
Sensitivity Analysis of Options
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Cleopatra’s nose, had it been shorter,

the whole face of the world

would have been changed.

— Blaise Pascal (1623–1662)

c©2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 322



Sensitivity Measures (“The Greeks”)

• How the value of a security changes relative to changes

in a given parameter is key to hedging.

– Duration, for instance.

• Let x ≡ ln(S/X)+(r+σ2/2) τ
σ
√
τ

(recall p. 277).

• Recall that

N ′(y) =
e−y2/2

√
2π

> 0,

the density function of standard normal distribution.
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Delta

• Defined as

∆ ≡ ∂f

∂S
.

– f is the price of the derivative.

– S is the price of the underlying asset.

• The delta of a portfolio of derivatives on the same

underlying asset is the sum of their individual deltas.

– Elementary calculus.

• The delta used in the BOPM (p. 224) is the discrete

analog.
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Delta (concluded)

• The delta of a European call on a non-dividend-paying

stock equals
∂C

∂S
= N(x) > 0.

• The delta of a European put equals

∂P

∂S
= N(x)− 1 < 0.

• The delta of a long stock is apparently 1.
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Delta Neutrality

• A position with a total delta equal to 0 is delta-neutral.

– A delta-neutral portfolio is immune to small price

changes in the underlying asset.

• Creating one serves for hedging purposes.

– A portfolio consisting of a call and −∆ shares of

stock is delta-neutral.

– Short ∆ shares of stock to hedge a long call.

– Long ∆ shares of stock to hedge a short call.

• In general, hedge a position in a security with delta ∆1

by shorting ∆1/∆2 units of a security with delta ∆2.
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Theta (Time Decay)

• Defined as the rate of change of a security’s value with

respect to time, or Θ ≡ −∂f/∂τ = ∂f/∂t.

• For a European call on a non-dividend-paying stock,

Θ = −SN ′(x)σ
2
√
τ

− rXe−rτN(x− σ
√
τ) < 0.

– The call loses value with the passage of time.

• For a European put,

Θ = −SN ′(x)σ
2
√
τ

+ rXe−rτN(−x+ σ
√
τ).

– Can be negative or positive.
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Gamma

• Defined as the rate of change of its delta with respect to

the price of the underlying asset, or Γ ≡ ∂2Π/∂S2.

• Measures how sensitive delta is to changes in the price of

the underlying asset.

• In practice, a portfolio with a high gamma needs be

rebalanced more often to maintain delta neutrality.

• Roughly, delta ∼ duration, and gamma ∼ convexity.

• The gamma of a European call or put on a

non-dividend-paying stock is

N ′(x)/(Sσ
√
τ) > 0.
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Vegaa (Lambda, Kappa, Sigma)

• Defined as the rate of change of its value with respect to

the volatility of the underlying asset

Λ ≡ ∂f

∂σ
.

• Volatility often changes over time.

• A security with a high vega is very sensitive to small

changes or estimation error in volatility.

• The vega of a European call or put on a

non-dividend-paying stock is S
√
τ N ′(x) > 0.

– So higher volatility always increases the option value.

aVega is not Greek.
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Vega (concluded)

• From the Black-Scholes formula (p. 277), it is easy to

check that

C → S,

P → Xe−rτ ,

as σ → ∞.

• These boundary conditions may be handy for certain

numerical methods.
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Rho

• Defined as the rate of change in its value with respect to

interest rates

ρ ≡ ∂f

∂r
.

• The rho of a European call on a non-dividend-paying

stock is

Xτe−rτN(x− σ
√
τ) > 0.

• The rho of a European put on a non-dividend-paying

stock is

−Xτe−rτN(−x+ σ
√
τ) < 0.
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Numerical Greeks

• Needed when closed-form formulas do not exist.

• Take delta as an example.

• A standard method computes the finite difference,

f(S +∆S)− f(S −∆S)

2∆S
.

• The computation time roughly doubles that for

evaluating the derivative security itself.
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An Alternative Numerical Deltaa

• Use intermediate results of the binomial tree algorithm.

• When the algorithm reaches the end of the first period,

fu and fd are computed.

• These values correspond to derivative values at stock

prices Su and Sd, respectively.

