?

$$a_{2} = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right)^{2} - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2}\right)^{2}$$

$$= \frac{1}{\sqrt{5}} \frac{1+2\sqrt{5}+5}{4} - \frac{1}{\sqrt{5}} \frac{1-2\sqrt{5}+5}{4} = 1.$$

$$a_{3} = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right)^{3} - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2}\right)^{3}$$

$$= \frac{1}{\sqrt{5}} \frac{1+3\sqrt{5}+15+5\sqrt{5}}{8} - \frac{1}{\sqrt{5}} \frac{1-3\sqrt{5}+15-5\sqrt{5}}{8}$$

$$= 2.$$

Initial Conditions

- Different initial conditions give rise to different solutions.
- Suppose $a_0 = 1$ and $a_1 = 2$.
- Then solve

$$1 = a_0 = c_1 + c_2,$$

$$2 = a_1 = c_1 \frac{1 + \sqrt{5}}{2} + c_2 \frac{1 - \sqrt{5}}{2},$$

for
$$c_1 = [(1 + \sqrt{5})/2]^2/\sqrt{5}$$
 and
 $c_2 = -[(1 - \sqrt{5})/2]^2/\sqrt{5}$ to obtain

$$a_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right)^{n+2} - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2}\right)^{n+2}.$$
 (78)

Initial Conditions (concluded)

- Suppose $a_0 = a_1 = 1$ instead.
- Then solve

$$1 = a_0 = c_1 + c_2,$$

$$1 = a_1 = c_1 \frac{1 + \sqrt{5}}{2} + c_2 \frac{1 - \sqrt{5}}{2},$$

for $c_1 = [(1 + \sqrt{5})/2]/\sqrt{5}$ and $c_2 = -[(1 - \sqrt{5})/2]/\sqrt{5}$ to obtain

$$a_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^{n+1} - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2} \right)^{n+1}.$$
 (79)

Generating Function for the Fibonacci Numbers

• From $a_{n+2} = a_{n+1} + a_n$, we obtain

$$\sum_{n=0}^{\infty} a_{n+2} x^{n+2} = \sum_{n=0}^{\infty} (a_{n+1} x^{n+2} + a_n x^{n+2}).$$

• Let f(x) be the generating function for $\{a_n\}_{n=0,1,2,...}$.

• Then

$$f(x) - a_0 - a_1 x = x[f(x) - a_0] + x^2 f(x).$$

• Hence

$$f(x) = \frac{-a_0 x + a_0 + a_1 x}{1 - x - x^2}.$$
(80)

A Formula for the Fibonacci Numbers

$$a_{n} = \binom{n-1}{0} + \binom{n-2}{1} + \binom{n-3}{2} + \dots + \binom{n-\lceil n/2 \rceil}{\lceil n/2 \rceil - 1}.$$
• From Eq. (80) on p. 537, the generating function is^a

$$\frac{-a_{0}x + a_{0} + a_{1}x}{1 - x - x^{2}}$$

$$= \frac{x}{1 - x(1 + x)}$$

$$= x + x^{2}(1 + x) + x^{3}(1 + x)^{2} + \dots$$

$$+ x^{n-1}(1 + x)^{n-2} + x^{n}(1 + x)^{n-1} + \dots$$

$$= \dots + \left[\binom{n - \lceil n/2 \rceil}{\lceil n/2 \rceil - 1} + \dots + \binom{n-2}{1} + \binom{n-1}{0} \right] x^{n} + \dots$$
^aRecall that $a_{0} = 0$ and $a_{1} = 1$.

Number of Binary Sequences without Consecutive 0s

- Let a_n denote the number of binary sequences of length n without consecutive 0s.
- There are a_{n-1} valid sequences with the *n*th symbol being 1.
- There are a_{n-2} valid sequences with the *n*th symbol being 0 because any such sequence must end with 10.
- Hence $a_n = a_{n-1} + a_{n-2}$, a Fibonacci sequence.
- Because $a_1 = 2$ and $a_2 = 3$, we must have $a_0 = 1$ to **retrofit** the Fibonacci sequence.
- The formula is Eq. (78) on p. 535.

