
Brownian Motion as Limit of Random Walk

Claim 1 A (µ, σ) Brownian motion is the limiting case of

random walk.

• A particle moves ∆x to the left with probability 1− p.

• It moves to the right with probability p after ∆t time.

• Define

Xi ≡




+1 if the ith move is to the right,

−1 if the ith move is to the left.

– Xi are independent with

Prob[Xi = 1 ] = p = 1− Prob[Xi = −1 ].
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Brownian Motion as Limit of Random Walk (continued)

• Assume n ≡ t/∆t is an integer.

• Its position at time t is

Y (t) ≡ ∆x (X1 +X2 + · · ·+Xn) .

• Recall

E[Xi ] = 2p− 1,

Var[Xi ] = 1− (2p− 1)2.
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Brownian Motion as Limit of Random Walk (continued)

• Therefore,

E[Y (t) ] = n(∆x)(2p− 1),

Var[Y (t) ] = n(∆x)2
[
1− (2p− 1)2

]
.

• With ∆x ≡ σ
√
∆t and p ≡ [ 1 + (µ/σ)

√
∆t ]/2,

E[Y (t) ] = nσ
√
∆t (µ/σ)

√
∆t = µt,

Var[Y (t) ] = nσ2∆t
[
1− (µ/σ)2∆t

] → σ2t,

as ∆t → 0.
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Brownian Motion as Limit of Random Walk (concluded)

• Thus, {Y (t), t ≥ 0 } converges to a (µ, σ) Brownian

motion by the central limit theorem.

• Brownian motion with zero drift is the limiting case of

symmetric random walk by choosing µ = 0.

• Note that

Var[Y (t+∆t)− Y (t) ]

=Var[∆xXn+1 ] = (∆x)2 ×Var[Xn+1 ] → σ2∆t.

• Similarity to the the BOPM: The p is identical to the

probability in Eq. (28) on p. 271 and ∆x = lnu.
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Geometric Brownian Motion

• Let X ≡ {X(t), t ≥ 0 } be a Brownian motion process.

• The process

{Y (t) ≡ eX(t), t ≥ 0 },
is called geometric Brownian motion.

• Suppose further that X is a (µ, σ) Brownian motion.

• X(t) ∼ N(µt, σ2t) with moment generating function

E
[
esX(t)

]
= E [Y (t)s ] = eµts+(σ2ts2/2)

from Eq. (20) on p 154.
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Geometric Brownian Motion (concluded)

• In particular,

E[Y (t) ] = eµt+(σ2t/2),

Var[Y (t) ] = E
[
Y (t)2

]− E[Y (t) ]2

= e2µt+σ2t
(
eσ

2t − 1
)
.
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Continuous-Time Financial Mathematics
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A proof is that which convinces a reasonable man;

a rigorous proof is that which convinces an

unreasonable man.

— Mark Kac (1914–1984)

The pursuit of mathematics is a

divine madness of the human spirit.

— Alfred North Whitehead (1861–1947),

Science and the Modern World
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Stochastic Integrals

• Use W ≡ {W (t), t ≥ 0 } to denote the Wiener process.

• The goal is to develop integrals of X from a class of

stochastic processes,a

It(X) ≡
∫ t

0

X dW, t ≥ 0.

• It(X) is a random variable called the stochastic integral

of X with respect to W .

• The stochastic process { It(X), t ≥ 0 } will be denoted

by
∫
X dW .

aKiyoshi Ito (1915–2008).
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Stochastic Integrals (concluded)

• Typical requirements for X in financial applications are:

– Prob[
∫ t

0
X2(s) ds < ∞ ] = 1 for all t ≥ 0 or the

stronger
∫ t

0
E[X2(s) ] ds < ∞.

– The information set at time t includes the history of

X and W up to that point in time.

– But it contains nothing about the evolution of X or

W after t (nonanticipating, so to speak).

– The future cannot influence the present.

c©2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 529



Ito Integral

• A theory of stochastic integration.

