
The Black-Karasinski Modela

• The BK model stipulates that the short rate follows

d ln r = κ(t)(θ(t)− ln r) dt+ σ(t) dW.

• This explicitly mean-reverting model depends on time

through κ( · ), θ( · ), and σ( · ).

• The BK model hence has one more degree of freedom

than the BDT model.

• The speed of mean reversion κ(t) and the short rate

volatility σ(t) are independent.

aBlack and Karasinski (1991).
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The Black-Karasinski Model: Discrete Time

• The discrete-time version of the BK model has the same

representation as the BDT model.

• To maintain a combining binomial tree, however,

requires some manipulations.

• The next plot illustrates the ideas in which

t2 ≡ t1 +∆t1,

t3 ≡ t2 +∆t2.
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↗

ln rd(t2)

↗ ↘

ln r(t1) ln rdu(t3) = ln rud(t3)

↘ ↗

ln ru(t2)

↘
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The Black-Karasinski Model: Discrete Time
(continued)

• Note that

ln rd(t2) = ln r(t1) + κ(t1)(θ(t1)− ln r(t1))∆t1 − σ(t1)
√

∆t1 ,

ln ru(t2) = ln r(t1) + κ(t1)(θ(t1)− ln r(t1))∆t1 + σ(t1)
√

∆t1 .

• To ensure that an up move followed by a down move
coincides with a down move followed by an up move,
impose

ln rd(t2) + κ(t2)(θ(t2)− ln rd(t2))∆t2 + σ(t2)
√

∆t2 ,

= ln ru(t2) + κ(t2)(θ(t2)− ln ru(t2))∆t2 − σ(t2)
√

∆t2 .
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The Black-Karasinski Model: Discrete Time
(concluded)

• They imply

κ(t2) =
1− (σ(t2)/σ(t1))

√
∆t2/∆t1

∆t2
.

(123)

• So from ∆t1, we can calculate the ∆t2 that satisfies the

combining condition and then iterate.

– t0 → ∆t0 → t1 → ∆t1 → t2 → ∆t2 → · · · → T

(roughly).a

aAs κ(t), θ(t), σ(t) are independent of r, the ∆tis will not depend on

r.
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Problems with Lognormal Models in General

• Lognormal models such as BDT and BK share the

problem that Eπ[M(t) ] = ∞ for any finite t if they

the continuously compounded rate.

• Hence periodic compounding should be used.

• Another issue is computational.

• Lognormal models usually do not give analytical

solutions to even basic fixed-income securities.

• As a result, to price short-dated derivatives on long-term

bonds, the tree has to be built over the life of the

underlying asset instead of the life of the derivative.
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Problems with Lognormal Models in General
(concluded)

• This problem can be somewhat mitigated by adopting

different time steps: Use a fine time step up to the

maturity of the short-dated derivative and a coarse time

step beyond the maturity.a

• A down side of this procedure is that it has to be

tailor-made for each derivative.

• Finally, empirically, interest rates do not follow the

lognormal distribution.

aHull and White (1993).
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The Extended Vasicek Modela

• Hull and White proposed models that extend the

Vasicek model and the CIR model.

• They are called the extended Vasicek model and the

extended CIR model.

• The extended Vasicek model adds time dependence to

the original Vasicek model,

dr = (θ(t)− a(t) r) dt+ σ(t) dW.

• Like the Ho-Lee model, this is a normal model, and the

inclusion of θ(t) allows for an exact fit to the current

spot rate curve.

aHull and White (1990).
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The Extended Vasicek Model (concluded)

• Function σ(t) defines the short rate volatility, and a(t)

determines the shape of the volatility structure.

• Under this model, many European-style securities can be

evaluated analytically, and efficient numerical procedures

can be developed for American-style securities.
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The Hull-White Model

• The Hull-White model is the following special case,

dr = (θ(t)− ar) dt+ σ dW.

• When the current term structure is matched,a

θ(t) =
∂f(0, t)

∂t
+ af(0, t) +

σ2

2a

(
1− e−2at

)
.

aHull and White (1993).
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The Extended CIR Model

• In the extended CIR model the short rate follows

dr = (θ(t)− a(t) r) dt+ σ(t)
√
r dW.