Number of Subsets without Consecutive Numbers

- How many subsets of $\{1, 2, \ldots, n\}$ contain no 2 consecutive integers?
- A binary sequences $b_1b_2\cdots b_n$ of length n can be interpreted as the set $\{i:b_i=0\}\subseteq\{1,2,\ldots,n\}.$
- So a subset of $\{1, 2, ..., n\}$ without consecutive integers implies a binary sequence without consecutive 0s, and vice versa.
- Hence there are a_n subsets of $\{1, 2, ..., n\}$ that contain no 2 consecutive integers, where

 $-a_n$ is the Fibonacci number with $a_0 = 1$ and $a_1 = 2$.

Number of Subsets without Consecutive Numbers (continued)

• From formula (78) on p. 535,

$$a_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right)^{n+2} - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2}\right)^{n+2}$$

is the Fibonacci number with $a_0 = 1$ and $a_1 = 2$.

• The number can also be derived from Eq. (14) on p. 89:

$$\sum_{m=0}^{\lfloor n/2 \rfloor} \binom{n-m+1}{m} = \binom{n+1}{0} + \binom{n}{1} + \dots + \binom{n-\lfloor n/2 \rfloor+1}{\lfloor n/2 \rfloor}.$$

Number of Subsets without Consecutive Numbers (concluded)

• Hence, as a bonus,

$$\frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right)^{n+2} - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2}\right)^{n+2} = \sum_{m=0}^{\lceil n/2 \rceil} \binom{n-m+1}{m}.$$

Number of Subsets without Cyclically Consecutive Numbers

- How many subsets of $\{1, 2, ..., n\}$ contain no 2 consecutive integers when 1 and n are considered consecutive?
- Let a_n be the solution for the problem on p. 540.
- So a_n is the Fibonacci number with $a_0 = 1$ and $a_1 = 2$ (formula appeared in Eq. (78) on p. 535).
- Now assume $n \geq 3$.
- There are a_{n-1} acceptable subsets that do not contain n.

Number of Subsets without Cyclically Consecutive Numbers (continued)

- If n is included, an acceptable subset cannot contain 1 or n-1.
- Hence there are a_{n-3} such subsets.
- The total is therefore $L_n \equiv a_{n-1} + a_{n-3}$, the Lucas number.^a
- It can be easily checked that

$$L_n = a_{n-1} + a_{n-3}$$

= $a_{n-2} + a_{n-3} + a_{n-4} + a_{n-5}$
= $L_{n-1} + L_{n-2}$.

^aCorrected by Mr. Gong-Ching Lin (B00703082) on May 19, 2012.

Number of Subsets without Cyclically Consecutive Numbers (continued)

• Furthermore, $L_0 = 2$ and $L_1 = 1$.

-
$$L_3 = a_2 + a_0 = 3 + 1 = 4$$
 and
 $L_4 = a_3 + a_1 = 5 + 2 = 7.$

$$-$$
 So

$$L_2 = L_4 - L_3 = 3,$$

 $L_1 = L_3 - L_2 = 1,$
 $L_0 = L_2 - L_1 = 2.$

Number of Subsets without Cyclically Consecutive Numbers (continued)

• The general solution is

$$L_n = c_1 \left(\frac{1+\sqrt{5}}{2}\right)^n + c_2 \left(\frac{1-\sqrt{5}}{2}\right)^n$$

by Eq. (76) on p. 532.

• Solve

2 =
$$L_0 = c_1 + c_2$$
,
1 = $L_1 = c_1 \frac{1 + \sqrt{5}}{2} + c_2 \frac{1 - \sqrt{5}}{2}$,

for $c_1 = 1$ and $c_2 = 1$.