• As with calculus, it starts with step functions.

• A stochastic process {X(t) } is simple if there exist

0 = t0 < t1 < · · ·

such that

X(t) = X(tk−1) for t ∈ [ tk−1, tk), k = 1, 2, . . .

for any realization (see figure on next page).
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Ito Integral (continued)

• The Ito integral of a simple process is defined as

It(X) ≡
n−1∑

k=0

X(tk)[W (tk+1)−W (tk) ], (51)

where tn = t.

– The integrand X is evaluated at tk, not tk+1.

• Define the Ito integral of more general processes as a

limiting random variable of the Ito integral of simple

stochastic processes.
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Ito Integral (continued)

• Let X = {X(t), t ≥ 0 } be a general stochastic process.

• Then there exists a random variable It(X), unique

almost certainly, such that It(Xn) converges in

probability to It(X) for each sequence of simple

stochastic processes X1, X2, . . . such that Xn converges

in probability to X.

• If X is continuous with probability one, then It(Xn)

converges in probability to It(X) as

δn ≡ max
1≤k≤n

(tk − tk−1)

goes to zero.
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Ito Integral (concluded)

• It is a fundamental fact that
∫
X dW is continuous

almost surely.

• The following theorem says the Ito integral is a

martingale.

– A corollary is the mean value formula

E

[∫ b

a

X dW

]
= 0.

Theorem 18 The Ito integral
∫
X dW is a martingale.
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Discrete Approximation

• Recall Eq. (51) on p. 532.

• The following simple stochastic process { X̂(t) } can be

used in place of X to approximate
∫ t

0
X dW ,

X̂(s) ≡ X(tk−1) for s ∈ [ tk−1, tk), k = 1, 2, . . . , n.

• Note the nonanticipating feature of X̂.

– The information up to time s,

{ X̂(t),W (t), 0 ≤ t ≤ s },

cannot determine the future evolution of X or W .
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Discrete Approximation (concluded)

• Suppose we defined the stochastic integral as

n−1∑

k=0

X(tk+1)[W (tk+1)−W (tk) ].

• Then we would be using the following different simple

stochastic process in the approximation,

Ŷ (s) ≡ X(tk) for s ∈ [ tk−1, tk), k = 1, 2, . . . , n.

• This clearly anticipates the future evolution of X.a

aSee Exercise 14.1.2 of the textbook for an example where it matters.
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Ito Process

• The stochastic process X = {Xt, t ≥ 0 } that solves

Xt = X0 +

∫ t

0

a(Xs, s) ds+

∫ t

0

b(Xs, s) dWs, t ≥ 0

is called an Ito process.

– X0 is a scalar starting point.

– { a(Xt, t) : t ≥ 0 } and { b(Xt, t) : t ≥ 0 } are

stochastic processes satisfying certain regularity

conditions.

– a(Xt, t): the drift.

– b(Xt, t): the diffusion.
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Ito Process (continued)

• A shorthanda is the following stochastic differential

equation for the Ito differential dXt,

dXt = a(Xt, t) dt+ b(Xt, t) dWt. (52)

– Or simply

dXt = at dt+ bt dWt.

– This is Brownian motion with an instantaneous drift

at and an instantaneous variance b2t .

• X is a martingale if at = 0 (Theorem 18 on p. 534).

aPaul Langevin (1872–1946) in 1904.

c©2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 539



Ito Process (concluded)

• dW is normally distributed with mean zero and

variance dt.

• An equivalent form of Eq. (52) is

dXt = at dt+ bt
√
dt ξ, (53)

where ξ ∼ N(0, 1).
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Euler Approximation

• The following approximation follows from Eq. (53),

X̂(tn+1)

=X̂(tn) + a(X̂(tn), tn)∆t+ b(X̂(tn), tn)∆W (tn),

(54)

where tn ≡ n∆t.

• It is called the Euler or Euler-Maruyama method.

