Optimal Algorithm

e We can reduce the running time to O(n) and the

memory requirement to O(1).

e Note that

p(n—j+1)
(1-p)Jj
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Optimal Algorithm (continued)

e The following program computes b(j;n,p) in b|j|:

e It runs in O(n) steps.

:blal = (") p*(1—p)" %
cfor j=a+1,a+2,... ,ndo
blj]:==0lj —1]xpx(n—7j+1)/((1—=p)xj);

. end for
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Optimal Algorithm (concluded)

With the b(j;n,p) available, the risk-neutral valuation

formula (27) on p. 248 is trivial to compute.

But we only need a single variable to store the b(j;n,p)s

as they are being sequentially computed.

This linear-time algorithm computes the discounted

expected value of max(S, — X,0).

The above technique cannot be applied to American

options because of early exercise.

So binomial tree algorithms for American options

usually run in O(n?) time.
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The Bushy Tree
Sun-lﬁr&

U~ 1d

SJ3

>2n
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Toward the Black-Scholes Formula
The binomial model seems to suffer from two unrealistic
assumptions.
— The stock price takes on only two values in a period.
— Trading occurs at discrete points in time.
As n increases, the stock price ranges over ever larger

numbers of possible values, and trading takes place

nearly continuously.

Any proper calibration of the model parameters makes

the BOPM converge to the continuous-time model.

We now skim through the proof.
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Toward the Black-Scholes Formula (continued)

Let 7 denote the time to expiration of the option

measured in years.
Let r be the continuously compounded annual rate.

With n periods during the option’s life, each period

represents a time interval of 7/n.

Need to adjust the period-based u, d, and interest rate
7 to match the empirical results as n goes to infinity.

First, 7 = r7/n.

— The period gross return R = e’.
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Toward the Black-Scholes Formula (continued)

o Let
S,
S

denote the expected value of the continuously

compounded rate of return per period.

o Let

denote the variance of the that return.
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Toward the Black-Scholes Formula (continued)

e Under the BOPM, it is not hard to show that
M) qIn(u/d) 4+ Ind,
52 ¢(1 - q) In*(u/d).

e Assume the stock’s true continuously compounded rate

of return over 7 years has mean u7 and variance o7.

e Call o the stock’s (annualized) volatility.
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Toward the Black-Scholes Formula (continued)

e The BOPM converges to the distribution only if

ni = n|lqln(u/d)+1Ind]| — pr,

ng? = ng(l—q)In*(u/d) — o*r.

e We need one more condition to have a solution for u, d, q.
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Toward the Black-Scholes Formula (continued)

e Impose
ud = 1.
— It makes nodes at the same horizontal level of the
tree have identical price (review p. 260).
— Other choices are possible (see text).

— Exact solutions for u, d, g are also feasible: 3

equations for 3 variables.?

2Chance (2008).
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Toward the Black-Scholes Formula (continued)

e The above requirements can be satisfied by

/= 1
w=eVT/n d=e VT g=_-4 - L

m
2 20\ n

. (28)

e With Eqgs. (28), it can be checked that

np =

no>
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Toward the Black-Scholes Formula (continued)

e The choices (28) result in the CRR binomial model.?

e A more common choice for the probability is actually

 R-d
1= a4

by Eq. (25) on p. 230.

e Their numerical properties are essentially identical.

2Cox, Ross, and Rubinstein (1979).
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Toward the Black-Scholes Formula (continued)

e The no-arbitrage inequalities d < R < u may not hold
under Egs. (28) on p. 271.

— If this happens, the risk-neutral probability may lie
outside [0,1].2

e The problem disappears when n satisfies
e” T/n > 67“7'/n
i.e., when n > r?7/0* (check it).

— So it goes away if n is large enough.

— Other solutions will be presented later.

aMany papers and programs forget to check this condition!
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Toward the Black-Scholes Formula (continued)

e What is the limiting probabilistic distribution of the

continuously compounded rate of return In(S,/S)?

e The central limit theorem says In(S;/S) converges to
N(ut,0?T).2

e So InS, approaches N(ur +1nS, o%7).

e Conclusion: S, has a lognormal distribution in the limit.