Number of Subsets without Cyclically Consecutive Numbers (concluded)

• The solution is finally

$$L_n = \left(\frac{1+\sqrt{5}}{2}\right)^n + \left(\frac{1-\sqrt{5}}{2}\right)^n$$

Number of Palindromes Revisited

- A palindrome is a composition for $m \in \mathbb{Z}^+$ that reads the same left to right as right to left (p. 102).
- Let a_n denote the number of palindromes for n.
- Clearly, $a_1 = 1$ and $a_2 = 2$.
- Given each palindrome for n, we can do two things.
 - Add 1 to the first and last summands to obtain a palindrome for n + 2.
 - Insert summand 1 to the start and end to obtain a palindrome for n + 2.
- Hence $a_{n+2} = 2a_n, n \ge 1$.

The Proof (continued)

- The characteristic equation $r^2 2 = 0$ has two roots $\pm \sqrt{2}$.
- The general solution is hence

$$a_n = c_1(\sqrt{2})^n + c_2(-\sqrt{2})^n.$$

• Solve^a

$$1 = a_1 = \sqrt{2} (c_1 - c_2),$$

$$2 = a_2 = 2(c_1 + c_2),$$

for $c_1 = (1 + \frac{1}{\sqrt{2}})/2$ and $c_2 = (1 - \frac{1}{\sqrt{2}})/2.$

^aThis time, we are not retrofitting.

The Proof (concluded)

• The number of palindromes for n therefore equals

$$a_{n} = \frac{1 + \frac{1}{\sqrt{2}}}{2} (\sqrt{2})^{n} + \frac{1 - \frac{1}{\sqrt{2}}}{2} (-\sqrt{2})^{n}$$

$$= \begin{cases} \frac{1 + \frac{1}{\sqrt{2}}}{2} 2^{n/2} + \frac{1 - \frac{1}{\sqrt{2}}}{2} 2^{n/2}, & \text{if } n \text{ is even,} \\ \frac{1 + \frac{1}{\sqrt{2}}}{2} \sqrt{2} 2^{(n-1)/2} - \frac{1 - \frac{1}{\sqrt{2}}}{2} \sqrt{2} 2^{(n-1)/2}, & \text{if } n \text{ is odd,} \end{cases}$$

$$= \begin{cases} 2^{n/2}, & \text{if } n \text{ is even,} \\ 2^{(n-1)/2}, & \text{if } n \text{ is odd,} \end{cases}$$

$$= 2^{\lfloor n/2 \rfloor}.$$

• This matches Theorem 19 (p. 104).

An Example: A Third-Order Relation

• Consider

$$2a_{n+3} = a_{n+2} + 2a_{n+1} - a_n$$

with $a_0 = 0$, $a_1 = 1$, and $a_2 = 2$.

- The characteristic equation $2r^3 r^2 2r + 1 = 0$ has three distinct real roots: 1, -1, and 0.5.
- The general solution is

$$a_n = c_1 1^n + c_2 (-1)^n + c_3 (1/2)^n$$

= $c_1 + c_2 (-1)^n + c_3 (1/2)^n$.

An Example: A Third-Order Relation (concluded)

• Solve the three initial conditions with Eq. (75) on p. 530,

$$\begin{bmatrix} 0\\1\\2 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1\\1 & -1 & 0.5\\1^2 & (-1)^2 & 0.5^2 \end{bmatrix} \begin{bmatrix} c_1\\c_2\\c_3 \end{bmatrix}.$$

• The solutions are $c_1 = 2.5$, $c_2 = 1/6$, and $c_3 = -8/3$.

The Case of Complex Roots

• Consider

$$a_n = 2(a_{n-1} - a_{n-2})$$

with $a_0 = 1$ and $a_1 = 2$.

