Spot and Forward Rates under Continuous Compounding

• The pricing formula:

$$P = \sum_{i=1}^{n} Ce^{-iS(i)} + Fe^{-nS(n)}.$$

• The market discount function:

$$d(n) = e^{-nS(n)}$$

• The spot rate is an arithmetic average of forward rates,^a

$$S(n) = \frac{f(0,1) + f(1,2) + \dots + f(n-1,n)}{n}$$

^aCompare it with Eq. (16) on p. 129.

Spot and Forward Rates under Continuous Compounding (continued)

• The formula for the forward rate:

$$f(i,j) = \frac{jS(j) - iS(i)}{j - i}.$$

• The one-period forward rate:

$$f(j, j+1) = -\ln \frac{d(j+1)}{d(j)}.$$

Spot and Forward Rates under Continuous Compounding (concluded)

• Now,

$$f(T) \equiv \lim_{\Delta T \to 0} f(T, T + \Delta T)$$
$$= S(T) + T \frac{\partial S}{\partial T}.$$

• So f(T) > S(T) if and only if $\partial S/\partial T > 0$ (i.e., a normal spot rate curve).

Unbiased Expectations Theory

• Forward rate equals the average future spot rate,

$$f(a,b) = E[S(a,b)].$$
 (17)

- It does not imply that the forward rate is an accurate predictor for the future spot rate.
- It implies the maturity strategy and the rollover strategy produce the same result at the horizon on the average.

Unbiased Expectations Theory and Spot Rate Curve

- It implies that a normal spot rate curve is due to the fact that the market expects the future spot rate to rise.
 - f(j, j+1) > S(j+1) if and only if S(j+1) > S(j)from Eq. (15) on p. 123.
 - So $E[S(j, j+1)] > S(j+1) > \dots > S(1)$ if and only if $S(j+1) > \dots > S(1)$.
- Conversely, the spot rate is expected to fall if and only if the spot rate curve is inverted.

More Implications

- The theory has been rejected by most empirical studies with the possible exception of the period prior to 1915.
- Since the term structure has been upward sloping about 80% of the time, the theory would imply that investors have expected interest rates to rise 80% of the time.
- Riskless bonds, regardless of their different maturities, are expected to earn the same return on the average.
- That would mean investors are indifferent to risk.

A "Bad" Expectations Theory

- The expected returns on all possible riskless bond strategies are equal for *all* holding periods.
- So

$$(1+S(2))^2 = (1+S(1)) E[1+S(1,2)]$$
(18)

because of the equivalency between buying a two-period bond and rolling over one-period bonds.

• After rearrangement,

$$\frac{1}{E[1+S(1,2)]} = \frac{1+S(1)}{(1+S(2))^2}.$$

A "Bad" Expectations Theory (continued)

- Now consider two one-period strategies.
 - Strategy one buys a two-period bond for $(1 + S(2))^{-2}$ dollars and sells it after one period.
 - The expected return is $E[(1+S(1,2))^{-1}]/(1+S(2))^{-2}.$
 - Strategy two buys a one-period bond with a return of 1 + S(1).
- The theory says the returns are equal:

$$\frac{1+S(1)}{(1+S(2))^2} = E\left[\frac{1}{1+S(1,2)}\right].$$

A "Bad" Expectations Theory (concluded)

• Combine this with Eq. (18) on p. 139 to obtain

$$E\left[\frac{1}{1+S(1,2)}\right] = \frac{1}{E[1+S(1,2)]}.$$

- But this is impossible save for a certain economy.
 - Jensen's inequality states that E[g(X)] > g(E[X])for any nondegenerate random variable X and strictly convex function g (i.e., g''(x) > 0).
 - Use $g(x) \equiv (1+x)^{-1}$ to prove our point.

Local Expectations Theory

• The expected rate of return of any bond over *a single period* equals the prevailing one-period spot rate:

$$\frac{E\left[\left(1+S(1,n)\right)^{-(n-1)}\right]}{(1+S(n))^{-n}} = 1 + S(1) \text{ for all } n > 1.$$

• This theory is the basis of many interest rate models.