• Recall that ∆W (tn) should be interpreted as

W (tn+1)−W (tn), not W (tn)−W (tn−1).

• Under mild conditions, X̂(tn) converges to X(tn).

c©2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 541



More Discrete Approximations

• Under fairly loose regularity conditions, Eq. (54) on

p. 541 can be replaced by

X̂(tn+1)

=X̂(tn) + a(X̂(tn), tn)∆t+ b(X̂(tn), tn)
√
∆t Y (tn).

– Y (t0), Y (t1), . . . are independent and identically

distributed with zero mean and unit variance.
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More Discrete Approximations (concluded)

• An even simpler discrete approximation scheme:

X̂(tn+1)

=X̂(tn) + a(X̂(tn), tn)∆t+ b(X̂(tn), tn)
√
∆t ξ.

– Prob[ ξ = 1 ] = Prob[ ξ = −1 ] = 1/2.

– Note that E[ ξ ] = 0 and Var[ ξ ] = 1.

• This is a binomial model.

• As ∆t goes to zero, X̂ converges to X.
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Trading and the Ito Integral

• Consider an Ito process dSt = µt dt+ σt dWt.

– St is the vector of security prices at time t.

• Let φt be a trading strategy denoting the quantity of

each type of security held at time t.

– Hence the stochastic process φtSt is the value of the

portfolio φt at time t.

• φt dSt ≡ φt(µt dt+ σt dWt) represents the change in the

value from security price changes occurring at time t.
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Trading and the Ito Integral (concluded)

• The equivalent Ito integral,

GT (φ) ≡
∫ T

0

φt dSt =

∫ T

0

φtµt dt+

∫ T

0

φtσt dWt,

measures the gains realized by the trading strategy over

the period [ 0, T ].
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Ito’s Lemma

A smooth function of an Ito process is itself an Ito process.

Theorem 19 Suppose f : R → R is twice continuously

differentiable and dX = at dt+ bt dW . Then f(X) is the

Ito process,

f(Xt)

= f(X0) +

∫ t

0

f ′(Xs) as ds+

∫ t

0

f ′(Xs) bs dW

+
1

2

∫ t

0

f ′′(Xs) b
2
s ds

for t ≥ 0.
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Ito’s Lemma (continued)

• In differential form, Ito’s lemma becomes

df(X) = f ′(X) a dt+ f ′(X) b dW +
1

2
f ′′(X) b2 dt.

(55)

• Compared with calculus, the interesting part is the third

term on the right-hand side.

• A convenient formulation of Ito’s lemma is

df(X) = f ′(X) dX +
1

2
f ′′(X)(dX)2.
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Ito’s Lemma (continued)

• We are supposed to multiply out

(dX)2 = (a dt+ b dW )2 symbolically according to

× dW dt

dW dt 0

dt 0 0

– The (dW )2 = dt entry is justified by a known result.

• Hence (dX)2 = (a dt+ b dW )2 = b2 dt.

• This form is easy to remember because of its similarity

to the Taylor expansion.
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Ito’s Lemma (continued)

Theorem 20 (Higher-Dimensional Ito’s Lemma) Let

W1,W2, . . . ,Wn be independent Wiener processes and

X ≡ (X1, X2, . . . , Xm) be a vector process. Suppose

f : Rm → R is twice continuously differentiable and Xi is

an Ito process with dXi = ai dt+
∑n

j=1 bij dWj. Then

df(X) is an Ito process with the differential,

df(X) =
m∑

i=1

fi(X) dXi +
1

2

m∑

i=1

m∑

k=1

fik(X) dXi dXk,

where fi ≡ ∂f/∂Xi and fik ≡ ∂2f/∂Xi∂Xk.
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Ito’s Lemma (continued)

• The multiplication table for Theorem 20 is

× dWi dt

dWk δik dt 0

dt 0 0

in which

δik =





1 if i = k,

0 otherwise.
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Ito’s Lemma (continued)

• In applying the higher-dimensional Ito’s lemma, usually

one of the variables, say X1, is time t and dX1 = dt.