- The characteristic equation $r^2 2r + 2 = 0$ has two distinct complex roots $1 \pm i$.
- The general solution is

$$a_n = c_1(1+i)^n + c_2(1-i)^n.$$

The Case of Complex Roots (concluded)

- Solve the two initial conditions for $c_1 = (1 i)/2$ and $c_2 = (1 + i)/2$.
- The particular solution becomes^a

$$a_n = (1+i)^{n-1} + (1-i)^{n-1} = (\sqrt{2})^n [\cos(n\pi/4) + \sin(n\pi/4)].$$

^aAn equivalent one is $a_n = (\sqrt{2})^{n+1} \cos((n-1)\pi/4)$ by Mr. Tunglin Wu (B00902040) on May 17, 2012.

kth-Order Linear Homogeneous Recurrence Relations with Constant Coefficients: Repeated Real Roots

• Consider the recurrence relation

$$C_n a_n + C_{n-1} a_{n-1} + \dots + C_{n-k} a_{n-k} = 0,$$

where C_n, C_{n-1}, \ldots are real constants, $C_n \neq 0, C_{n-k} \neq 0$.

• Let r be a characteristic root of **multiplicity** m, where $2 \le m \le k$, of the characteristic equation

$$f(x) = C_n x^k + C_{n-1} x^{k-1} + \dots + C_{n-k} = 0.$$

• The general solution that involves r has the form

$$(A_0 + A_1 n + A_2 n^2 + \dots + A_{m-1} n^{m-1}) r^n, \qquad (81)$$

with $A_0, A_1, \ldots, A_{m-1}$ are constants to be determined.

The Proof

- If f(x) has a root r of multiplicity m, then $f(r) = f'(r) = \cdots = f^{(m-1)}(r) = 0.$
- Because $r \neq 0$ is a root of multiplicity m, it is easy to check that

$$0 = r^{n-k}f(r),$$

$$0 = r(r^{n-k}f(r))',$$

$$0 = r(r(r^{n-k}f(r))')',$$

$$\vdots$$

$$0 = r(\cdots r(r(r^{n-k}f(r))')' \cdots)'.$$

- Note that we differentiate and then multiply by r before iterating.
- These give

$$0 = C_n r^n + C_{n-1} r^{n-1} + \dots + C_{n-k} r^{n-k},$$

$$0 = C_n n r^n + C_{n-1} (n-1) r^{n-1} + \dots + C_{n-k} (n-k) r^{n-k},$$

$$0 = C_n n^2 r^n + C_{n-1} (n-1)^2 r^{n-1} + \dots + C_{n-k} (n-k)^2 r^{n-k},$$

• Now, $a_n = n^k r^n$, $0 \le k \le m - 1$, is indeed a solution because the kth row above says

0
=
$$C_n n^k r^n + C_{n-1} (n-1)^k r^{n-1} + \dots + C_{n-k} (n-k)^k r^{n-k}$$

= $C_n a_n + C_{n-1} a_{n-1} + \dots + C_{n-k} a_{n-k}.$

• From Eq. (73) on p. 525, $r^n, nr^n, n^2r^n, \dots, n^{m-1}r^n$ form a fundamental set if^a

• But it is a Vandermonde matrix in disguise.

^aThe *i*th row sets n = i - 1, i = 1, 2, ..., m.

The Proof (concluded)

• In fact, after deleting the first row and column, the determinant equals

Nonhomogeneous Recurrence Relations

• Consider

$$C_n a_n + C_{n-1} a_{n-1} + \dots + C_{n-k} a_{n-k} = f(n).$$
 (82)

- If $a_n = a_{n-1} + f(n)$, then the solution is $a_n = a_0 + \sum_{i=1}^n f(i)$.
 - A closed-form formula exists if one for $\sum_{i=1}^{n} f(i)$ does.
- In general, no failure-free methods exist except for specific f(n)s.
 - Consult pp. 441–2 of the textbook (4th ed.).