• The functions θ(t), a(t), and σ(t) are implied from

market observables.

• With constant parameters, there exist analytical

solutions to a small set of interest rate-sensitive

securities.

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 1018



The Hull-White Model: Calibrationa

• We describe a trinomial forward induction scheme to

calibrate the Hull-White model given a and σ.

• As with the Ho-Lee model, the set of achievable short

rates is evenly spaced.

• Let r0 be the annualized, continuously compounded

short rate at time zero.

• Every short rate on the tree takes on a value

r0 + j∆r

for some integer j.

aHull and White (1993).
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The Hull-White Model: Calibration (continued)

• Time increments on the tree are also equally spaced at

∆t apart.

• Hence nodes are located at times i∆t for i = 0, 1, 2, . . . .

• We shall refer to the node on the tree with

ti ≡ i∆t,

rj ≡ r0 + j∆r,

as the (i, j) node.

• The short rate at node (i, j), which equals rj , is

effective for the time period [ ti, ti+1).
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The Hull-White Model: Calibration (continued)

• Use

µi,j ≡ θ(ti)− arj (124)

to denote the drift rate, or the expected change, of the

short rate as seen from node (i, j).

• The three distinct possibilities for node (i, j) with three

branches incident from it are displayed on p. 1022.a

• The interest rate movement described by the middle

branch may be an increase of ∆r, no change, or a

decrease of ∆r.

aA predecessor to Lyuu and Wu’s (R90723065) (2003, 2005) mean-

tracking idea.
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The Hull-White Model: Calibration (continued)

(i, j)

�
(i+ 1, j + 2)

*(i+ 1, j + 1)

- (i+ 1, j)(i, j)

*(i+ 1, j + 1)

- (i+ 1, j)

j(i+ 1, j − 1)

(i, j) - (i+ 1, j)

j(i+ 1, j − 1)

R
(i+ 1, j − 2)
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The Hull-White Model: Calibration (continued)

• The upper and the lower branches bracket the middle

branch.

• Define

p1(i, j) ≡ the probability of following the upper branch from node (i, j)

p2(i, j) ≡ the probability of following the middle branch from node (i, j)

p3(i, j) ≡ the probability of following the lower branch from node (i, j)

• The root of the tree is set to the current short rate r0.

• Inductively, the drift µi,j at node (i, j) is a function of

θ(ti).
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The Hull-White Model: Calibration (continued)

• Once θ(ti) is available, µi,j can be derived via

Eq. (124) on p. 1021.

• This in turn determines the branching scheme at every

node (i, j) for each j, as we will see shortly.

• The value of θ(ti) must thus be made consistent with

the spot rate r(0, ti+2).
a

aNot r(0, ti+1)!
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The Hull-White Model: Calibration (continued)

• The branches emanating from node (i, j) with their

accompanying probabilitiesa must be chosen to be

consistent with µi,j and σ.

• This is accomplished by letting the middle node be as

close as possible to the current value of the short rate

plus the drift.

• Let k be the number among { j − 1, j, j + 1 } that

makes the short rate reached by the middle branch, rk,

closest to

rj + µi,j∆t.

– But note that µi,j is still not computed yet.

ap1(i, j), p2(i, j), and p3(i, j).
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The Hull-White Model: Calibration (continued)

• Then the three nodes following node (i, j) are nodes

(i+ 1, k + 1), (i+ 1, k), (i+ 1, k − 1).

• The resulting tree may have the geometry depicted on

p. 1027.

• The resulting tree combines because of the constant

jump sizes to reach k.
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The Hull-White Model: Calibration (continued)

• The probabilities for moving along these branches are

functions of µi,j , σ, j, and k:

p1(i, j) =
σ2∆t+ η2

2(∆r)2
+

η

2∆r
(125)

p2(i, j) = 1− σ2∆t+ η2

(∆r)2
(125′)

p3(i, j) =
σ2∆t+ η2

2(∆r)2
− η

2∆r
(125′′)

where

η ≡ µi,j∆t+ (j − k)∆r.
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The Hull-White Model: Calibration (continued)

• As trinomial tree algorithms are but explicit methods in

disguise, certain relations must hold for ∆r and ∆t to

guarantee stability.

