
Optimal Algorithm

• We can reduce the running time to O(n) and the

memory requirement to O(1).

• Note that

b(j;n, p) =
p(n− j + 1)

(1− p) j
b(j − 1;n, p).
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Optimal Algorithm (continued)

• The following program computes b(j;n, p) in b[ j ]:

• It runs in O(n) steps.

1: b[ a ] :=
(
n
a

)
pa(1− p)n−a;

2: for j = a+ 1, a+ 2, . . . , n do

3: b[ j ] := b[ j − 1 ]× p× (n− j + 1)/((1− p)× j);

4: end for
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Optimal Algorithm (concluded)

• With the b(j;n, p) available, the risk-neutral valuation

formula (27) on p. 248 is trivial to compute.

• But we only need a single variable to store the b(j;n, p)s

as they are being sequentially computed.

• This linear-time algorithm computes the discounted

expected value of max(Sn −X, 0).

• The above technique cannot be applied to American

options because of early exercise.

• So binomial tree algorithms for American options

usually run in O(n2) time.
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The Bushy Tree

S

Su

Sd

Su2

Sud

Sdu

Sd2

2n

n

Sun

Sun − 1
Su3

Su2d

Su2d

Sud2

Su2d

Sud2

Sud2

Sd3

Sun − 1d
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Toward the Black-Scholes Formula

• The binomial model seems to suffer from two unrealistic

assumptions.

– The stock price takes on only two values in a period.

– Trading occurs at discrete points in time.

• As n increases, the stock price ranges over ever larger

numbers of possible values, and trading takes place

nearly continuously.

• Any proper calibration of the model parameters makes

the BOPM converge to the continuous-time model.

• We now skim through the proof.
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Toward the Black-Scholes Formula (continued)

• Let τ denote the time to expiration of the option

measured in years.

• Let r be the continuously compounded annual rate.

• With n periods during the option’s life, each period

represents a time interval of τ/n.

• Need to adjust the period-based u, d, and interest rate

r̂ to match the empirical results as n goes to infinity.

• First, r̂ = rτ/n.

– The period gross return R = er̂.
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Toward the Black-Scholes Formula (continued)

• Let

µ̂ ≡ 1

n
E

[
ln

Sτ

S

]

denote the expected value of the continuously

compounded rate of return per period.

• Let

σ̂2 ≡ 1

n
Var

[
ln

Sτ

S

]

denote the variance of the that return.
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Toward the Black-Scholes Formula (continued)

• Under the BOPM, it is not hard to show that

µ̂ = q ln(u/d) + ln d,

σ̂2 = q(1− q) ln2(u/d).

• Assume the stock’s true continuously compounded rate

of return over τ years has mean µτ and variance σ2τ .

• Call σ the stock’s (annualized) volatility.
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Toward the Black-Scholes Formula (continued)

• The BOPM converges to the distribution only if

nµ̂ = n[ q ln(u/d) + ln d ] → µτ,

nσ̂2 = nq(1− q) ln2(u/d) → σ2τ.

• We need one more condition to have a solution for u, d, q.
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Toward the Black-Scholes Formula (continued)

• Impose

ud = 1.

– It makes nodes at the same horizontal level of the

tree have identical price (review p. 260).

– Other choices are possible (see text).

– Exact solutions for u, d, q are also feasible: 3

equations for 3 variables.a

aChance (2008).
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Toward the Black-Scholes Formula (continued)

• The above requirements can be satisfied by

u = eσ
√

τ/n, d = e−σ
√

τ/n, q =
1

2
+

1

2

µ

σ

√
τ

n
. (28)

• With Eqs. (28), it can be checked that

nµ̂ = µτ,

nσ̂2 =

[
1−

(µ
σ

)2 τ

n

]
σ2τ → σ2τ.
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Toward the Black-Scholes Formula (continued)

• The choices (28) result in the CRR binomial model.a

• A more common choice for the probability is actually

q =
R− d

u− d
.

by Eq. (25) on p. 230.

• Their numerical properties are essentially identical.

aCox, Ross, and Rubinstein (1979).
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Toward the Black-Scholes Formula (continued)

• The no-arbitrage inequalities d < R < u may not hold

under Eqs. (28) on p. 271.

– If this happens, the risk-neutral probability may lie

outside [ 0, 1 ].a

• The problem disappears when n satisfies

eσ
√

τ/n > erτ/n,

i.e., when n > r2τ/σ2 (check it).

– So it goes away if n is large enough.

– Other solutions will be presented later.

aMany papers and programs forget to check this condition!
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Toward the Black-Scholes Formula (continued)

• What is the limiting probabilistic distribution of the

continuously compounded rate of return ln(Sτ/S)?

• The central limit theorem says ln(Sτ/S) converges to

N(µτ, σ2τ).a

• So lnSτ approaches N(µτ + lnS, σ2τ).