• In this case, b1j = 0 for all j and a1 = 1.

• As an example, let

dXt = at dt+ bt dWt.

• Consider the process f(Xt, t).
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Ito’s Lemma (continued)

• Then

df =
∂f

∂Xt
dXt +

∂f

∂t
dt+

1

2

∂2f

∂X2
t

(dXt)
2

=
∂f

∂Xt
(at dt+ bt dWt) +

∂f

∂t
dt

+
1

2

∂2f

∂X2
t

(at dt+ bt dWt)
2

=

(
∂f

∂Xt
at +

∂f

∂t
+

1

2

∂2f

∂X2
t

b2t

)
dt

+
∂f

∂Xt
bt dWt.
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Ito’s Lemma (continued)

Theorem 21 (Alternative Ito’s Lemma) Let

W1,W2, . . . ,Wm be Wiener processes and

X ≡ (X1, X2, . . . , Xm) be a vector process. Suppose

f : Rm → R is twice continuously differentiable and Xi is

an Ito process with dXi = ai dt+ bi dWi. Then df(X) is the

following Ito process,

df(X) =
m∑

i=1

fi(X) dXi +
1

2

m∑

i=1

m∑

k=1

fik(X) dXi dXk.
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Ito’s Lemma (concluded)

• The multiplication table for Theorem 21 is

× dWi dt

dWk ρik dt 0

dt 0 0

• Above, ρik denotes the correlation between dWi and

dWk.
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Geometric Brownian Motion

• Consider geometric Brownian motion Y (t) ≡ eX(t)

– X(t) is a (µ, σ) Brownian motion.

– Hence dX = µdt+ σ dW by Eq. (50) on p. 518.

• Note that

∂Y

∂X
= Y,

∂2Y

∂X2
= Y.
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Geometric Brownian Motion (concluded)

• Ito’s formula (55) on p. 547 implies

dY = Y dX + (1/2)Y (dX)2

= Y (µdt+ σ dW ) + (1/2)Y (µdt+ σ dW )2

= Y (µdt+ σ dW ) + (1/2)Y σ2 dt.

• Hence

dY

Y
=

(
µ+ σ2/2

)
dt+ σ dW. (56)

• The annualized instantaneous rate of return is µ+ σ2/2

(not µ).
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Product of Geometric Brownian Motion Processes

• Let

dY/Y = a dt+ b dWY ,

dZ/Z = f dt+ g dWZ .

• Consider the Ito process U ≡ Y Z.

• Apply Ito’s lemma (Theorem 21 on p. 553):

dU = Z dY + Y dZ + dY dZ

= ZY (a dt+ b dWY ) + Y Z(f dt+ g dWZ)

+Y Z(a dt+ b dWY )(f dt+ g dWZ)

= U(a+ f + bgρ) dt+ Ub dWY + Ug dWZ .
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Product of Geometric Brownian Motion Processes
(continued)

• The product of two (or more) correlated geometric

Brownian motion processes thus remains geometric

Brownian motion.

• Note that

Y = exp
[(
a− b2/2

)
dt+ b dWY

]
,

Z = exp
[(
f − g2/2

)
dt+ g dWZ

]
,

U = exp
[ (

a+ f − (
b2 + g2

)
/2
)
dt+ b dWY + g dWZ

]
.
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Product of Geometric Brownian Motion Processes
(concluded)

• lnU is Brownian motion with a mean equal to the sum

of the means of lnY and lnZ.

• This holds even if Y and Z are correlated.

• Finally, lnY and lnZ have correlation ρ.
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Quotients of Geometric Brownian Motion Processes

• Suppose Y and Z are drawn from p. 557.

• Let U ≡ Y/Z.

• We now show thata

dU

U
= (a− f + g2 − bgρ) dt+ b dWY − g dWZ .