Examples (c, c_1, c_2, \ldots Are Arbitrary Constants)

$a_{n+1} - a_n = 0$	$a_n = c$
$a_{n+1} - a_n = 1$	$a_n = n + c$
$a_{n+1} - a_n = n$	$a_n = n(n-1)/2 + c$
$a_{n+2} - 3a_{n+1} + 2a_n = 0$	$a_n = c_1 + c_2 2^n$
$a_{n+2} - 3a_{n+1} + 2a_n = 1$	$a_n = c_1 + c_2 2^n - n$
$a_{n+2} - a_n = 0$	$a_n = c_1 + c_2(-1)^n$
$a_{n+1} = a_n / (1 + a_n)$	$a_n = c/(1+cn)$

Trial and Error

- Consider $a_{n+1} = 2a_n + 2^n$ with $a_1 = 1$.
- Calculations show that $a_2 = 4$ and $a_3 = 12$.
- Conjecture:

$$a_n = n2^{n-1}.$$
 (83)

• Verify that, indeed,

$$(n+1) 2^{n} = 2(n2^{n-1}) + 2^{n},$$

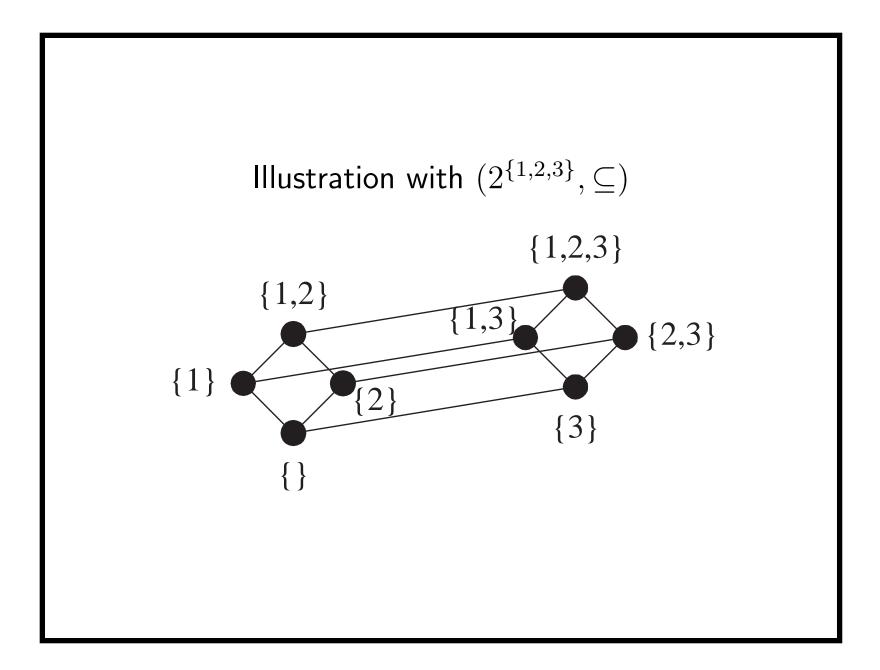
and $a_1 = 1$.

Application: Number of Edges of a Hasse Diagram

- Let a_n be the number of edges of the Hasse diagram for the partial order $(2^{\{1,2,\ldots,n\}}, \subseteq)$.
- Consider the Hasse diagrams H_1 for $(2^{\{1,2,\ldots,n\}},\subseteq)$ and H_2 for $(\{T \cup \{n+1\} : T \subseteq \{1,2,\ldots,n\}\},\subseteq)$.

 $- H_1$ and H_2 are "isomorphic."

- The Hasse diagram for (2^{1,2,...,n+1}, ⊆) is constructed by adding an edge from each node T of H₁ to node T ∪ {n + 1} of H₂.
- Hence $a_{n+1} = 2a_n + 2^n$ with $a_1 = 1$.
- The desired number has been solved in Eq. (83) on p. 563.