• Delta is approximated by

fu − fd
Su− Sd

.

• Almost zero extra computational effort.

aPelsser and Vorst (1994).
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Numerical Gamma

• At the stock price (Suu+ Sud)/2, delta is

approximately (fuu − fud)/(Suu− Sud).

• At the stock price (Sud+ Sdd)/2, delta is

approximately (fud − fdd)/(Sud− Sdd).

• Gamma is the rate of change in deltas between

(Suu+ Sud)/2 and (Sud+ Sdd)/2, that is,

fuu−fud

Suu−Sud − fud−fdd
Sud−Sdd

(Suu− Sdd)/2
.

• Alternative formulas exist.
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Finite Difference Fails for Numerical Gamma

• Numerical differentiation gives

f(S +∆S)− 2f(S) + f(S −∆S)

(∆S)2
.

• It does not work (see text).

• But why did the binomial tree version work?
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Other Numerical Greeks

• The theta can be computed as

fud − f

2(τ/n)
.

– In fact, the theta of a European option can be

derived from delta and gamma (p. 583).

• For vega and rho, there seems no alternative but to run

the binomial tree algorithm twice.a

aBut see pp. 941ff.
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Extensions of Options Theory
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As I never learnt mathematics,

so I have had to think.

— Joan Robinson (1903–1983)
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Pricing Corporate Securitiesa

• Interpret the underlying asset as the total value of the

firm.

• The option pricing methodology can be applied to

pricing corporate securities.

– The result is called the structural model.

• Assumptions:

– A firm can finance payouts by the sale of assets.

– If a promised payment to an obligation other than

stock is missed, the claim holders take ownership of

the firm and the stockholders get nothing.

aBlack and Scholes (1973).
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Risky Zero-Coupon Bonds and Stock

• Consider XYZ.com.

• Capital structure:

– n shares of its own common stock, S.

– Zero-coupon bonds with an aggregate par value of X.

• What is the value of the bonds, B?

• What is the value of the XYZ.com stock?
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Risky Zero-Coupon Bonds and Stock (continued)

• On the bonds’ maturity date, suppose the total value of

the firm V ∗ is less than the bondholders’ claim X.

• Then the firm declares bankruptcy, and the stock

becomes worthless.

• If V ∗ > X, then the bondholders obtain X and the

stockholders V ∗ −X.

V ∗ ≤ X V ∗ > X

Bonds V ∗ X

Stock 0 V ∗ −X
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Risky Zero-Coupon Bonds and Stock (continued)

• The stock has the same payoff as a call!

• It is a call on the total value of the firm with a strike

price of X and an expiration date equal to the bonds’.

– This call provides the limited liability for the

stockholders.

• The bonds are a covered call on the total value of the

firm.

• Let V stand for the total value of the firm.

• Let C stand for a call on V .
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Risky Zero-Coupon Bonds and Stock (continued)

• Thus

nS = C,

B = V − C.

• Knowing C amounts to knowing how the value of the

firm is divided between stockholders and bondholders.

• Whatever the value of C, the total value of the stock

and bonds at maturity remains V ∗.

• The relative size of debt and equity is irrelevant to the

firm’s current value V .
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Risky Zero-Coupon Bonds and Stock (continued)

• From Theorem 11 (p. 277) and the put-call parity,

nS = V N(x)−Xe−rτN(x− σ
√
τ),

B = V N(−x) +Xe−rτN(x− σ
√
τ).

– Above,

x ≡ ln(V/X) + (r + σ2/2)τ

σ
√
τ

.

• The continuously compounded yield to maturity of the

firm’s bond is
ln(X/B)

τ
.
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Risky Zero-Coupon Bonds and Stock (concluded)

• Define the credit spread or default premium as the yield

difference between risky and riskless bonds,

ln(X/B)

τ
− r

= −1

τ
ln

(
N(−z) +

1

ω
N(z − σ

√
τ)

)
.

– ω ≡ Xe−rτ/V .

– z ≡ (lnω)/(σ
√
τ) + (1/2)σ

√
τ = −x+ σ

√
τ .

– Note that ω is the debt-to-total-value ratio.
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A Numerical Example

• XYZ.com’s assets consist of 1,000 shares of Merck as of

March 20, 1995.