• It can be shown that their values must satisfy

σ
√
3∆t

2
≤ ∆r ≤ 2σ

√
∆t

for the probabilities to lie between zero and one.

– For example, ∆r can be set to σ
√
3∆t .a

aHull and White (1988).
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The Hull-White Model: Calibration (continued)

• Now it only remains to determine θ(ti).

• At this point at time ti, r(0, t1), r(0, t2), . . . , r(0, ti+1)

have already been matched.

• Let Q(i, j) denote the value of the state contingent

claim that pays one dollar at node (i, j) and zero

otherwise.

• By construction, the state prices Q(i, j) for all j are

known by now.

• We begin with state price Q(0, 0) = 1.
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The Hull-White Model: Calibration (continued)

• Let r̂(i) refer to the short rate value at time ti.

• The value at time zero of a zero-coupon bond maturing

at time ti+2 is then

e−r(0,ti+2)(i+2)∆t

=
∑
j

Q(i, j) e−rj∆t Eπ
[
e−r̂(i+1)∆t

∣∣∣ r̂(i) = rj

]
.(126)

• The right-hand side represents the value of $1 obtained

by holding a zero-coupon bond until time ti+1 and then

reinvesting the proceeds at that time at the prevailing

short rate r̂(i+ 1), which is stochastic.
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The Hull-White Model: Calibration (continued)

• The expectation (126) can be approximated by

Eπ
[
e−r̂(i+1)∆t

∣∣∣ r̂(i) = rj

]
≈ e−rj∆t

(
1− µi,j(∆t)2 +

σ2(∆t)3

2

)
. (127)

– This solves the chicken-egg problem!

• Substitute Eq. (127) into Eq. (126) and replace µi,j

with θ(ti)− arj to obtain

θ(ti) ≈

∑
j Q(i, j) e

−2rj∆t (
1 + arj(∆t)2 + σ2(∆t)3/2

)
− e

−r(0,ti+2)(i+2)∆t

(∆t)2
∑

j Q(i, j) e
−2rj∆t

.
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The Hull-White Model: Calibration (continued)

• For the Hull-White model, the expectation in Eq. (127)

on p. 1032 is actually known analytically by Eq. (21) on

p. 154:

Eπ
[
e−r̂(i+1)∆t

∣∣∣ r̂(i) = rj

]
= e−rj∆t+(−θ(ti)+arj+σ2∆t/2)(∆t)2 .

• Therefore, alternatively,

θ(ti) =
r(0, ti+2)(i+ 2)

∆t
+
σ2∆t

2
+
ln
∑

j Q(i, j) e−2rj∆t+arj(∆t)2

(∆t)2
.
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The Hull-White Model: Calibration (concluded)

• With θ(ti) in hand, we can compute µi,j , the

probabilities, and finally the state prices at time ti+1:

Q(i+ 1, j)

=
∑

(i, j∗) is connected to (i + 1, j) with probability pj∗

pj∗e
−rj∗∆tQ(i, j∗).

• There are at most 5 choices for j∗ (why?).

• The total running time is O(n2).

• The space requirement is O(n) (why?).
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Comments on the Hull-White Model

• One can try different values of a and σ for each option.

• Or have an a value common to all options but use a

different σ value for each option.

• Either approach can match all the option prices exactly.

• If the demand is for a single set of parameters that

replicate all option prices, the Hull-White model can be

calibrated to all the observed option prices by choosing

a and σ that minimize the mean-squared pricing error.a

aHull and White (1995).
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The Hull-White Model: Calibration with Irregular
Trinomial Trees

• The previous calibration algorithm is quite general.

• For example, it can be modified to apply to cases where

the diffusion term has the form σrb.

• But it has at least two shortcomings.

• First, the resulting trinomial tree is irregular (p. 1027).

– So it is harder to program.

• The second shortcoming is again a consequence of the

tree’s irregular shape.
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The Hull-White Model: Calibration with Irregular
Trinomial Trees (concluded)

• Recall that the algorithm figured out θ(ti) that matches

the spot rate r(0, ti+2) in order to determine the

branching schemes for the nodes at time ti.