Duration Revisited

- To handle more general types of spot rate curve changes, define a vector $[c_1, c_2, \ldots, c_n]$ that characterizes the perceived type of change.
 - Parallel shift: [1, 1, ..., 1].
 - Twist: $[1, 1, \dots, 1, -1, \dots, -1]$, $[0.8\%, 0.6\%, 0.4\%, 0.2\%, 0\%, -0.2\%, -0.4\% \dots]$, etc.

Duration Revisited (concluded)

• Let

$$P(y) \equiv \sum_{i} C_i / (1 + S(i) + yc_i)^i$$

be the price associated with the cash flow C_1, C_2, \ldots

• Define duration as

$$-\frac{\partial P(y)/P(0)}{\partial y}\Big|_{y=0}$$

• Modified duration equals the above when

$$[c_1, c_2, \dots, c_n] = [1, 1, \dots, 1],$$

 $S(1) = S(2) = \dots = S(n).$

Some Loose Ends on Dates

- Holidays.
- Weekends.
- Business days (T + 2, etc.).
- Shall we treat a year as 1 year whether it has 365 or 366 days?

Fundamental Statistical Concepts

There are three kinds of lies: lies, damn lies, and statistics. — Benjamin Disraeli (1804–1881)

If 50 million people believe a foolish thing, it's still a foolish thing. — George Bernard Shaw (1856–1950)

> One death is a tragedy, but a million deaths are a statistic. — Josef Stalin (1879–1953)

Moments

• The variance of a random variable X is defined as

$$\operatorname{Var}[X] \equiv E\left[\left(X - E[X]\right)^2\right].$$

• The covariance between random variables X and Y is

$$\operatorname{Cov}[X,Y] \equiv E\left[\left(X-\mu_X\right)(Y-\mu_Y)\right],$$

where μ_X and μ_Y are the means of X and Y, respectively.

• Random variables X and Y are uncorrelated if

$$\operatorname{Cov}[X,Y] = 0.$$

Correlation

• The standard deviation of X is the square root of the variance,

$$\sigma_X \equiv \sqrt{\operatorname{Var}[X]} \,.$$

• The correlation (or correlation coefficient) between X and Y is

$$\rho_{X,Y} \equiv \frac{\operatorname{Cov}[X,Y]}{\sigma_X \sigma_Y},$$

provided both have nonzero standard deviations.^a

^aPaul Wilmott (2009), "the correlations between financial quantities are notoriously unstable."

Variance of Sum

• Variance of a weighted sum of random variables equals

$$\operatorname{Var}\left[\sum_{i=1}^{n} a_i X_i\right] = \sum_{i=1}^{n} \sum_{j=1}^{n} a_i a_j \operatorname{Cov}[X_i, X_j].$$

• It becomes

 $\sum_{i=1}^{n} a_i^2 \operatorname{Var}[X_i]$

when X_i are uncorrelated.

Conditional Expectation

- " $X \mid I$ " denotes X conditional on the information set I.
- The information set can be another random variable's value or the past values of X, say.
- The conditional expectation E[X | I] is the expected value of X conditional on I; it is a random variable.
- The law of iterated conditional expectations:

E[X] = E[E[X | I]].

• If I_2 contains at least as much information as I_1 , then $E[X | I_1] = E[E[X | I_2] | I_1].$ (19)

The Normal Distribution

• A random variable X has the normal distribution with mean μ and variance σ^2 if its probability density function is

$$\frac{1}{\sigma\sqrt{2\pi}} e^{-(x-\mu)^2/(2\sigma^2)}.$$

- This is expressed by $X \sim N(\mu, \sigma^2)$.
- The standard normal distribution has zero mean, unit variance, and the distribution function

Prob
$$[X \le z] = N(z) \equiv \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} e^{-x^2/2} dx.$$

Moment Generating Function

• The moment generating function of random variable X is

$$\theta_X(t) \equiv E[e^{tX}].$$

• The moment generating function of $X \sim N(\mu, \sigma^2)$ is

$$\theta_X(t) = \exp\left[\mu t + \frac{\sigma^2 t^2}{2}\right].$$
 (20)