– Merck’s market value per share is $44.5.

• XYZ.com’s securities consist of 1,000 shares of common

stock and 30 zero-coupon bonds maturing on July 21,

1995.

• Each bond promises to pay $1,000 at maturity.

• n = 1, 000, V = 44.5× n = 44, 500, and

X = 30× 1, 000 = 30, 000.
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—Call— —Put—

Option Strike Exp. Vol. Last Vol. Last

Merck 30 Jul 328 151/4 . . . . . .

441/2 35 Jul 150 91/2 10 1/16

441/2 40 Apr 887 43/4 136 1/16

441/2 40 Jul 220 51/2 297 1/4

441/2 40 Oct 58 6 10 1/2

441/2 45 Apr 3050 7/8 100 11/8

441/2 45 May 462 13/8 50 13/8

441/2 45 Jul 883 115/16 147 13/4

441/2 45 Oct 367 23/4 188 21/16
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A Numerical Example (continued)

• The Merck option relevant for pricing is the July call

with a strike price of X/n = 30 dollars.

• Such a call is selling for $15.25.

• So XYZ.com’s stock is worth 15.25×n = 15, 250 dollars.

• The entire bond issue is worth

B = 44, 500− 15, 250 = 29, 250

dollars.

– Or $975 per bond.
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A Numerical Example (continued)

• The XYZ.com bonds are equivalent to a default-free

zero-coupon bond with $X par value plus n written

European puts on Merck at a strike price of $30.

– By the put-call parity.

• The difference between B and the price of the

default-free bond is the value of these puts.

• The next table shows the total market values of the

XYZ.com stock and bonds under various debt amounts

X.
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Promised payment Current market Current market Current total

to bondholders value of bonds value of stock value of firm

X B nS V

30,000 29,250.0 15,250.0 44,500

35,000 35,000.0 9,500.0 44,500

40,000 39,000.0 5,500.0 44,500

45,000 42,562.5 1,937.5 44,500
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A Numerical Example (continued)

• Suppose the promised payment to bondholders is

$45,000.

• Then the relevant option is the July call with a strike

price of 45, 000/n = 45 dollars.

• Since that option is selling for $115/16, the market value

of the XYZ.com stock is (1 + 15/16)× n = 1, 937.5

dollars.

• The market value of the stock decreases as the

debt-equity ratio increases.
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A Numerical Example (continued)

• There are conflicts between stockholders and

bondholders.

• An option’s terms cannot be changed after issuance.

• But a firm can change its capital structure.

• There lies one key difference between options and

corporate securities.

– Parameters such volatility, dividend, and strike price

are under partial control of the stockholders.
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A Numerical Example (continued)

• Suppose XYZ.com issues 15 more bonds with the same

terms to buy back stock.

• The total debt is now X = 45,000 dollars.

• The table on p. 356 says the total market value of the

bonds should be $42,562.5.

• The new bondholders pay

42, 562.5× (15/45) = 14, 187.5

dollars.

• The remaining stock is worth $1,937.5.

c©2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 359



A Numerical Example (continued)

• The stockholders therefore gain

14, 187.5 + 1, 937.5− 15, 250 = 875

dollars.

• The original bondholders lose an equal amount,

29, 250− 30

45
× 42, 562.5 = 875.
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A Numerical Example (continued)

• Suppose the stockholders sell (1/3)× n Merck shares to

fund a $14,833.3 cash dividend.

• They now have $14,833.3 in cash plus a call on

(2/3)× n Merck shares.

• The strike price remains X = 30, 000.

• This is equivalent to owning 2/3 of a call on n Merck

shares with a total strike price of $45,000.

• n such calls are worth $1,937.5 (p. 356).

• So the total market value of the XYZ.com stock is

(2/3)× 1, 937.5 = 1, 291.67 dollars.
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A Numerical Example (concluded)

• The market value of the XYZ.com bonds is hence

(2/3)× n× 44.5− 1, 291.67 = 28, 375

dollars.

• Hence the stockholders gain

14, 833.3 + 1, 291.67− 15, 250 ≈ 875

dollars.