(57)

• Keep in mind that dWY and dWZ have correlation ρ.

aExercise 14.3.6 of the textbook is erroneous.
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Quotients of Geometric Brownian Motion Processes
(concluded)

• The multidimensional Ito’s lemma (Theorem 21 on

p. 553) can be employed to show that

dU

= (1/Z) dY − (Y/Z2) dZ − (1/Z2) dY dZ + (Y/Z3) (dZ)2

= (1/Z)(aY dt+ bY dWY )− (Y/Z2)(fZ dt+ gZ dWZ)

−(1/Z2)(bgY Zρ dt) + (Y/Z3)(g2Z2 dt)

= U(a dt+ b dWY )− U(f dt+ g dWZ)

−U(bgρ dt) + U(g2 dt)

= U(a− f + g2 − bgρ) dt+ Ub dWY − Ug dWZ .
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Forward Price

• Suppose S follows

dS

S
= µdt+ σ dW.

• Consider F (S, t) ≡ Sey(T−t).

• Observe that

∂F

∂S
= ey(T−t),

∂2F

∂S2
= 0,

∂F

∂t
= −ySey(T−t).
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Forward Prices (concluded)

• Then

dF = ey(T−t) dS − ySey(T−t) dt

= Sey(T−t) (µdt+ σ dW )− ySey(T−t) dt

= F (µ− y) dt+ Fσ dW.

• Thus F follows

dF

F
= (µ− y) dt+ σ dW.

• This result has applications in forward and futures

contracts.a

aIt is also consistent with p. 509.
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Ornstein-Uhlenbeck Process

• The Ornstein-Uhlenbeck process:

dX = −κX dt+ σ dW,

where κ, σ ≥ 0.

• It is known that

E[X(t) ] = e
−κ(t−t0)

E[ x0 ],

Var[X(t) ] =
σ2

2κ

“
1 − e

−2κ(t−t0)
”
+ e

−2κ(t−t0)
Var[ x0 ],

Cov[X(s), X(t) ] =
σ2

2κ
e
−κ(t−s)

h
1 − e

−2κ(s−t0)
i

+e
−κ(t+s−2t0)

Var[ x0 ],

for t0 ≤ s ≤ t and X(t0) = x0.
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Ornstein-Uhlenbeck Process (continued)

• X(t) is normally distributed if x0 is a constant or

normally distributed.

• X is said to be a normal process.

• E[x0 ] = x0 and Var[x0 ] = 0 if x0 is a constant.

• The Ornstein-Uhlenbeck process has the following mean

reversion property.

– When X > 0, X is pulled toward zero.

– When X < 0, it is pulled toward zero again.
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Ornstein-Uhlenbeck Process (continued)

• A generalized version:

dX = κ(µ−X) dt+ σ dW,

where κ, σ ≥ 0.

• Given X(t0) = x0, a constant, it is known that

E[X(t) ] = µ+ (x0 − µ) e−κ(t−t0), (58)

Var[X(t) ] =
σ2

2κ

[
1− e−2κ(t−t0)

]
,

for t0 ≤ t.
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Ornstein-Uhlenbeck Process (concluded)

• The mean and standard deviation are roughly µ and

σ/
√
2κ , respectively.

• For large t, the probability of X < 0 is extremely

unlikely in any finite time interval when µ > 0 is large

relative to σ/
√
2κ .

• The process is mean-reverting.

– X tends to move toward µ.

– Useful for modeling term structure, stock price

volatility, and stock price return.
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Square-Root Process

• Suppose X is an Ornstein-Uhlenbeck process.

• Ito’s lemma says V ≡ X2 has the differential,

dV = 2X dX + (dX)2

= 2
√
V (−κ

√
V dt+ σ dW ) + σ2 dt

=
(−2κV + σ2

)
dt+ 2σ

√
V dW,

a square-root process.
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Square-Root Process (continued)

• In general, the square-root process has the stochastic

differential equation,

dX = κ(µ−X) dt+ σ
√
X dW,

where κ, σ ≥ 0 and X(0) is a nonnegative constant.