2The normal distribution with mean p7 and variance o?r.
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Toward the Black-Scholes Formula (continued)

Lemma 10 The continuously compounded rate of return

In(S;/S) approaches the normal distribution with mean

2

(r —0?/2) 7 and variance ot in a risk-neutral economy.

e Let g equal the risk-neutral probability
p= (e”/” —d)/(u—d).

o Let n — 0.2

2See Lemma 9.3.3 of the textbook.
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Toward the Black-Scholes Formula (continued)

e The expected stock price at expiration in a risk-neutral
economy 1is®

SG’I“T

e The stock’s expected annual rate of return® is thus the

riskless rate r.

2By Lemma 10 (p. 275) and Eq. (21) on p. 161.
PIn the sense of (1/7)In E[S;/S] (arithmetic average rate of return)

not (1/7)E[In(S;/S)] (geometric average rate of return).
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Toward the Black-Scholes Formula (concluded)?®

Theorem 11 (The Black-Scholes Formula)

C SN(z) — Xe ""N(xz — o/7),
P Xe ""N(—z +o0+T)— SN(—2),

In(S/X)+ (r+02/2) 7
o\/T '

X

20n a United flight from San Francisco to Tokyo on March 7, 2010,

a real-estate manager mentioned this formula to me!
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BOPM and Black-Scholes Model

e The Black-Scholes formula needs 5 parameters: S, X, o,

T, and 7.

e Binomial tree algorithms take 6 inputs: S, X, u, d, 7,

and n.

e The connections are

U
d
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e S =100, X =100 (left), and X =95 (right).
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BOPM and Black-Scholes Model (concluded)

The binomial tree algorithms converge reasonably fast.
The error is O(1/n).2
Oscillations are inherent, however.

Oscillations can be dealt with by the judicious choices of

u and d (see text).

2Chang and Palmer (2007).
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Implied Volatility

e Volatility is the sole parameter not directly observable.
e The Black-Scholes formula can be used to compute the
market’s opinion of the volatility.?

— Solve for o given the option price, S, X, 7, and r

with numerical methods.

— How about American options?

2Implied volatility is hard to compute when 7 is small (why?).
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Implied Volatility (concluded)

Implied volatility is
the wrong number to put in the wrong formula to
get the right price of plain-vanilla options.?
Implied volatility is often preferred to historical
volatility in practice.

— Using the historical volatility is like driving a car

with your eyes on the rearview mirror?

2Rebonato (2004).
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Problems: the Smile

e Options written on the same underlying asset usually do

not produce the same implied volatility.

e A typical pattern is a “smile” in relation to the strike

price.

— The implied volatility is lowest for at-the-money

options.

— It becomes higher the further the option is in- or

out-of-the-money.

e Other patterns have also been observed.
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Problems; the Smile (concluded)

To address this issue, volatilities are often combined to

produce a composite implied volatility.
This practice is not sound theoretically.

The existence of different implied volatilities for options
on the same underlying asset shows the Black-Scholes

model cannot be literally true.

So?
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Trading Days and Calendar Days

e Interest accrues based on the calendar day.

e But o is usually calculated based on trading days only.

— Stock price seems to have lower volatilities when the

exchange is closed.?

e How to incorporate these two different ways of day
count into the Black-Scholes formula and binomial tree

algorithms?®

2Fama (1965); French (1980); French and Roll (1986).
PRecall p. 146 about dating issues.
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Trading Days and Calendar Days (concluded)

e Think of o as measuring the volatility of stock price one

year from now (regardless of what happens in between).
e Suppose a year has 260 trading days.

e So a heuristic is to replace o in the Black-Scholes

formula with?

365 y number of trading days to expiration
o :
260 number of calendar days to expiration

e How about binomial tree algorithms?

2French (1984).

©2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 286



Binomial Tree Algorithms for American Puts
Early exercise has to be considered.

The binomial tree algorithm starts with the terminal

payofis

max (0, X — Su/d" )

and applies backward induction.

At each intermediate node, it compares the payoff if

exercised and the continuation value.

It keeps the larger one.
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Bermudan Options

Some American options can be exercised only at discrete

time points instead of continuously.
They are called Bermudan options.

Their pricing algorithm is identical to that for American

options.

But early exercise is considered for only those nodes

when early exercise is permitted.
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Options on a Stock That Pays Dividends

e Larly exercise must be considered.

e Proportional dividend payout model is tractable (see
text).

— The dividend amount is a constant proportion of the

prevailing stock price.

e In general, the corporate dividend policy is a complex

1ssue.
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Known Dividends
Constant dividends introduce complications.

Use D to denote the amount of the dividend.

Suppose an ex-dividend date falls in the first period.