The Multivariate Normal Distribution

• If $X_i \sim N(\mu_i, \sigma_i^2)$ are independent, then

$$\sum_{i} X_{i} \sim N\left(\sum_{i} \mu_{i}, \sum_{i} \sigma_{i}^{2}\right).$$

- Let $X_i \sim N(\mu_i, \sigma_i^2)$, which may not be independent.
- Suppose

$$\sum_{i=1}^{n} t_i X_i \sim N\left(\sum_{i=1}^{n} t_i \mu_i, \sum_{i=1}^{n} \sum_{j=1}^{n} t_i t_j \operatorname{Cov}[X_i, X_j]\right)$$

for every linear combination $\sum_{i=1}^{n} t_i X_i$.^a

• X_i are said to have a multivariate normal distribution. ^aCorrected by Mr. Huang, Guo-Hua (R98922107) on March 10, 2010.

Generation of Univariate Normal Distributions

• Let X be uniformly distributed over (0,1] so that

$$\operatorname{Prob}[X \le x] = x, \quad 0 < x \le 1.$$

- Repeatedly draw two samples x_1 and x_2 from X until $\omega \equiv (2x_1 - 1)^2 + (2x_2 - 1)^2 < 1.$
- Then $c(2x_1 1)$ and $c(2x_2 1)$ are independent standard normal variables where^a

$$c \equiv \sqrt{-2(\ln \omega)/\omega}$$
.

^aAs they are normally distributed, to prove independence, it suffices to prove that they are uncorrelated, which is easy. Thanks to a lively class discussion on March 5, 2014.

A Dirty Trick and a Right Attitude

- Let ξ_i are independent and uniformly distributed over (0, 1).
- A simple method to generate the standard normal variable is to calculate^a

$$\left(\sum_{i=1}^{12} \xi_i\right) - 6.$$

- But why use 12?
- Recall the mean and variance of ξ_i are 1/2 and 1/12, respectively.

^aJäckel (2002), "this is not a highly accurate approximation and should only be used to establish ballpark estimates."

A Dirty Trick and a Right Attitude (concluded)

• So the general formula is

$$\frac{(\sum_{i=1}^{n} \xi_i) - (n/2)}{\sqrt{n/12}}$$

- Choosing n = 12 yields a formula without the need of division and square-root operations.^a
- Always blame your random number generator last.^b
- Instead, check your programs first.

^aContributed by Mr. Chen, Shih-Hang (R02723031) on March 5, 2014. ^b "The fault, dear Brutus, lies not in the stars but in ourselves that we are underlings." William Shakespeare (1564–1616), Julius Caesar.

Generation of Bivariate Normal Distributions

- Pairs of normally distributed variables with correlation ρ can be generated.
- Let X_1 and X_2 be independent standard normal variables.
- Set

$$U \equiv aX_1,$$

$$V \equiv \rho U + \sqrt{1 - \rho^2} aX_2.$$

Generation of Bivariate Normal Distributions (concluded)

• U and V are the desired random variables with

$$Var[U] = Var[V] = a^{2},$$
$$Cov[U, V] = \rho a^{2}.$$

• Note that the mapping between (X_1, X_2) and (U, V) is one-to-one.

The Lognormal Distribution

- A random variable Y is said to have a lognormal distribution if $\ln Y$ has a normal distribution.
- Let $X \sim N(\mu, \sigma^2)$ and $Y \equiv e^X$.
- The mean and variance of Y are

$$\mu_Y = e^{\mu + \sigma^2/2} \text{ and } \sigma_Y^2 = e^{2\mu + \sigma^2} \left(e^{\sigma^2} - 1 \right),$$
(21)

respectively.

- They follow from $E[Y^n] = e^{n\mu + n^2\sigma^2/2}$.

Option Basics

The shift toward options as the center of gravity of finance [...] — Merton H. Miller (1923–2000)

Calls and Puts

- A call gives its holder the right to buy a number of the underlying asset by paying a strike price.
- A put gives its holder the right to sell a number of the underlying asset for the strike price.
- How to price options?^a

^aIt can be traced to Aristotle's (384 B.C.–322 B.C.) *Politics*, if not earlier.

Exercise

- When a call is exercised, the holder pays the strike price in exchange for the stock.
- When a put is exercised, the holder receives from the writer the strike price in exchange for the stock.
- An option can be exercised prior to the expiration date: early exercise.