Trial and Error Again

- Consider $a_{n+1} Aa_n = B$.
- Calculations show that

$$a_1 = Aa_0 + B,$$

 $a_2 = Aa_1 + B = A^2a_0 + B(A+1),$
 $a_3 = Aa_2 + B = A^3a_0 + B(A^2 + A + 1).$

• Conjecture (easily verified by substitution):

$$a_n = \begin{cases} A^n a_0 + B \frac{A^n - 1}{A - 1}, & \text{if } A \neq 1 \\ a_0 + Bn, & \text{if } A = 1 \end{cases} .$$
(84)

Financial Application: Compound Interest^{\rm a}

- Consider $a_{n+1} = (1+r) a_n$.
 - Deposit grows at a period interest rate of r > 0.
 - The initial deposit is a_0 dollars.
- The solution is obviously

$$a_n = (1+r)^n a_0.$$

• The deposit therefore grows exponentially with time.

^a "In the fifteenth century mathematics was mainly concerned with questions of commercial arithmetic and the problems of the architect," wrote Joseph Alois Schumpeter (1883–1950) in *Capitalism, Socialism and Democracy* (1942).

Financial Application: Amortization

- Consider $a_{n+1} = (1+r) a_n M$.
 - The initial loan amount is a_0 dollars.
 - The monthly payment is M dollars.
 - The outstanding loan principal after the *n*th payment is a_{n+1} .
- By Eq. (84) on p. 566, the solution is

$$a_n = (1+r)^n a_0 - M \frac{(1+r)^n - 1}{r}$$

The Proof (concluded)

- What is the unique monthly payment M for the loan to be closed after k months?
- Set $a_k = 0$ to obtain

$$a_k = (1+r)^k a_0 - M \frac{(1+r)^k - 1}{r} = 0.$$

• Hence

$$M = \frac{(1+r)^k a_0 r}{(1+r)^k - 1}$$

• This is standard calculation for home mortgages and annuities.^a

^aLyuu (2002).

Trial and Error a Third Time

- Consider the more general $a_{n+1} Aa_n = BC^n$.
- Calculations show that

 $a_1 = Aa_0 + B,$ $a_2 = Aa_1 + BC = A^2a_0 + B(A + C),$ $a_3 = Aa_2 + BC^2 = A^3a_0 + B(A^2 + AC + C^2).$

• Conjecture (easily verified by substitution):

$$a_{n} = \begin{cases} A^{n}a_{0} + B \frac{A^{n} - C^{n}}{A - C} & \text{if } A \neq C \\ A^{n}a_{0} + BA^{n - 1}n & \text{if } A = C \end{cases}$$
(85)

Application: Runs of Binary Strings

- A run is a maximal consecutive list of identical objects (p. 106).
 - Binary string "0 0 1 1 1 0" has 3 runs.
- Let r_n denote the total number of runs determined by the 2^n binary strings of length n.
- First, $r_1 = 2$.
 - Each of "0" and "1" has 1 run.
- In general, suppose we append a bit to an (n-1)-bit string $b_1b_2\cdots b_{n-1}$ to make $b_1b_2\cdots b_{n-1}b_n$.

- For those with b_{n-1} = b_n (i.e., the last 2 bits are identical), the total number of runs does not change.
 The total number of runs remains r_{n-1}.
- For those with b_{n-1} ≠ b_n (i.e., the last 2 bits are distinct), the total number of runs *increases* by 1 for each (n − 1)-bit string.
 - There are 2^{n-1} of them.
 - So the total number of runs becomes $r_{n-1} + 2^{n-1}$.
- Hence

$$r_n = 2r_{n-1} + 2^{n-1}, n \ge 2.$$

The Proof (concluded)

• By Eq. (85) on p. 570,

$$r_n = 2^n r_0 + 2^{n-1} n.$$

- To make sure that $r_1 = 2$, it is easy to see that $r_0 = 1/2$.
- Hence

$$r_n = 2^{n-1} + 2^{n-1}n = 2^{n-1}(n+1).$$

- The recurrence is identical to that for the number of edges of a Hasse diagram (p. 564) except for the initial condition.
- Its solution appeared in Eq. (83) on p. 563, $a_n = n2^{n-1}.$