At the end of that period, the possible stock prices are
Su—D and Sd— D.

Follow the stock price one more period.

The number of possible stock prices is not three but
four: (Su— D)wu, (Su— D)d, (Sd— D)u, (Sd— D)d.

— The binomial tree no longer combines.
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An Ad-Hoc Approximation

Use the Black-Scholes formula with the stock price
reduced by the PV of the dividends.?

This essentially decomposes the stock price into a

riskless one paying known dividends and a risky one.
The riskless component at any time is the PV of future
dividends during the life of the option.

— Then, o is the volatility of the process followed by

the risky component.

The stock price, between two adjacent ex-dividend
dates, follows the same lognormal distribution.

aRoll (1977).
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An Ad-Hoc Approximation (concluded)

e Start with the current stock price minus the PV of

future dividends before expiration.

e Develop the binomial tree for the new stock price as if

there were no dividends.

e Then add to each stock price on the tree the PV of all

future dividends before expiration.

e American option prices can be computed as before on

this tree of stock prices.
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The Ad-Hoc Approximation vs. P. 291 (Step 1)

(S — D/R)u?

©2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 294



The Ad-Hoc Approximation vs. P. 291 (Step 2)

(S — D/R)u?
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The Ad-Hoc Approximation vs. P. 2912

e The trees are different.

e The stock prices at maturity are also different.
— (Su—D)u,(Su—D)d,(Sd— D)u,(Sd— D)d
(p. 291).
— (S = D/R)u*, (S — D/R)ud, (S — D/R)d* (ad hoc).

e Note that, as d < R < u,

(Su—D)u > (S—D/R)u?
(Sd—D)d < (S—D/R)d?,

2Contributed by Mr. Yang, Jui-Chung (D97723002) on March 18,
2009.
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The Ad-Hoc Approximation vs. P. 291 (concluded)

e So the ad hoc approximation has a smaller dynamic

range.

e This explains why in practice the volatility is usually

increased when using the ad hoc approximation.
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A General Approach?®

A new tree structure.
No approximation assumptions are made.

A mathematical proof that the tree can always be

constructed.

The actual performance is quadratic except in
pathological cases (see pp. 686ff).

Other approaches include adjusting ¢ and approximating
the known dividend with a dividend yield.

aDai (R86526008, D8852600) and Lyuu (2004).
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Continuous Dividend Yields

e Dividends are paid continuously.
— Approximates a broad-based stock market portfolio.
e The payment of a continuous dividend yield at rate ¢
reduces the growth rate of the stock price by q.

— A stock that grows from S to S, with a continuous
dividend yield of ¢ would grow from S to S,e?”
without the dividends.

e A European option has the same value as one on a stock

with price Se™ 97 that pays no dividends.?

aIn pricing European options, we care only about the distribution of
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Continuous Dividend Yields (continued)

e The Black-Scholes formulas hold with S replaced by
Se—47:2
C=8¢"TN(z)— Xe ""N(zx —o+\/T1), (29)

P=Xe ""N(—x+0\T)— Se " N(—z),
(29')

In(S/X)+ (r—q+0?/2) 7
o\/T '

X

e Formulas (29) and (29’) remain valid as long as the

dividend yield is predictable.

@Merton (1973).
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Continuous Dividend Yields (continued)

e To run binomial tree algorithms, replace u with ue ™94

and d with de~92t, where At = 7/n.
— The reason: The stock price grows at an expected

rate of 7 — ¢ in a risk-neutral economy.

e Other than the changes, binomial tree algorithms stay

the same.

— In particular, p should use the original v and d!?

2Contributed by Ms. Wang, Chuan-Ju (F95922018) on May 2, 2007.
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Continuous Dividend Yields (concluded)

e Alternatively, pick the risk-neutral probability as

e(7“—q) At d
u—d

(30)

where At = 7/n.

— The reason: The stock price grows at an expected

rate of 7 — ¢ in a risk-neutral economy.
e The u and d remain unchanged.

e Other than the change in Eq. (30), binomial tree

algorithms stay the same as if there were no dividends.
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Curtailing the Range of Tree Nodes®

Those nodes can be skipped if they are extremely
unlikely to be reached.

The probability that the price will move more than a
certain number of standard deviations from its initial

value is negligible.
Similarly, suppose the stock price at maturity is known.

The probability that the price will move outside that
number of standard deviations in working backward is
also negligible.