American and European

- American options can be exercised at any time up to the expiration date.
- European options can only be exercised at expiration.
- An American option is worth at least as much as an otherwise identical European option.

Convenient Conventions

- C: call value.
- *P*: put value.
- X: strike price.
- S: stock price.
- D: dividend.

Payoff, Mathematically Speaking

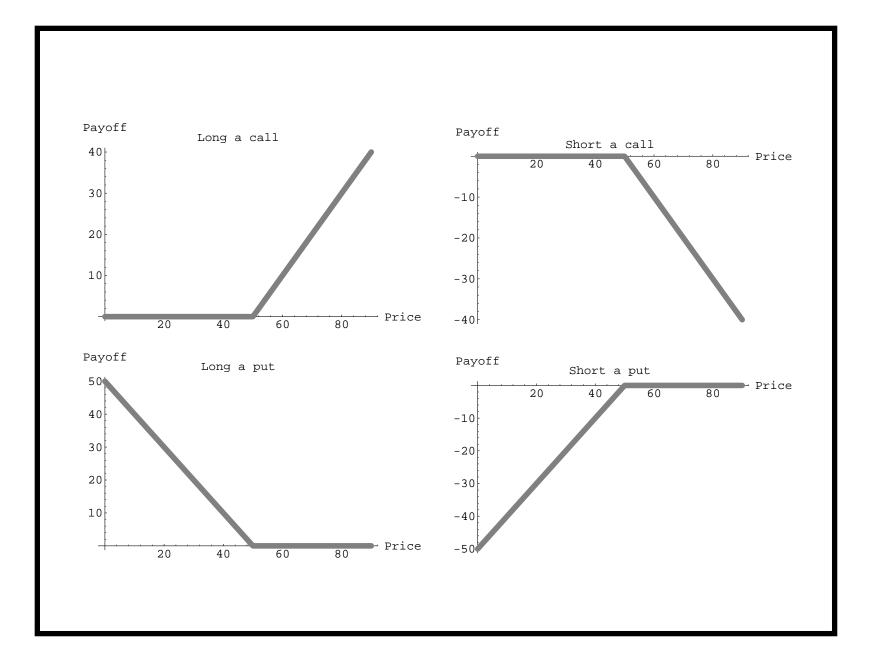
• The payoff of a call at expiration is

 $C = \max(0, S - X).$

• The payoff of a put at expiration is

 $P = \max(0, X - S).$

- A call will be exercised only if the stock price is higher than the strike price.
- A put will be exercised only if the stock price is less than the strike price.



Payoff, Mathematically Speaking (continued)

• At any time t before the expiration date, we call

 $\max(0, S_t - X)$

the intrinsic value of a call.

• At any time t before the expiration date, we call

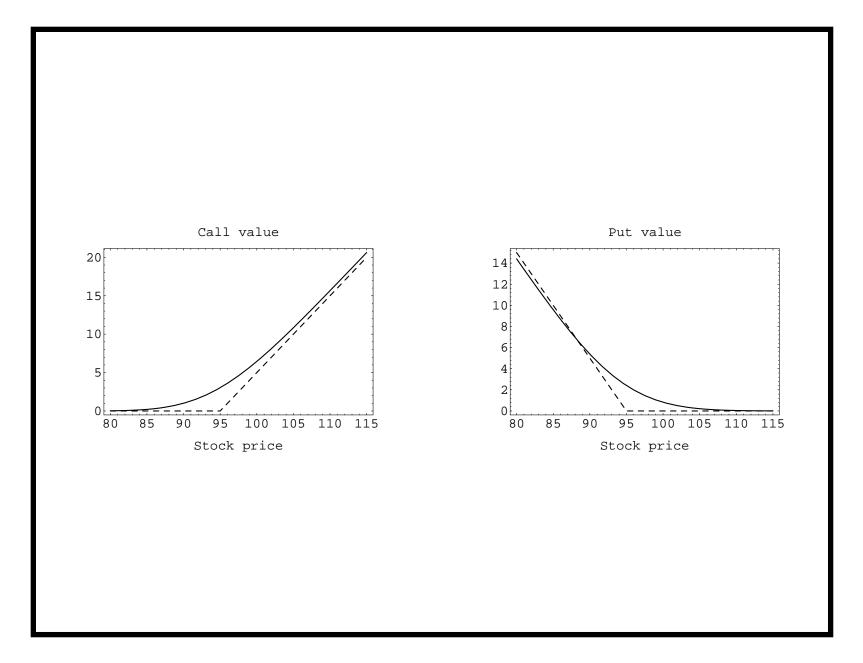
 $\max(0, X - S_t)$

the intrinsic value of a put.