• But without those branches, the tree was not specified,

and backward induction on the tree was not possible.

• To avoid this chicken-egg dilemma, the algorithm turned

to the continuous-time model to evaluate Eq. (126) on

p. 1031 that helps derive θ(ti) later.

• The resulting θ(ti) hence might not yield a tree that

matches the spot rates exactly.
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The Hull-White Model: Calibration with Regular
Trinomial Treesa

• The next, simpler algorithm exploits the fact that the

Hull-White model has a constant diffusion term σ.

• The resulting trinomial tree will be regular.

• All the θ(ti) terms can be chosen by backward

induction to match the spot rates exactly.

• The tree is constructed in two phases.

aHull and White (1994).
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The Hull-White Model: Calibration with Regular
Trinomial Trees (continued)

• In the first phase, a tree is built for the θ(t) = 0 case,

which is an Ornstein-Uhlenbeck process:

dr = −ar dt+ σ dW, r(0) = 0.

– The tree is dagger-shaped (preview p. 1041).

– The number of nodes above the r0-line, jmax, and

that below the line, jmin, will be picked so that the

probabilities (125) on p. 1028 are positive for all

nodes.

– The tree’s branches and probabilities are in place.
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The Hull-White Model: Calibration with Regular
Trinomial Trees (concluded)

• Phase two fits the term structure.

– Backward induction is applied to calculate the βi to

add to the short rates on the tree at time ti so that

the spot rate r(0, ti+1) is matched.a

aContrast this with the previous algorithm, where it was the spot rate

r(0, ti+2) that is matched!
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The short rate at node (0, 0) equals r0 = 0; here jmax = 3

and jmin = 2.
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The Hull-White Model: Calibration

• Set ∆r = σ
√
3∆t and assume that a > 0.

• Node (i, j) is a top node if j = jmax and a bottom node

if j = −jmin.

• Because the root of the tree has a short rate of r0 = 0,

phase one adopts rj = j∆r.

• Hence the probabilities in Eqs. (125) on p. 1028 use

η ≡ −aj∆r∆t+ (j − k)∆r.

• Recall that k denotes the middle branch.
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The Hull-White Model: Calibration (continued)

• The probabilities become

p1(i, j) =
1

6
+

a2j2(∆t)2 − 2aj∆t(j − k) + (j − k)2 − aj∆t + (j − k)

2
,(128)

p2(i, j) =
2

3
−

[
a
2
j
2
(∆t)

2 − 2aj∆t(j − k) + (j − k)
2

]
, (129)

p3(i, j) =
1

6
+

a2j2(∆t)2 − 2aj∆t(j − k) + (j − k)2 + aj∆t − (j − k)

2
.(130)
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The Hull-White Model: Calibration (continued)

• The dagger shape dictates this:

– Let k = j − 1 if node (i, j) is a top node.

– Let k = j + 1 if node (i, j) is a bottom node.

– Let k = j for the rest of the nodes.

• Note that the probabilities are identical for nodes (i, j)

with the same j.

• Furthermore, p1(i, j) = p3(i,−j).
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The Hull-White Model: Calibration (continued)

• The inequalities

3−
√
6

3
< ja∆t <

√
2

3
(131)

ensure that all the branching probabilities are positive in

the upper half of the tree, that is, j > 0 (verify this).

• Similarly, the inequalities

−
√

2

3
< ja∆t < −3−

√
6

3

ensure that the probabilities are positive in the lower

half of the tree, that is, j < 0.
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The Hull-White Model: Calibration (continued)

• To further make the tree symmetric across the r0-line,

we let jmin = jmax.

• As 3−
√
6

3 ≈ 0.184, a good choice is

jmax = ⌈0.184/(a∆t)⌉.

• Phase two computes the βis to fit the spot rates.

• We begin with state price Q(0, 0) = 1.

• Inductively, suppose that spot rates r(0, t1), r(0, t2),

. . . , r(0, ti) have already been matched at time ti.
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The Hull-White Model: Calibration (continued)

• By construction, the state prices Q(i, j) for all j are

known by now.