• Like the Ornstein-Uhlenbeck process, it possesses mean

reversion: X tends to move toward µ, but the volatility

is proportional to
√
X instead of a constant.
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Square-Root Process (continued)

• When X hits zero and µ ≥ 0, the probability is one

that it will not move below zero.

– Zero is a reflecting boundary.

• Hence, the square-root process is a good candidate for

modeling interest rates.a

• The Ornstein-Uhlenbeck process, in contrast, allows

negative interest rates.

• The two processes are related (see p. 568).

aCox, Ingersoll, and Ross (1985).
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Square-Root Process (concluded)

• The random variable 2cX(t) follows the noncentral

chi-square distribution,a

χ

(
4κµ

σ2
, 2cX(0) e−κt

)
,

where c ≡ (2κ/σ2)(1− e−κt)−1.

• Given X(0) = x0, a constant,

E[X(t) ] = x0e
−κt + µ

(
1− e−κt

)
,

Var[X(t) ] = x0
σ2

κ

(
e−κt − e−2κt

)
+ µ

σ2

2κ

(
1− e−κt

)2
,

for t ≥ 0.

aWilliam Feller (1906–1970) in 1951.
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Modeling Stock Prices

• The most popular stochastic model for stock prices has

been the geometric Brownian motion,

dS

S
= µdt+ σ dW.

• The continuously compounded rate of return X ≡ lnS

follows

dX = (µ− σ2/2) dt+ σ dW

by Ito’s lemma.a

aSee also Eq. (56) on p. 556. Also consistent with Lemma 10 (p. 275).
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Local-Volatility Models

• The more general deterministic volatility model posits

dS

S
= (rt − qt) dt+ σ(S, t) dW,

where σ(S, t) is called the local volatility function.a

• A (weak) solution exists if Sσ(S, t) is continuous and

grows at most linearly in S and t.b

aDerman and Kani (1994); Dupire (1994).
bSkorokhod (1961).
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Local-Volatility Models (continued)

• Theoretically,a

σ(X,T )2 = 2
∂C
∂T + (rT − qT )X

∂C
∂X + qTC

X2 ∂2C
∂X2

. (59)

• C is the call price at time t = 0 (today) with strike

price X and time to maturity T .

• σ(X,T ) is the local volatility that will prevail at future

time T and stock price ST = X.

aDupire (1994); Andersen and Brotherton-Ratcliffe (1998).
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Local-Volatility Models (continued)

• In practice, σ(S, T )2 may have spikes, vary wildly, or

even be negative.

• The term ∂2C/∂X2 in the denominator often results in

numerical instability.

• Denote the implied volatility surface by Σ(X,T ).

• Denote the local volatility surface by σ(S, T ).
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Local-Volatility Models (continued)

• The relation between Σ(X,T ) and σ(X,T ) isa

σ(X,T )2 =
Σ2 + 2Στ

ˆ
∂Σ
∂T

+ (rT − qT )X
∂Σ
∂X

˜
`
1− Xy

Σ
∂Σ
∂X

´2
+XΣτ

h
∂Σ
∂X

− XΣτ
4

`
∂Σ
∂X

´2
+X ∂2Σ

∂X2

i ,

τ ≡ T − t,

y ≡ ln(X/St) +

Z T

t

(qs − rs) ds.

• Although this version may be more stable than Eq. (59)

on p. 574, it is expected to suffer from similar problems.

aAndreasen (1996); Andersen and Brotherton-Ratcliffe (1998);

Gatheral (2003); Wilmott (2006); Kamp (2009).
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Local-Volatility Models (continued)

• Small changes to the implied volatility surface may

produce big changes to the local volatility surface.

• In reality, option prices only exist for a finite set of

maturities and strike prices.

• Hence interpolation and extrapolation may be needed to

construct the volatility surface.