Payoff, Mathematically Speaking (concluded)

- A call is in the money if S > X, at the money if S = X, and out of the money if S < X.
- A put is in the money if S < X, at the money if S = X, and out of the money if S > X.
- Options that are in the money at expiration should be exercised.^a
- Finding an option's value at any time before expiration is a major intellectual breakthrough.

 $^{a}11\%$ of option holders let in-the-money options expire worthless.



Cash Dividends

- Exchange-traded stock options are not cash dividend-protected (or simply protected).
 - The option contract is not adjusted for cash dividends.
- The stock price falls by an amount roughly equal to the amount of the cash dividend as it goes ex-dividend.
- Cash dividends are detrimental for calls.
- The opposite is true for puts.

Stock Splits and Stock Dividends

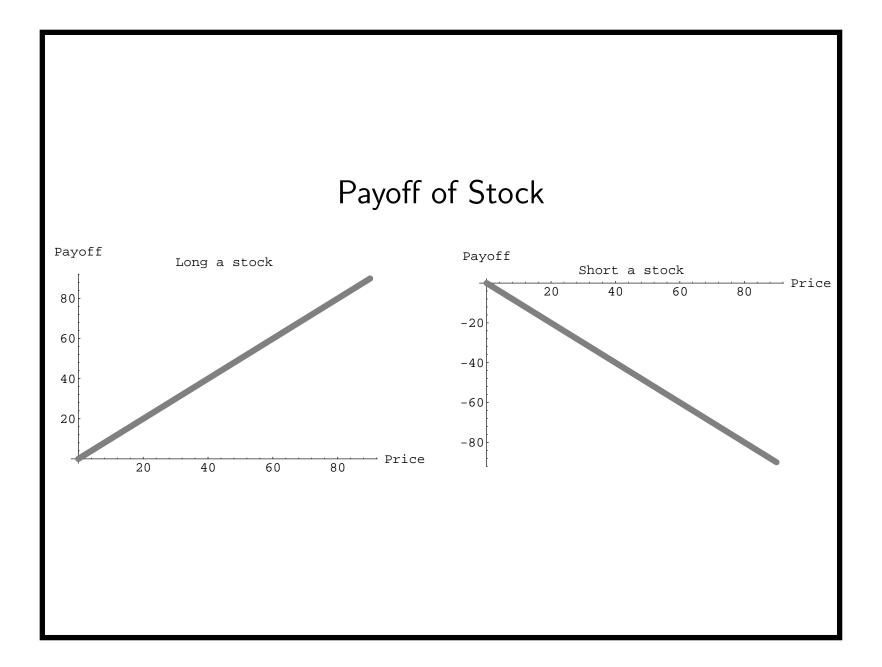
- Options are adjusted for stock splits.
- After an n-for-m stock split, the strike price is only m/n times its previous value, and the number of shares covered by one contract becomes n/m times its previous value.
- Exchange-traded stock options are adjusted for stock dividends.
- Options are assumed to be unprotected.

Example

- Consider an option to buy 100 shares of a company for \$50 per share.
- A 2-for-1 split changes the term to a strike price of \$25 per share for 200 shares.