• The value of a zero-coupon bond maturing at time ti+1

equals

e−r(0,ti+1)(i+1)∆t =
∑
j

Q(i, j) e−(βi+rj)∆t

by risk-neutral valuation.

• Hence

βi =
r(0, ti+1)(i+ 1)∆t+ ln

∑
j Q(i, j) e−rj∆t

∆t
,

and the short rate at node (i, j) equals βi + rj .
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The Hull-White Model: Calibration (concluded)

• The state prices at time ti+1,

Q(i+ 1, j), −min(i+ 1, jmax) ≤ j ≤ min(i+ 1, jmax),

can now be calculated as before.

• The total running time is O(njmax).

• The space requirement is O(n).
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A Numerical Example

• Assume a = 0.1, σ = 0.01, and ∆t = 1 (year).

• Immediately, ∆r = 0.0173205 and jmax = 2.

• The plot on p. 1050 illustrates the 3-period trinomial

tree after phase one.

• For example, the branching probabilities for node E are

calculated by Eqs. (128)–(130) on p. 1043 with j = 2

and k = 1.
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Node A, C, G B, F E D, H I

r (%) 0.00000 1.73205 3.46410 −1.73205 −3.46410

p1 0.16667 0.12167 0.88667 0.22167 0.08667

p2 0.66667 0.65667 0.02667 0.65667 0.02667

p3 0.16667 0.22167 0.08667 0.12167 0.88667
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A Numerical Example (continued)

• Suppose that phase two is to fit the spot rate curve

0.08− 0.05× e−0.18×t.

• The annualized continuously compounded spot rates are

r(0, 1) = 3.82365%, r(0, 2) = 4.51162%, r(0, 3) = 5.08626%.

• Start with state price Q(0, 0) = 1 at node A.
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A Numerical Example (continued)

• Now,

β0 = r(0, 1) + lnQ(0, 0) e−r0 = r(0, 1) = 3.82365%.

• Hence the short rate at node A equals

β0 + r0 = 3.82365%.

• The state prices at year one are calculated as

Q(1, 1) = p1(0, 0) e
−(β0+r0) = 0.160414,

Q(1, 0) = p2(0, 0) e
−(β0+r0) = 0.641657,

Q(1,−1) = p3(0, 0) e
−(β0+r0) = 0.160414.
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A Numerical Example (continued)

• The 2-year rate spot rate r(0, 2) is matched by picking

β1 = r(0, 2)×2+ln
[
Q(1, 1) e−∆r +Q(1, 0) +Q(1,−1) e∆r

]
= 5.20459%.

• Hence the short rates at nodes B, C, and D equal

β1 + rj ,

where j = 1, 0,−1, respectively.

• They are found to be 6.93664%, 5.20459%, and

3.47254%.
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A Numerical Example (continued)

• The state prices at year two are calculated as

Q(2, 2) = p1(1, 1) e
−(β1+r1)Q(1, 1) = 0.018209,

Q(2, 1) = p2(1, 1) e
−(β1+r1)Q(1, 1) + p1(1, 0) e

−(β1+r0)Q(1, 0)

= 0.199799,

Q(2, 0) = p3(1, 1) e
−(β1+r1)Q(1, 1) + p2(1, 0) e

−(β1+r0)Q(1, 0)

+p1(1,−1) e−(β1+r−1)Q(1,−1) = 0.473597,

Q(2,−1) = p3(1, 0) e
−(β1+r0)Q(1, 0) + p2(1,−1) e−(β1+r−1)Q(1,−1)

= 0.203263,

Q(2,−2) = p3(1,−1) e−(β1+r−1)Q(1,−1) = 0.018851.
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A Numerical Example (concluded)

• The 3-year rate spot rate r(0, 3) is matched by picking

β2 = r(0, 3)× 3 + ln
[
Q(2, 2) e−2×∆r +Q(2, 1) e−∆r +Q(2, 0)

+Q(2,−1) e∆r +Q(2,−2) e2×∆r
]
= 6.25359%.

• Hence the short rates at nodes E, F, G, H, and I equal

β2 + rj , where j = 2, 1, 0,−1,−2, respectively.