• But some implied volatility surfaces generate option

prices that allow arbitrage profits.

c©2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 577



Local-Volatility Models (continued)

• For example, consider the following implied volatility

surface:a

Σ(X,T )2 = aATM(T ) + b(X − S0)
2, b > 0.

• It generates higher prices for out-of-the-money options

than in-the-money options for T large enough.b

aATM means at-the-money.
bRebonato (2004).
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Local-Volatility Models (continued)

• Let x ≡ ln(X/S0)− rT .

• For X large enough,a

Σ(X,T )2 < 2
|x |
T

.

• For X small enough,b

Σ(X,T )2 < β
|x |
T

for any β > 2.

aLee (2004).
bLee (2004).
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Local-Volatility Models (concluded)

• There exist conditions for a set of option prices to be

arbitrage-free.a

• For some vanilla equity options, the Black-Scholes model

“seems” better than the local volatility model.b

aDavis and Hobson (2007).
bDumas, Fleming, and Whaley (1998).
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Implied and Local Volatility Surfacesa
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aContributed by Mr. Lok, U Hou (D99922028) on April 5, 2014.
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Implied Trees

• The trees for the local volatility model are called implied

trees.a

• Their construction requires option prices at all strike

prices and maturities.

– That is, a volatility surface.

• The local volatility model does not require that the

implied tree combine.

aDerman and Kani (1994); Dupire (1994); Rubinstein (1994).
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Implied Trees (concluded)

• How to construct an implied tree with efficiency, valid

probabilities and stability has been open for a long

time.a

– Reasons may include: noise and nonsynchrony in

data, arbitrage opportunities in the smoothed and

interpolated/extrapolated implied volatility surface,

wrong model, etc.

• Numerically, inversion is an ill-posed problem.

• It is partially solved recently.b

aDerman and Kani (1994); Derman, Kani, and Chriss (1996); Cole-

man, Kim, Li, and Verma (2000); Ayache, Henrotte, Nassar, and Wang

(2004); Kamp (2009).
bFebruary 12, 2013.
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Continuous-Time Derivatives Pricing
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I have hardly met a mathematician

who was capable of reasoning.

— Plato (428 B.C.–347 B.C.)

Fischer [Black] is the only real genius

I’ve ever met in finance. Other people,

like Robert Merton or Stephen Ross,

are just very smart and quick,

but they think like me.

Fischer came from someplace else entirely.

— John C. Cox, quoted in Mehrling (2005)
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Toward the Black-Scholes Differential Equation

• The price of any derivative on a non-dividend-paying

stock must satisfy a partial differential equation (PDE).

• The key step is recognizing that the same random

process drives both securities.

• As their prices are perfectly correlated, we figure out the

amount of stock such that the gain from it offsets

exactly the loss from the derivative.

• The removal of uncertainty forces the portfolio’s return

to be the riskless rate.

• PDEs allow many numerical methods to be applicable.
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Assumptionsa

• The stock price follows dS = µS dt+ σS dW .

• There are no dividends.

• Trading is continuous, and short selling is allowed.

• There are no transactions costs or taxes.

• All securities are infinitely divisible.

• The term structure of riskless rates is flat at r.

• There is unlimited riskless borrowing and lending.

• t is the current time, T is the expiration time, and

τ ≡ T − t.
aDerman and Taleb (2005) summarizes criticisms on these assump-

tions and the replication argument.
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Black-Scholes Differential Equation

• Let C be the price of a derivative on S.

• From Ito’s lemma (p. 549),

dC =

(
µS

∂C

∂S
+

∂C

∂t
+

1

2
σ2S2 ∂2C

∂S2

)
dt+ σS

∂C

∂S
dW.

– The same W drives both C and S.

• Short one derivative and long ∂C/∂S shares of stock

(call it Π).

• By construction,

Π = −C + S(∂C/∂S).
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Black-Scholes Differential Equation (continued)

• The change in the value of the portfolio at time dt isa

dΠ = −dC +
∂C

∂S
dS.