Short Selling

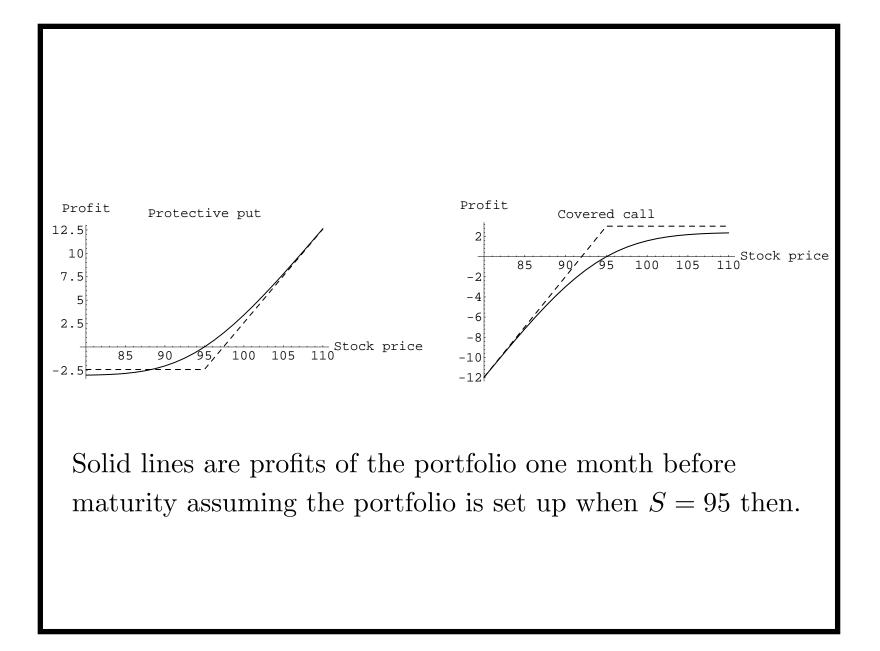
- Short selling (or simply shorting) involves selling an asset that is *not* owned with the intention of buying it back later.
 - If you short 1,000 XYZ shares, the broker borrows them from another client to sell them in the market.
 - This action generates proceeds for the investor.
 - The investor can close out the short position by buying 1,000 XYZ shares.
 - Clearly, the investor profits if the stock price falls.
- Not all assets can be shorted.



Covered Position: Hedge

- A hedge combines an option with its underlying stock in such a way that one protects the other against loss.
- Protective put: A long position in stock with a long put.
- Covered call: A long position in stock with a short call.^a
 - It is "covered" because the stock can be delivered to the buyer of the call if the call is exercised.
- Both strategies break even only if the stock price rises, so they are bullish.

^aA short position has a payoff opposite in sign to that of a long position.



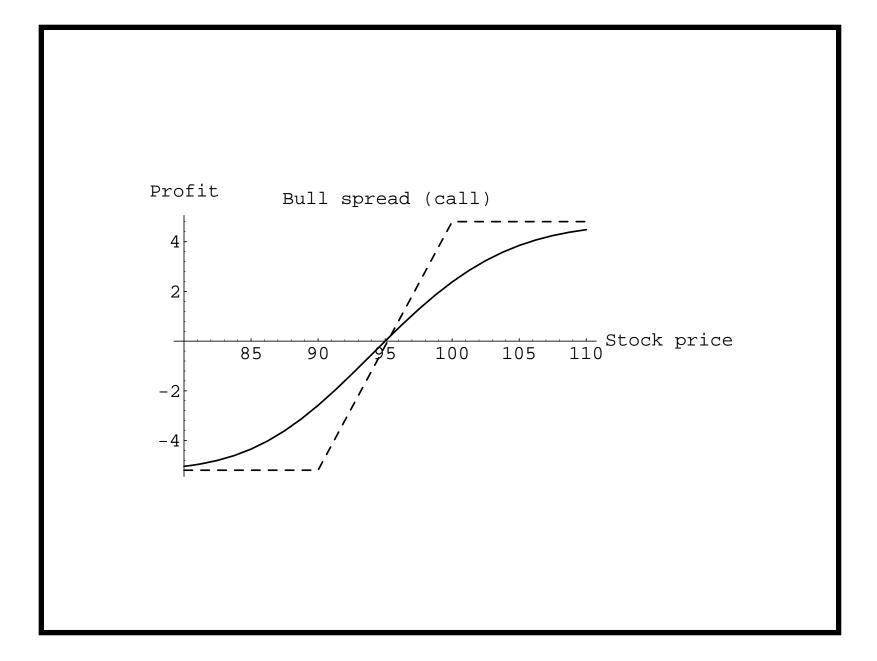
Covered Position: Spread

- A spread consists of options of the same type and on the same underlying asset but with different strike prices or expiration dates.
- We use X_L , X_M , and X_H to denote the strike prices with