2 Andricopoulos, Widdicks, Duck, Newton (2004).
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Curtailing the Range of Tree Nodes (continued)

e In summary, for certain stock prices, the strike price is so
low or so high that it could not realistically be reached.

e For these prices the option value is basically

deterministic.

e By working only within the said range of stock prices,

we can save time without significant loss of accuracy.
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Curtailing the Range of Tree Nodes (concluded)

e For time ¢, where 0 < ¢t < 7', the maximum and

minimum stock prices Spax(t) and Sy, () are:

Smax () min (soemnaﬂ, Xe—rw—tmw_t) |

Stmin (1) max (Soert_”a\/g, Xe r(T—t)=nov T_t) .
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Traversal Sequence

e Can the standard quadratic-time binomial tree

algorithm for American options be improved?
— By an order?

— By a constant factor?
e In any case, it helps to skip nodes.

e Note the traversal sequence of backward induction on
the tree.

— It is by time (recall p. 259).
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Diagonal Traversal of the Tree®

Suppose we traverse the tree diagonally.
Convince yourself that this procedure is well-defined.

An early-exercise node is trivial to evaluate.

— The difference of the strike price and the stock price.

A non-early-exercise node must be evaluated by

backward induction.

2Curran (1995).
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Diagonal Traversal of the Tree (continued)

Two properties of the propagation of early exercise nodes
(E) and non-early-exercise nodes (C) during backward

induction are:
1. A node is an early-exercise node if both its successor
nodes are exercised early.
e A terminal node that is in-the-money is considered

an early exercise node.

2. If a node is a non-early-exercise node, then all the earlier
nodes at the same horizontal level are also

non-early-exercise nodes.

e Here we assume ud = 1.
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Diagonal Traversal of the Tree (continued)

e Nothing is achieved if the whole tree needs to be
explored.

e We need a stopping rule.

e The traversal stops when a diagonal D consisting

entirely of non-early-exercise nodes is encountered.

— By Rule 2, all early-exercise nodes have been found.

©2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 311



Diagonal Traversal of the Tree (continued)

e When the algorithm finds an early exercise node N in
traversing a diagonal, it can stop immediately and move
on to the next diagonal.

— By Rule 2, the node to the right of N must also be

an early exercise node.

— By Rule 1 and induction, the rest of the nodes on the
current diagonal must all be early-exercise nodes.

— They are hence computable on the fly when needed.
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Diagonal Traversal of the Tree (continued)

e Also by Rule 1, the traversal can start from the

zero-valued terminal node just above the strike price.

e The upper triangle above the strike price can be skipped

since its nodes are all zero valued.
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Traverse from here
Stop at diagonal D

Visited nodes
Strike price jv

\

Exercise boundary
Early exercise nodes HA\
Early exercisenodesby Rulel '
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Percent of nodes visited
by the diagonal nethod

M

50 40 60 80 1ooYelatility
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Diagonal Traversal of the Tree (continued)

e It remains to calculate the option value.

e It is the weighted sum of the discounted option values of
the nodes on D.
— How does the payoff influence the root?
— We cannot go from the root to a node at which the

option will be exercised without passing through D.

e The weight is the probability that the stock price hits
the diagonal for the first time at that node.
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Diagonal Traversal of the Tree (concluded)

e For a node on D which is the result of ¢ up moves and
7 down moves, the said probability is

(5 -y

[/

— A valid path must pass through the node which is

the result of 7+ up moves and 5 — 1 down moves.
e (Call the option value on this node P;.

e The desired option value then equals

a—1

1=0
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The Analysis

e Since each node on D has been evaluated by that time,

this part of the computation consumes O(n) time.

e The space requirement is also linear in n since only the

diagonal has to be allocated space.

e This idea can save computation time when D does not
take long to find.

©2014 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 318



The Analysis (continued)

Rule 2 is true with or without dividends.

Suppose now that the stock pays a continuous dividend
yield ¢ < r (or r < q for calls by parity).

e(r—q)At_d
u—d

Recall p =

Rule 1 continues to hold since, for a current stock price

of Su‘d’:
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The Analysis (concluded)

(pPu + (1 — p) Pd) e_rAt
[p (X — Sui—l—ldj) i (1 _p) (X _ Suidj—l—l)] oA

Xe ™ — Su'd! (pu + (1 —p)d) e "
Xe—rAt . Suidje—th
Xe—rAt . Suz’dje—rAt

X — Su'd’.
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