• The bondholders watch their value drop from $29,250 to

$28,375, a loss of $875.
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Further Topics

• Other Examples:

– Subordinated debts as bull call spreads.

– Warrants as calls.

– Callable bonds as American calls with 2 strike prices.

– Convertible bonds.

• Securities with a complex liability structure must be

solved by trees.a

aDai (R86526008, D8852600), Lyuu, and Wang (F95922018) (2010).
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Barrier Optionsa

• Their payoff depends on whether the underlying asset’s

price reaches a certain price level H.

• A knock-out option is an ordinary European option

which ceases to exist if the barrier H is reached by the

price of its underlying asset.

• A call knock-out option is sometimes called a

down-and-out option if H < S.

• A put knock-out option is sometimes called an

up-and-out option when H > S.
aA former MBA student in finance told me on March 26, 2004, that

she did not understand why I covered barrier options until she started

working in a bank. She was working for Lehman Brothers in HK as of

April, 2006.
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Barrier Options (concluded)

• A knock-in option comes into existence if a certain

barrier is reached.

• A down-and-in option is a call knock-in option that

comes into existence only when the barrier is reached

and H < S.

• An up-and-in is a put knock-in option that comes into

existence only when the barrier is reached and H > S.

• Formulas exist for all the possible barrier options

mentioned above.a

aHaug (2006).
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A Formula for Down-and-In Callsa

• Assume X ≥ H.

• The value of a European down-and-in call on a stock
paying a dividend yield of q is

Se−qτ

„
H

S

«2λ

N(x)−Xe−rτ

„
H

S

«2λ−2

N(x− σ
√
τ),

(31)

– x ≡ ln(H2/(SX))+(r−q+σ2/2) τ
σ
√
τ

.

– λ ≡ (r − q + σ2/2)/σ2.

• A European down-and-out call can be priced via the

in-out parity (see text).

aMerton (1973).
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A Formula for Up-and-In Putsa

• Assume X ≤ H.

• The value of a European up-and-in put is

Xe−rτ

„
H

S

«2λ−2

N(−x+ σ
√
τ)− Se−qτ

„
H

S

«2λ

N(−x).

• Again, a European up-and-out put can be priced via the

in-out parity.

aMerton (1973).
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Are American Options Barrier Options?a

• American options are barrier options with the exercise

boundary as the barrier and the payoff as the rebate?

• One salient difference is that the exercise boundary must

be derived during backward induction.

• But the barrier in a barrier option is given a priori.

aContributed by Mr. Yang, Jui-Chung (D97723002) on March 25,

2009.
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Interesting Observations

• Assume H < X.

• Replace S in the pricing formula for the down-and-in

call, Eq. (31) on p. 367, with H2/S.

• Equation (31) becomes Eq. (29) on p. 300 when

r − q = σ2/2.

• Equation (31) becomes S/H times Eq. (29) on p. 300

when r − q = 0.

• Why?
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Binomial Tree Algorithms

• Barrier options can be priced by binomial tree

algorithms.

• Below is for the down-and-out option.

0
 H
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S = 8, X = 6, H = 4, R = 1.25, u = 2, and d = 0.5.

Backward-induction: C = (0.5× Cu + 0.5× Cd)/1.25.
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Binomial Tree Algorithms (concluded)

• But convergence is erratic because H is not at a price

level on the tree (see plot on next page).a

– The barrier has to be adjusted to be at a price level.

– The “effective barrier” changes as n increases.

• In fact, the binomial tree is O(1/
√
n) convergent.b

• Solutions will be presented later.

aBoyle and Lau (1994).
bLin (R95221010) (2008).
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Daily Monitoring

• Almost all barrier options monitor the barrier only for

daily closing prices.

• If so, only nodes at the end of a day need to check for

the barrier condition.

• We can even remove intraday nodes to create a

multinomial tree.

– A node is then followed by d+ 1 nodes if each day is

partitioned into d periods.

• Does this save time or space?a

aContributed by Ms. Chen, Tzu-Chun (R94922003) and others on

April 12, 2006.
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A Heptanomial Tree (6 Periods Per Day)

-¾ 1 day
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Foreign Currencies

• S denotes the spot exchange rate in domestic/foreign

terms.