Method of Undetermined Coefficients

• Recall Eq. (82) on p. 561, repeated below:

$$C_n a_n + C_{n-1} a_{n-1} + \dots + C_{n-k} a_{n-k} = f(n).$$
 (86)

- Let $a_n^{(h)}$ denote the general solution of the associated homogeneous relation (with f(n) = 0).
- Let $a_n^{(p)}$ denote a particular solution of the *nonhomogeneous* relation.
- Then

$$a_n = a_n^{(h)} + a_n^{(p)}.$$

• All the entries in the table on p. 562 fit the claim.

Conditions for the General Solution

Similar to Theorem 71 (p. 525), we have the following theorem.

Theorem 72 Let $a_n^{(p)}$ be any particular solution of the nonhomogeneous recurrence relation Eq. (86) on p. 574. Let

$$a_n^{(h)} = C_1 a_n^{(1)} + C_2 a_n^{(2)} + \dots + C_k a_n^{(k)}$$

be the general solution of its homogeneous version as specified in Theorem 71. Then $a_n^{(h)} + a_n^{(p)}$ is the general solution of Eq. (86) on p. 574.

Solution Techniques

- Typically, one finds the general solution of its homogeneous version $a_n^{(h)}$ first.
- Then one finds a particular solution $a_n^{(p)}$ of the nonhomogeneous recurrence relation Eq. (86) on p. 574.
- Make sure $a_n^{(p)}$ is "independent" of $a_n^{(h)}$.
- Finally, use the initial conditions to nail down the coefficients of $a_n^{(h)}$.
- Output $a_n^{(h)} + a_n^{(p)}$.

$$a_{n+1} - Aa_n = B$$
 Revisited

- Recall that the general solution is $a_n^{(h)} = cA^n$.
- A particular solution is

$$a_n^{(p)} = \begin{cases} B/(1-A) & \text{if } A \neq 1\\ Bn & \text{if } A = 1 \end{cases}$$

• So
$$a_n = cA^n + a_n^{(p)}$$
.

• In particular,

$$c = a_0 - a_0^{(p)} = \begin{cases} a_0 - B/(1 - A) & \text{if } A \neq 1 \\ a_0 & \text{if } A = 1 \end{cases}$$

$$a_{n+1} - Aa_n = B$$
 Revisited (concluded)

- The solution matches Eq. (84) on p. 566.
- We can rewrite the solution as

$$a_n = \begin{cases} A^n [a_0 - a_n^{(p)}] + a_n^{(p)}, & \text{if } A \neq 1 \\ a_0 + a_n^{(p)}, & \text{if } A = 1 \end{cases} .$$
(87)

Nonhomogeneous $a_n - 3a_{n-1} = 5 \times 7^n$ with $a_0 = 2$

- $a_n^{(h)} = c \times 3^n$, because the characteristic equation has the nonzero root 3.
- We propose $a_n^{(p)} = a \times 7^n$.
- Place $a \times 7^n$ into the relation to obtain $a \times 7^n - 3a \times 7^{n-1} = 5 \times 7^n$.
- Hence a = 35/4 and $a_n^{(p)} = (35/4) \times 7^n = (5/4) \times 7^{n+1}$.
- The general solution is $a_n = c \times 3^n + (5/4) \times 7^{n+1}$.
- Now, c = -27/4 because $a_0 = 2 = c + (5/4) \times 7$.
- So the solution is $a_n = -(27/4) \times 3^n + (5/4) \times 7^{n+1}$.

Nonhomogeneous $a_n - 3a_{n-1} = 5 \times 3^n$ with $a_0 = 2$

• As before,
$$a_n^{(h)} = c \times 3^n$$
.