• They are found to be 9.71769%, 7.98564%, 6.25359%,

4.52154%, and 2.78949%.

• The figure on p. 1056 plots βi for i = 0, 1, . . . , 29.
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The (Whole) Yield Curve Approach

• We have seen several Markovian short rate models.

• The Markovian approach is computationally efficient.

• But it is difficult to model the behavior of yields and

bond prices of different maturities.

• The alternative yield curve approach regards the whole

term structure as the state of a process and directly

specifies how it evolves.
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The Heath-Jarrow-Morton Modela

• This influential model is a forward rate model.

• It is also a popular model.

• The HJM model specifies the initial forward rate curve

and the forward rate volatility structure, which describes

the volatility of each forward rate for a given maturity

date.

• Like the Black-Scholes option pricing model, neither risk

preference assumptions nor the drifts of forward rates

are needed.

aHeath, Jarrow, and Morton (HJM) (1992).
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Introduction to Mortgage-Backed Securities
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Anyone stupid enough to promise to be

responsible for a stranger’s debts

deserves to have his own property

held to guarantee payment.

— Proverbs 27:13
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Mortgages

• A mortgage is a loan secured by the collateral of real

estate property.

• The lender — the mortgagee — can foreclose the loan by

seizing the property if the borrower — the mortgagor —

defaults, that is, fails to make the contractual payments.
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Mortgage-Backed Securities

• A mortgage-backed security (MBS) is a bond backed by

an undivided interest in a pool of mortgages.a

• MBSs traditionally enjoy high returns, wide ranges of

products, high credit quality, and liquidity.

• The mortgage market has witnessed tremendous

innovations in product design.

aThey can be traced to 1880s (Levy (2012)).
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Mortgage-Backed Securities (concluded)

• The complexity of the products and the prepayment

option require advanced models and software techniques.

– In fact, the mortgage market probably could not

have operated efficiently without them.a

• They also consume lots of computing power.

• Our focus will be on residential mortgages.

• But the underlying principles are applicable to other

types of assets.

aMerton (1994).
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Types of MBSs

• An MBS is issued with pools of mortgage loans as the

collateral.

• The cash flows of the mortgages making up the pool

naturally reflect upon those of the MBS.

• There are three basic types of MBSs:

1. Mortgage pass-through security (MPTS).

2. Collateralized mortgage obligation (CMO).

3. Stripped mortgage-backed security (SMBS).
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Problems Investing in Mortgages

• The mortgage sector is one of the largest in the debt

market (see text).a

• Individual mortgages are unattractive for many

investors.

• Often at hundreds of thousands of U.S. dollars or more,

they demand too much investment.

• Most investors lack the resources and knowledge to

assess the credit risk involved.

aThe outstanding balance was US$8.1 trillion as of 2012 vs. the US

Treasury’s US$10.9 trillion according to SIFMA.
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Problems Investing in Mortgages (concluded)

• Recall that a traditional mortgage is fixed rate, level

payment, and fully amortized.

• So the percentage of principal and interest (P&I) varying

from month to month, creating accounting headaches.

• Prepayment levels fluctuate with a host of factors,

making the size and the timing of the cash flows

unpredictable.
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Mortgage Pass-Throughsa

• The simplest kind of MBS.

• Payments from the underlying mortgages are passed

from the mortgage holders through the servicing agency,

after a fee is subtracted.

• They are distributed to the security holder on a pro rata

basis.

– The holder of a $25,000 certificate from a $1 million

pool is entitled to 21/2% (or 1/40th) of the cash flow.

• Because of higher marketability, a pass-through is easier

to sell than its individual loans.

aFirst issued by Ginnie Mae in 1970.

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 1067



Rule for distribution of

cash flows: pro rata


Loan 2


Loan 10


Loan 1


Pass-through: $1 million

par pooled mortgage loans
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Collateralized Mortgage Obligations (CMOs)

• A pass-through exposes the investor to the total

prepayment risk.

• Such risk is undesirable from an asset/liability

perspective.