• Conclusion: Sτ has a lognormal distribution in the limit.

aThe normal distribution with mean µτ and variance σ2τ .
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Toward the Black-Scholes Formula (continued)

Lemma 10 The continuously compounded rate of return

ln(Sτ/S) approaches the normal distribution with mean

(r − σ2/2) τ and variance σ2τ in a risk-neutral economy.

• Let q equal the risk-neutral probability

p ≡ (erτ/n − d)/(u− d).

• Let n → ∞.a

aSee Lemma 9.3.3 of the textbook.
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Toward the Black-Scholes Formula (continued)

• The expected stock price at expiration in a risk-neutral

economy isa

Serτ .

• The stock’s expected annual rate of returnb is thus the

riskless rate r.

aBy Lemma 10 (p. 275) and Eq. (21) on p. 161.
bIn the sense of (1/τ) lnE[Sτ/S ] (arithmetic average rate of return)

not (1/τ)E[ ln(Sτ/S) ] (geometric average rate of return).
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Toward the Black-Scholes Formula (concluded)a

Theorem 11 (The Black-Scholes Formula)

C = SN(x)−Xe−rτN(x− σ
√
τ),

P = Xe−rτN(−x+ σ
√
τ)− SN(−x),

where

x ≡ ln(S/X) +
(
r + σ2/2

)
τ

σ
√
τ

.

aOn a United flight from San Francisco to Tokyo on March 7, 2010,

a real-estate manager mentioned this formula to me!
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BOPM and Black-Scholes Model

• The Black-Scholes formula needs 5 parameters: S, X, σ,

τ , and r.

• Binomial tree algorithms take 6 inputs: S, X, u, d, r̂,

and n.

• The connections are

u = eσ
√

τ/n,

d = e−σ
√

τ/n,

r̂ = rτ/n.
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• S = 100, X = 100 (left), and X = 95 (right).
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BOPM and Black-Scholes Model (concluded)

• The binomial tree algorithms converge reasonably fast.

• The error is O(1/n).a

• Oscillations are inherent, however.

• Oscillations can be dealt with by the judicious choices of

u and d (see text).

aChang and Palmer (2007).
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Implied Volatility

• Volatility is the sole parameter not directly observable.

• The Black-Scholes formula can be used to compute the

market’s opinion of the volatility.a

– Solve for σ given the option price, S, X, τ , and r

with numerical methods.

– How about American options?

aImplied volatility is hard to compute when τ is small (why?).
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Implied Volatility (concluded)

• Implied volatility is

the wrong number to put in the wrong formula to

get the right price of plain-vanilla options.a

• Implied volatility is often preferred to historical

volatility in practice.

– Using the historical volatility is like driving a car

with your eyes on the rearview mirror?

aRebonato (2004).
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Problems; the Smile

• Options written on the same underlying asset usually do

not produce the same implied volatility.

• A typical pattern is a “smile” in relation to the strike

price.

– The implied volatility is lowest for at-the-money

options.

– It becomes higher the further the option is in- or

out-of-the-money.

• Other patterns have also been observed.
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Problems; the Smile (concluded)

• To address this issue, volatilities are often combined to

produce a composite implied volatility.

• This practice is not sound theoretically.

• The existence of different implied volatilities for options

on the same underlying asset shows the Black-Scholes

model cannot be literally true.

• So?
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Trading Days and Calendar Days

• Interest accrues based on the calendar day.

• But σ is usually calculated based on trading days only.

– Stock price seems to have lower volatilities when the

exchange is closed.a

• How to incorporate these two different ways of day

count into the Black-Scholes formula and binomial tree

algorithms?b

aFama (1965); French (1980); French and Roll (1986).
bRecall p. 146 about dating issues.
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Trading Days and Calendar Days (concluded)

• Think of σ as measuring the volatility of stock price one

year from now (regardless of what happens in between).

• Suppose a year has 260 trading days.

• So a heuristic is to replace σ in the Black-Scholes

formula witha

σ

√
365

260
× number of trading days to expiration

number of calendar days to expiration
.

• How about binomial tree algorithms?

aFrench (1984).
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Binomial Tree Algorithms for American Puts

• Early exercise has to be considered.

• The binomial tree algorithm starts with the terminal

payoffs

max(0, X − Sujdn−j)

and applies backward induction.

• At each intermediate node, it compares the payoff if

exercised and the continuation value.

• It keeps the larger one.
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Bermudan Options

• Some American options can be exercised only at discrete

time points instead of continuously.

• They are called Bermudan options.

• Their pricing algorithm is identical to that for American

options.

• But early exercise is considered for only those nodes

when early exercise is permitted.
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Options on a Stock That Pays Dividends

• Early exercise must be considered.

• Proportional dividend payout model is tractable (see

text).

– The dividend amount is a constant proportion of the

prevailing stock price.