• But this time $a_n^{(h)}$ and $f(n) = 5 \times 3^n$ are not "independent."

• So propose
$$a_n^{(p)} = an \times 3^n$$
.

- Plug $an \times 3^n$ into the relation to obtain $an \times 3^n - 3a(n-1) \times 3^{n-1} = 5 \times 3^n.$
- Hence a = 5 and $a_n^{(p)} = 5n \times 3^n$.
- The general solution is $a_n = c \times 3^n + 5n \times 3^n$.
- Finally we find that c = 2 with use of $a_0 = 2$.

Nonhomogeneous $a_{n+1} - 2a_n = n + 1$ with $a_0 = 4$

• From Eq. (84) on p. 566, $a_n^{(h)} = c \times 2^n$.

• Guess
$$a_n^{(p)} = an + b$$
.

• Substitute this particular solution into the relation to yield

$$a(n+1) + b - 2(an + b) = n + 1.$$

• Rearrange the above to obtain

$$(-a-1) n + (a-b-1) = 0.$$

• This holds for all n if a = -1 and b = -2.

The Proof (concluded)

• Hence
$$a_n^{(p)} = -n - 2$$
.

• The general solution is

$$a_n = c \times 2^n - n - 2.$$

• Use the initial condition

$$4 = a_0 = c - 2$$

to obtain c = 6.

• The solution to the complete relation is

$$a_n = 6 \times 2^n - n - 2.$$

Nonhomogeneous $a_{n+1} - a_n = 2n + 3$ with $a_0 = 1$

• This equation is very similar to the previous one: $a_{n+1} - 2a_n = n + 1.$

• First,
$$a_n^{(h)} = d \times 1^n = d$$
.

• If one guesses $a_n^{(p)} = an + b$ as before, then

$$a_{n+1} - a_n = a(n+1) + b - an - b = a,$$

which cannot be right.^a

• So we guess
$$a_n^{(p)} = an^2 + bn + c$$
.

^aContributed by Mr. Yen-Chieh Sung (B01902011) on June 17, 2013.

• Substitute this particular solution into the relation to yield

$$a(n+1)^{2} + b(n+1) + c - (an^{2} + bn + c) = 2n + 3.$$

• Simplify the above to obtain

$$2an + (a+b) = 2n + 3.$$

- Hence a = 1 and b = 2.
- Hence $a_n^{(p)} = n^2 + 2n + c$.
- The general solution is $a_n = n^2 + 2n + c$.^a

^aWe merge d into c.

The Proof (concluded)

• Use the initial condition

$$1 = a_0 = c$$

to obtain c = 1.

• The solution to the complete relation is

$$a_n = n^2 + 2n + 1 = (n+1)^2.$$

• It is very different from the solution to the previous example: $a_n = 6 \times 2^n - n - 2$.

Nonhomogeneous $a_{n+2} - 3a_{n+1} + 2a_n = 2$ with $a_0 = 0$ and $a_1 = 2$

- The characteristic equation $r^2 3r + 2 = 0$ has roots 2 and 1.
- So $a_n^{(h)} = c_1 1^n + c_2 2^n = c_1 + c_2 2^n$.

• Guess
$$a_n^{(p)} = an + b$$
.

• Substitute $a_n^{(p)}$ into the relation to yield

$$a(n+2) + b - 3[a(n+1) + b] + 2(an+b) = 2.$$

• Rearrange the above to obtain a = -2.

• Hence
$$a_n^{(p)} = -2n + b$$
.

The Proof (concluded)

- The general solution is now $a_n = c_1 + c_2 2^n 2n$.^a
- Use the initial conditions

$$0 = a_0 = c_1 + c_2,$$

$$2 = a_1 = c_1 + 2c_2 - 2,$$

to obtain $c_1 = -4$ and $c_2 = 4$.

• The solution to the complete relation is

$$a_n = -4 + 2^{n+2} - 2n.$$

^aWe merge b into c_1 .