• To deal with prepayment uncertainty, CMOs were

created.a

• Mortgage pass-throughs have a single maturity and are

backed by individual mortgages.

aIn June 1983 by Freddie Mac with the help of First Boston.
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Collateralized Mortgage Obligations (CMOs)
(concluded)

• CMOs are multiple-maturity, multiclass debt

instruments collateralized by pass-throughs, stripped

mortgage-backed securities, and whole loans.

• The total prepayment risk is now divided among classes

of bonds called classes or tranches.a

• The principal, scheduled and prepaid, is allocated on a

prioritized basis so as to redistribute the prepayment

risk among the tranches in an unequal way.

aTranche is a French word for “slice.”
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Sequential Tranche Paydown

• In the sequential tranche paydown structure, Class A

receives principal paydown and prepayments before

Class B, which in turn does it before Class C, and so on.

• Each tranche thus has a different effective maturity.

• Each tranche may even have a different coupon rate.

• CMOs were the first successful attempt to alter

mortgage cash flows in a security form that attracts a

wide range of investors
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An Example

• Consider a two-tranche sequential-pay CMO backed by

$1,000,000 of mortgages with a 12% coupon and 6

months to maturity.

• The cash flow pattern for each tranche with zero

prepayment and zero servicing fee is shown on p. 1073.

• The calculation can be carried out first for the Total

columns, which make up the amortization schedule.

• Then the cash flow is allocated.

• Tranche A is retired after 4 months, and tranche B

starts principal paydown at the end of month 4.
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CMO Cash Flows without Prepayments

Interest Principal Remaining principal

Month A B Total A B Total A B Total

500,000 500,000 1,000,000

1 5,000 5,000 10,000 162,548 0 162,548 337,452 500,000 837,452

2 3,375 5,000 8,375 164,173 0 164,173 173,279 500,000 673,279

3 1,733 5,000 6,733 165,815 0 165,815 7,464 500,000 507,464

4 75 5,000 5,075 7,464 160,009 167,473 0 339,991 339,991

5 0 3,400 3,400 0 169,148 169,148 0 170,843 170,843

6 0 1,708 1,708 0 170,843 170,843 0 0 0

Total 10,183 25,108 35,291 500,000 500,000 1,000,000

The total monthly payment is $172,548. Month-i numbers

reflect the ith monthly payment.
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Another Example

• When prepayments are present, the calculation is only

slightly more complex.

• Suppose the single monthly mortality (SMM) per month

is 5%.

• This means the prepayment amount is 5% of the

remaining principal.

• The remaining principal at month i after prepayment

then equals the scheduled remaining principal as

computed by Eq. (6) on p. 46 times (0.95)i.

• This done for all the months, the total interest payment

at any month is the remaining principal of the previous

month times 1%.
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Another Example (continued)

• The prepayment amount equals the remaining principal

times 0.05/0.95.

– The division by 0.95 yields the remaining principal

before prepayment.

• Page 1077 tabulates the cash flows of the same

two-tranche CMO under 5% SMM.

• For instance, the total principal payment at month one,

$204,421, can be verified as follows.
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Another Example (concluded)

• The scheduled remaining principal is $837,452 from

p. 1073.

• The remaining principal is hence

837452× 0.95 = 795579, which makes the total principal

payment 1000000− 795579 = 204421.

• As tranche A’s remaining principal is $500,000, all

204,421 dollars go to tranche A.

– Incidentally, the prepayment is 837452× 5% = 41873.

• Tranche A is retired after 3 months, and tranche B

starts principal paydown at the end of month 3.
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CMO Cash Flows with Prepayments

Interest Principal Remaining principal

Month A B Total A B Total A B Total

500,000 500,000 1,000,000

1 5,000 5,000 10,000 204,421 0 204,421 295,579 500,000 795,579

2 2,956 5,000 7,956 187,946 0 187,946 107,633 500,000 607,633

3 1,076 5,000 6,076 107,633 64,915 172,548 0 435,085 435,085

4 0 4,351 4,351 0 158,163 158,163 0 276,922 276,922

5 0 2,769 2,769 0 144,730 144,730 0 132,192 132,192

6 0 1,322 1,322 0 132,192 132,192 0 0 0

Total 9,032 23,442 32,474 500,000 500,000 1,000,000

Month-i numbers reflect the ith monthly payment.
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Stripped Mortgage-Backed Securities (SMBSs)a

• The principal and interest are divided between the PO

strip and the IO strip.