 $X_L < X_M < X_H.$

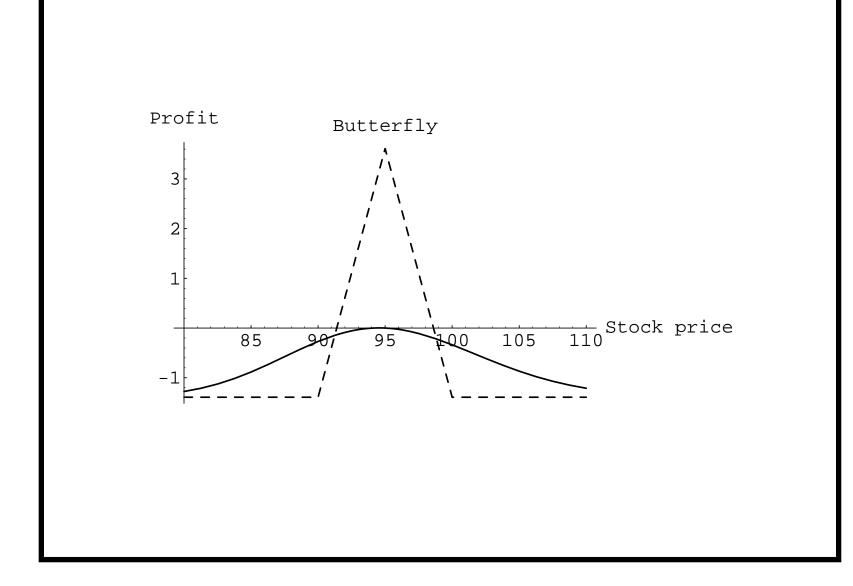
Covered Position: Spread (continued)

- A bull call spread consists of a long X_L call and a short X_H call with the same expiration date.
 - The initial investment is $C_L C_H$.
 - The maximum profit is $(X_H X_L) (C_L C_H)$.
 - The maximum loss is $C_L C_H$.



Covered Position: Spread (continued)

- Writing an X_H put and buying an X_L put with identical expiration date creates the bull put spread.
- A bear spread amounts to selling a bull spread.
- It profits from declining stock prices.
- Three calls or three puts with different strike prices and the same expiration date create a butterfly spread.
 - The spread is long one X_L call, long one X_H call, and short two X_M calls.



Covered Position: Spread (continued)

- A butterfly spread pays off a positive amount at expiration only if the asset price falls between X_L and X_H .
- A butterfly spread with a small $X_H X_L$ approximates a state contingent claim,^a which pays \$1 only when a particular price results.^b

^aAlternatively, Arrow security. ^bSee Exercise 7.4.5 of the textbook.

Covered Position: Spread (concluded)

- The price of a state contingent claim is called a state price.
- The (undiscounted) state price equals