• Substitute the formulas for dC and dS into the partial

differential equation to yield

dΠ =

(
−∂C

∂t
− 1

2
σ2S2 ∂2C

∂S2

)
dt.

• As this equation does not involve dW , the portfolio is

riskless during dt time: dΠ = rΠ dt.

aMathematically speaking, it is not quite right (Bergman, 1982).
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Black-Scholes Differential Equation (concluded)

• So
(
∂C

∂t
+

1

2
σ2S2 ∂2C

∂S2

)
dt = r

(
C − S

∂C

∂S

)
dt.

• Equate the terms to finally obtain

∂C

∂t
+ rS

∂C

∂S
+

1

2
σ2S2 ∂2C

∂S2
= rC.

• When there is a dividend yield q,

∂C

∂t
+ (r − q)S

∂C

∂S
+

1

2
σ2S2 ∂2C

∂S2
= rC. (60)
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Rephrase

• The Black-Scholes differential equation can be expressed

in terms of sensitivity numbers,

Θ + rS∆+
1

2
σ2S2Γ = rC. (61)

• Identity (61) leads to an alternative way of computing

Θ numerically from ∆ and Γ.

• When a portfolio is delta-neutral,

Θ +
1

2
σ2S2Γ = rC.

– A definite relation thus exists between Γ and Θ.
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Black-Scholes Differential Equation: An Alternative

• Perform the change of variable V ≡ lnS.

• The option value becomes U(V, t) ≡ C(eV , t).

• Furthermore,

∂C

∂t
=

∂U

∂t
,

∂C

∂S
=

1

S

∂U

∂V
,

∂2C

∂2S
=

1

S2

∂2U

∂V 2
− 1

S2

∂U

∂V
. (62)
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Black-Scholes Differential Equation: An Alternative
(concluded)

• The Black-Scholes differential equation (60) becomes

1

2
σ2 ∂2U

∂V 2
+

(
r − q − σ2

2

)
∂U

∂V
− rU +

∂U

∂t
= 0

subject to U(V, T ) being the payoff such as

max(X − eV , 0).

• Equation (62) is an alternative way to calculate the

gamma numerically.
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[Black] got the equation [in 1969] but then

was unable to solve it. Had he been a better

physicist he would have recognized it as a form

of the familiar heat exchange equation,

and applied the known solution. Had he been

a better mathematician, he could have

solved the equation from first principles.

Certainly Merton would have known exactly

what to do with the equation

had he ever seen it.

— Perry Mehrling (2005)
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PDEs for Asian Options

• Add the new variable A(t) ≡ ∫ t

0
S(u) du.

• Then the value V of the Asian option satisfies this

two-dimensional PDE:a

∂V

∂t
+ rS

∂V

∂S
+

1

2
σ2S2 ∂2V

∂S2
+ S

∂V

∂A
= rV.

• The terminal conditions are

V (T, S,A) = max

(
A

T
−X, 0

)
for call,

V (T, S,A) = max

(
X − A

T
, 0

)
for put.

aKemna and Vorst (1990).
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PDEs for Asian Options (continued)

• The two-dimensional PDE produces algorithms similar

to that on pp. 395ff.

• But one-dimensional PDEs are available for Asian

options.a

• For example, Večeř (2001) derives the following PDE for

Asian calls:

∂u

∂t
+ r

(
1− t

T
− z

)
∂u

∂z
+

(
1− t

T − z
)2

σ2

2

∂2u

∂z2
= 0

with the terminal condition u(T, z) = max(z, 0).

aRogers and Shi (1995); Večeř (2001); Dubois and Lelièvre (2005).
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PDEs for Asian Options (concluded)

• For Asian puts:

∂u

∂t
+ r

(
t

T
− 1− z

)
∂u

∂z
+

(
t
T − 1− z

)2
σ2

2

∂2u

∂z2
= 0

with the same terminal condition.

• One-dimensional PDEs lead to highly efficient numerical

methods.
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