• In the scenarios on p. 1072 and p. 1074:

– The IO strip receives all the interest payments under

the Interest/Total column.

– The PO strip receives all the principal payments

under the Principal/Total column.

aThey were created in February 1987 when Fannie Mae issued its

Trust 1 stripped MBS.
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Stripped Mortgage-Backed Securities (SMBSs)
(concluded)

• These new instruments allow investors to better exploit

anticipated changes in interest rates.a

• The collateral for an SMBS is a pass-through.

• CMOs and SMBSs are usually called derivative MBSs.

aSee p. 357 of the textbook.
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Prepayments

• The prepayment option sets MBSs apart from other

fixed-income securities.

• The exercise of options on most securities is expected to

be “rational.”

• This kind of “rationality” is weakened when it comes to

the homeowner’s decision to prepay.

• For example, even when the prevailing mortgage rate

exceeds the mortgage’s loan rate, some loans are

prepaid.
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Prepayment Risk

• Prepayment risk is the uncertainty in the amount and

timing of the principal prepayments in the pool of

mortgages that collateralize the security.

• This risk can be divided into contraction risk and

extension risk.

• Contraction risk is the risk of having to reinvest the

prepayments at a rate lower than the coupon rate when

interest rates decline.

• Extension risk is due to the slowdown of prepayments

when interest rates climb, making the investor earn the

security’s lower coupon rate rather than the market’s

higher rate.
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Prepayment Risk (concluded)

• Prepayments can be in whole or in part.

– The former is called liquidation.

– The latter is called curtailment.

• The holder of a pass-through security is exposed to the

total prepayment risk associated with the underlying

pool of mortgage loans.

• The CMO is designed to alter the distribution of that

risk among the investors.
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Other Risks

• Investors in mortgages are exposed to at least three

other risks.

– Interest rate risk is inherent in any fixed-income

security.

– Credit risk is the risk of loss from default.

∗ For privately insured mortgage, the risk is related

to the credit rating of the company that insures

the mortgage.

– Liquidity risk is the risk of loss if the investment

must be sold quickly.
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Prepayment: Causes

Prepayments have at least five components.

Home sale (“housing turnover”). The sale of a home

generally leads to the prepayment of mortgage because

of the full payment of the remaining principal.

Refinancing. Mortgagors can refinance their home

mortgage at a lower mortgage rate. This is the most

volatile component of prepayment and constitutes the

bulk of it when prepayments are extremely high.
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Prepayment: Causes (concluded)

Default. Caused by foreclosure and subsequent liquidation

of a mortgage. Relatively minor in most cases.

Curtailment. As the extra payment above the scheduled

payment, curtailment applies to the principal and

shortens the maturity of fixed-rate loans. Its

contribution to prepayments is minor.

Full payoff (liquidation). There is evidence that many

mortgagors pay off their mortgage completely when it is

very seasoned and the remaining balance is small. Full

payoff can also be due to natural disasters.
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Prepayment: Characteristics

• Prepayments usually increase as the mortgage ages —

first at an increasing rate and then at a decreasing rate.

• They are higher in the spring and summer and lower in

the fall and winter.

• They vary by the geographic locations of the underlying

properties.

• They increase when interest rates drop but with a time

lag.
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Prepayment: Characteristics (continued)

• If prepayments were higher for some time because of

high refinancing rates, they tend to slow down.

– Perhaps, homeowners who do not prepay when rates

have been low for a prolonged time tend never to

prepay.

• Plot on p. 1088 illustrates the typical price/yield curves

of the Treasury and pass-through.
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Price compression occurs as yields fall through a threshold.

The cusp represents that point.
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Prepayment: Characteristics (concluded)

• As yields fall and the pass-through’s price moves above

a certain price, it flattens and then follows a downward

slope.

• This phenomenon is called the price compression of

premium-priced MBSs.

• It demonstrates the negative convexity of such securities.
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