• In general, the corporate dividend policy is a complex

issue.
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Known Dividends

• Constant dividends introduce complications.

• Use D to denote the amount of the dividend.

• Suppose an ex-dividend date falls in the first period.

• At the end of that period, the possible stock prices are

Su−D and Sd−D.

• Follow the stock price one more period.

• The number of possible stock prices is not three but

four: (Su−D)u, (Su−D) d, (Sd−D)u, (Sd−D) d.

– The binomial tree no longer combines.
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(Su−D)u

↗
Su−D

↗ ↘
(Su−D) d

S

(Sd−D)u

↘ ↗
Sd−D

↘
(Sd−D) d
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An Ad-Hoc Approximation

• Use the Black-Scholes formula with the stock price

reduced by the PV of the dividends.a

• This essentially decomposes the stock price into a

riskless one paying known dividends and a risky one.

• The riskless component at any time is the PV of future

dividends during the life of the option.

– Then, σ is the volatility of the process followed by

the risky component.

• The stock price, between two adjacent ex-dividend

dates, follows the same lognormal distribution.

aRoll (1977).
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An Ad-Hoc Approximation (concluded)

• Start with the current stock price minus the PV of

future dividends before expiration.

• Develop the binomial tree for the new stock price as if

there were no dividends.

• Then add to each stock price on the tree the PV of all

future dividends before expiration.

• American option prices can be computed as before on

this tree of stock prices.
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The Ad-Hoc Approximation vs. P. 291 (Step 1)

S −D/R

*

j

(S −D/R)u

*

j

(S −D/R)d

*

j

(S −D/R)u2

(S −D/R)ud

(S −D/R)d2
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The Ad-Hoc Approximation vs. P. 291 (Step 2)

(S −D/R) +D/R = S

*

j

(S −D/R)u

*

j

(S −D/R)d

*

j

(S −D/R)u2

(S −D/R)ud

(S −D/R)d2
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The Ad-Hoc Approximation vs. P. 291a

• The trees are different.

• The stock prices at maturity are also different.

– (Su−D)u, (Su−D) d, (Sd−D)u, (Sd−D) d

(p. 291).

– (S −D/R)u2, (S −D/R)ud, (S −D/R)d2 (ad hoc).

• Note that, as d < R < u,

(Su−D)u > (S −D/R)u2,

(Sd−D) d < (S −D/R)d2,

aContributed by Mr. Yang, Jui-Chung (D97723002) on March 18,

2009.
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The Ad-Hoc Approximation vs. P. 291 (concluded)

• So the ad hoc approximation has a smaller dynamic

range.

• This explains why in practice the volatility is usually

increased when using the ad hoc approximation.
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A General Approacha

• A new tree structure.

• No approximation assumptions are made.

• A mathematical proof that the tree can always be

constructed.

• The actual performance is quadratic except in

pathological cases (see pp. 686ff).

• Other approaches include adjusting σ and approximating

the known dividend with a dividend yield.

aDai (R86526008, D8852600) and Lyuu (2004).
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Continuous Dividend Yields

• Dividends are paid continuously.

– Approximates a broad-based stock market portfolio.

• The payment of a continuous dividend yield at rate q

reduces the growth rate of the stock price by q.

– A stock that grows from S to Sτ with a continuous

dividend yield of q would grow from S to Sτe
qτ

without the dividends.

• A European option has the same value as one on a stock

with price Se−qτ that pays no dividends.a

aIn pricing European options, we care only about the distribution of

Sτ .
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Continuous Dividend Yields (continued)

• The Black-Scholes formulas hold with S replaced by

Se−qτ :a

C = Se−qτN(x)−Xe−rτN(x− σ
√
τ), (29)

P = Xe−rτN(−x+ σ
√
τ)− Se−qτN(−x),

(29′)

where

x ≡ ln(S/X) +
(
r − q + σ2/2

)
τ

σ
√
τ

.

• Formulas (29) and (29′) remain valid as long as the

dividend yield is predictable.

aMerton (1973).
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Continuous Dividend Yields (continued)

• To run binomial tree algorithms, replace u with ue−q∆t

and d with de−q∆t, where ∆t ≡ τ/n.

– The reason: The stock price grows at an expected

rate of r − q in a risk-neutral economy.

• Other than the changes, binomial tree algorithms stay

the same.

– In particular, p should use the original u and d!a

aContributed by Ms. Wang, Chuan-Ju (F95922018) on May 2, 2007.
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Continuous Dividend Yields (concluded)

• Alternatively, pick the risk-neutral probability as

e(r−q)∆t − d

u− d
, (30)

where ∆t ≡ τ/n.

– The reason: The stock price grows at an expected

rate of r − q in a risk-neutral economy.

• The u and d remain unchanged.