– By that we mean the number of domestic currencies

per unit of foreign currency.a

• σ denotes the volatility of the exchange rate.

• r denotes the domestic interest rate.

• r̂ denotes the foreign interest rate.

aThe market convention is the opposite: A/B = x means one unit

of currency A (the reference currency) is equal to x units of currency B

(the counter-value currency).
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Foreign Currencies (concluded)

• A foreign currency is analogous to a stock paying a

known dividend yield.

– Foreign currencies pay a “continuous dividend yield”

equal to r̂ in the foreign currency.
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Foreign Exchange Options

• Foreign exchange options are settled via delivery of the

underlying currency.

• A primary use of foreign exchange (or forex) options is

to hedge currency risk.

• Consider a U.S. company expecting to receive 100

million Japanese yen in March 2000.

• Those 100 million Japanese yen will be exchanged for

U.S. dollars.
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Foreign Exchange Options (continued)

• The contract size for the Japanese yen option is

JPY6,250,000.

• The company purchases

100,000,000

6,250,000
= 16

puts on the Japanese yen with a strike price of $.0088

and an exercise month in March 2000.

• This gives the company the right to sell 100,000,000

Japanese yen for

100,000,000× .0088 = 880,000

U.S. dollars.
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Foreign Exchange Options (concluded)

• The formulas derived for stock index options in Eqs. (29)

on p. 300 apply with the dividend yield equal to r̂:

C = Se−r̂τN(x)−Xe−rτN(x− σ
√
τ), (32)

P = Xe−rτN(−x+ σ
√
τ)− Se−r̂τN(−x).

(32′)

– Above,

x ≡ ln(S/X) + (r − r̂ + σ2/2) τ

σ
√
τ

.
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Bar the roads!

Bar the paths!

Wert thou to flee from here, wert thou

to find all the roads of the world,

the way thou seekst

the path to that thou’dst find not[.]

— Richard Wagner (1813–1883), Parsifal
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Path-Dependent Derivatives

• Let S0, S1, . . . , Sn denote the prices of the underlying

asset over the life of the option.

• S0 is the known price at time zero.

• Sn is the price at expiration.

• The standard European call has a terminal value

depending only on the last price, max(Sn −X, 0).

• Its value thus depends only on the underlying asset’s

terminal price regardless of how it gets there.
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Path-Dependent Derivatives (continued)

• Some derivatives are path-dependent in that their

terminal payoff depends critically on the path.

• The (arithmetic) average-rate call has this terminal

value:

max

(
1

n+ 1

n∑

i=0

Si −X, 0

)
.

• The average-rate put’s terminal value is given by

max

(
X − 1

n+ 1

n∑

i=0

Si, 0

)
.
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Path-Dependent Derivatives (continued)

• Average-rate options are also called Asian options.

• They are very popular.a

• They are useful hedging tools for firms that will make a

stream of purchases over a time period because the costs

are likely to be linked to the average price.

• They are mostly European.

• The averaging clause is also common in convertible

bonds and structured notes.

aAs of the late 1990s, the outstanding volume was in the range of

5–10 billion U.S. dollars according to Nielsen and Sandmann (2003).
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Path-Dependent Derivatives (continued)

• A lookback call option on the minimum has a terminal

payoff of

Sn − min
0≤i≤n

Si.

• A lookback put on the maximum has a terminal payoff of

max
0≤i≤n

Si − Sn.
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Path-Dependent Derivatives (concluded)

• The fixed-strike lookback option provides a payoff of

– max(max0≤i≤n Si −X, 0) for the call.

– max(X −min0≤i≤n Si, 0) for the put.

• Lookback calls and puts on the average (instead of a

constant X) are called average-strike options.
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Average-Rate Options

• Average-rate options are notoriously hard to price.

• The binomial tree for the averages does not combine (see

next page).

• A naive algorithm enumerates the 2n price pathsa for

an n-period binomial tree and then averages the payoffs.

• But the complexity is exponential.

• The Monte Carlo methodb and approximation

algorithms are some of the alternatives left.

aThis number is reduced to 2O(
√
n ) by Dai (R86526008, D8852600)

and Lyuu (2007).
bSee pp. 752ff.
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