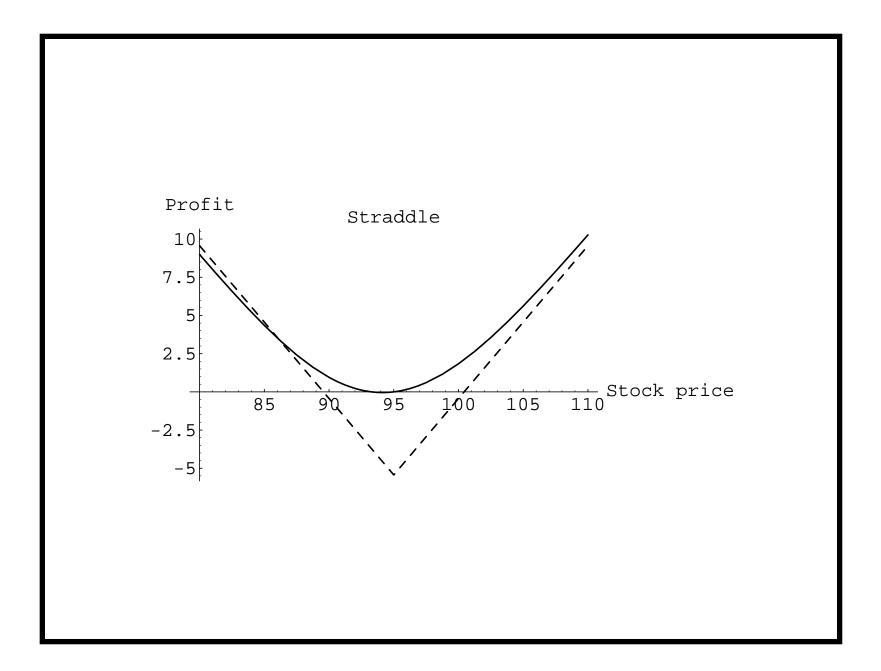
$$\frac{\partial^2 C}{\partial X^2}.$$

- Recall that C is the call's price.^a
- In fact, the PV of $\partial^2 C / \partial X^2$ is the probability density of the stock price $S_T = X$ at option's maturity.^b

^aOne can also use the put (see Exercise 9.3.6 of the textbook). ^bBreeden and Litzenberger (1978).

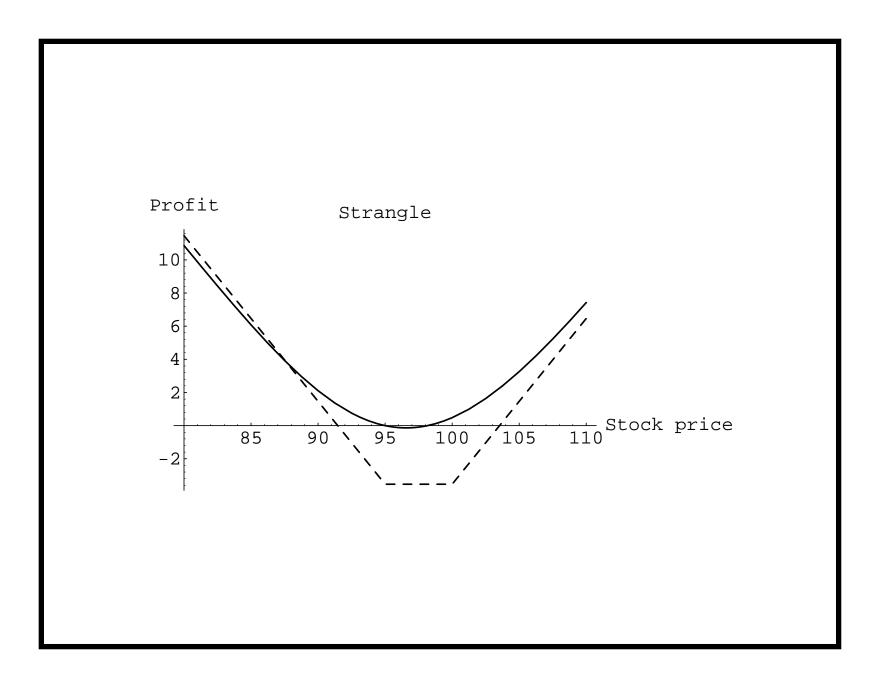
Covered Position: Combination

- A combination consists of options of different types on the same underlying asset.
 - These options must be either all bought or all written.
- Straddle: A long call and a long put with the same strike price and expiration date.
 - Since it profits from high volatility, a person who buys a straddle is said to be long volatility.
 - Selling a straddle benefits from low volatility.



Covered Position: Combination (concluded)

• Strangle: Identical to a straddle except that the call's strike price is higher than the put's.



Arbitrage in Option Pricing

All general laws are attended with inconveniences, when applied to particular cases. — David Hume (1711–1776)

Arbitrage

- The no-arbitrage principle says there is no free lunch.
- It supplies the argument for option pricing.
- A riskless arbitrage opportunity is one that, without any initial investment, generates nonnegative returns under all circumstances and positive returns under some.
- In an efficient market, such opportunities do not exist (for long).

Portfolio Dominance Principle

- Consider two portfolios A and B.
- A should be more valuable than B if A's payoff is at least as good as B's under all circumstances and better under some.

A Corollary

- A portfolio yielding a zero return in every possible scenario must have a zero PV.
 - Short the portfolio if its PV is positive.
 - Buy it if its PV is negative.
 - In both cases, a free lunch is created.