• Other than the change in Eq. (30), binomial tree

algorithms stay the same as if there were no dividends.
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Curtailing the Range of Tree Nodesa

• Those nodes can be skipped if they are extremely

unlikely to be reached.

• The probability that the price will move more than a

certain number of standard deviations from its initial

value is negligible.

• Similarly, suppose the stock price at maturity is known.

• The probability that the price will move outside that

number of standard deviations in working backward is

also negligible.

aAndricopoulos, Widdicks, Duck, Newton (2004).
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Curtailing the Range of Tree Nodes (continued)

• In summary, for certain stock prices, the strike price is so

low or so high that it could not realistically be reached.

• For these prices the option value is basically

deterministic.

• By working only within the said range of stock prices,

we can save time without significant loss of accuracy.
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Curtailing the Range of Tree Nodes (concluded)

• For time t, where 0 < t < T , the maximum and

minimum stock prices Smax(t) and Smin(t) are:

Smax(t) = min
(
S0e

rt+ησ
√
t, Xe−r(T−t)+ησ

√
T−t

)
,

Smin(t) = max
(
S0e

rt−ησ
√
t, Xe−r(T−t)−ησ

√
T−t

)
.

c©2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 305



Traversal Sequence

• Can the standard quadratic-time binomial tree

algorithm for American options be improved?

– By an order?

– By a constant factor?

• In any case, it helps to skip nodes.

• Note the traversal sequence of backward induction on

the tree.

– It is by time (recall p. 259).
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Diagonal Traversal of the Treea

• Suppose we traverse the tree diagonally.

• Convince yourself that this procedure is well-defined.

• An early-exercise node is trivial to evaluate.

– The difference of the strike price and the stock price.

• A non-early-exercise node must be evaluated by

backward induction.

aCurran (1995).
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Diagonal Traversal of the Tree (continued)

Two properties of the propagation of early exercise nodes

(E) and non-early-exercise nodes (C) during backward

induction are:

1. A node is an early-exercise node if both its successor

nodes are exercised early.

• A terminal node that is in-the-money is considered

an early exercise node.

2. If a node is a non-early-exercise node, then all the earlier

nodes at the same horizontal level are also

non-early-exercise nodes.

• Here we assume ud = 1.
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Diagonal Traversal of the Tree (continued)

• Nothing is achieved if the whole tree needs to be

explored.

• We need a stopping rule.

• The traversal stops when a diagonal D consisting

entirely of non-early-exercise nodes is encountered.

– By Rule 2, all early-exercise nodes have been found.
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Diagonal Traversal of the Tree (continued)

• When the algorithm finds an early exercise node N in

traversing a diagonal, it can stop immediately and move

on to the next diagonal.

– By Rule 2, the node to the right of N must also be

an early exercise node.

– By Rule 1 and induction, the rest of the nodes on the

current diagonal must all be early-exercise nodes.

– They are hence computable on the fly when needed.
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Diagonal Traversal of the Tree (continued)

• Also by Rule 1, the traversal can start from the

zero-valued terminal node just above the strike price.

• The upper triangle above the strike price can be skipped

since its nodes are all zero valued.
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Diagonal Traversal of the Tree (continued)

• It remains to calculate the option value.

• It is the weighted sum of the discounted option values of

the nodes on D.

– How does the payoff influence the root?

– We cannot go from the root to a node at which the

option will be exercised without passing through D.

• The weight is the probability that the stock price hits

the diagonal for the first time at that node.
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Diagonal Traversal of the Tree (concluded)

• For a node on D which is the result of i up moves and

j down moves, the said probability is
(
i+ j − 1

i

)
pi(1− p)j .

– A valid path must pass through the node which is

the result of i up moves and j − 1 down moves.

• Call the option value on this node Pi.

• The desired option value then equals

a−1∑

i=0

(
i+ j − 1

i

)
pi(1− p)jPie

−(i+j) r∆t.
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The Analysis

• Since each node on D has been evaluated by that time,

this part of the computation consumes O(n) time.

• The space requirement is also linear in n since only the

diagonal has to be allocated space.

• This idea can save computation time when D does not

take long to find.
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The Analysis (continued)

• Rule 2 is true with or without dividends.

• Suppose now that the stock pays a continuous dividend

yield q ≤ r (or r ≤ q for calls by parity).

• Recall p = e(r−q)∆t−d
u−d .

• Rule 1 continues to hold since, for a current stock price

of Suidj :

c©2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 319



The Analysis (concluded)

(pPu + (1− p)Pd) e
−r∆t

=
[
p
(
X − Sui+1dj

)
+ (1− p)

(
X − Suidj+1

)]
e−r∆t

= Xe−r∆t − Suidj(pu+ (1− p) d) e−r∆t

= Xe−r∆t − Suidje−q∆t

≤ Xe−r∆t − Suidje−r∆t

≤ X − Suidj .
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