
Least-Squares Problems

• The least-squares (LS) problem is concerned with

min
x∈Rn

∥ Ax− b ∥,

where A ∈ Rm×n, b ∈ Rm, m ≥ n.

• The LS problem is called regression analysis in statistics

and is equivalent to minimizing the mean-square error.

• Often written as

Ax = b.
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Polynomial Regression

• In polynomial regression, x0 + x1x+ · · ·+ xnx
n is used

to fit the data { (a1, b1), (a2, b2), . . . , (am, bm) }.

• This leads to the LS problem,
1 a1 a21 · · · an1

1 a2 a22 · · · an2
...

...
...

. . .
...

1 am a2m · · · anm




x0

x1

...

xn

 =


b1

b2
...

bm

 .

• Consult the text for solutions.
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American Option Pricing by Simulation

• The continuation value of an American option is the

conditional expectation of the payoff from keeping the

option alive now.

• The option holder must compare the immediate exercise

value and the continuation value.

• In standard Monte Carlo simulation, each path is

treated independently of other paths.

• But the decision to exercise the option cannot be

reached by looking at one path alone.
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The Least-Squares Monte Carlo Approach

• The continuation value can be estimated from the

cross-sectional information in the simulation by using

least squares.a

• The result is a function (of the state) for estimating the

continuation values.

• Use the function to estimate the continuation value for

each path to determine its cash flow.

• This is called the least-squares Monte Carlo (LSM)

approach and is provably convergent.b

aLongstaff and Schwartz (2001).
bClément, Lamberton, and Protter (2002); Stentoft (2004).
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A Numerical Example

• Consider a 3-year American put on a

non-dividend-paying stock.

• The put is exercisable at years 0, 1, 2, and 3.

• The strike price X = 105.

• The annualized riskless rate is r = 5%.

• The spot stock price is 101.

– The annual discount factor hence equals 0.951229.

• We use only 8 price paths to illustrate the algorithm.
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A Numerical Example (continued)

Stock price paths

Path Year 0 Year 1 Year 2 Year 3

1 101 97.6424 92.5815 107.5178

2 101 101.2103 105.1763 102.4524

3 101 105.7802 103.6010 124.5115

4 101 96.4411 98.7120 108.3600

5 101 124.2345 101.0564 104.5315

6 101 95.8375 93.7270 99.3788

7 101 108.9554 102.4177 100.9225

8 101 104.1475 113.2516 115.0994
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A Numerical Example (continued)

• We use the basis functions 1, x, x2.

– Other basis functions are possible.a

• The plot next page shows the final estimated optimal

exercise strategy given by LSM.

• We now proceed to tackle our problem.

• The idea is to calculate the cash flow along each path,

using information from all paths.

aLaguerre polynomials, Hermite polynomials, Legendre polynomials,

Chebyshev polynomials, Gedenbauer polynomials, and Jacobi polynomi-

als.
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A Numerical Example (continued)

Cash flows at year 3

Path Year 0 Year 1 Year 2 Year 3

1 — — — 0

2 — — — 2.5476

3 — — — 0

4 — — — 0

5 — — — 0.4685

6 — — — 5.6212

7 — — — 4.0775

8 — — — 0
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A Numerical Example (continued)

• The cash flows at year 3 are the exercise value if the put

is in the money.

• Only 4 paths are in the money: 2, 5, 6, 7.

• Some of the cash flows may not occur if the put is

exercised earlier, which we will find out step by step.

• Incidentally, the European counterpart has a value of

0.9512293 × 2.5476 + 0.4685 + 5.6212 + 4.0775

8
= 1.3680.
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A Numerical Example (continued)

• We move on to year 2.

• For each state that is in the money at year 2, we must

decide whether to exercise it.

• There are 6 paths for which the put is in the money: 1,

3, 4, 5, 6, 7.

• Only in-the-money paths will be used in the regression

because they are where early exercise is relevant.

– If there were none, we would move on to year 1.
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A Numerical Example (continued)

• Let x denote the stock prices at year 2 for those 6 paths.

• Let y denote the corresponding discounted future cash

flows (at year 3) if the put is not exercised at year 2.
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A Numerical Example (continued)

Regression at year 2

Path x y

1 92.5815 0× 0.951229

2 — —

3 103.6010 0× 0.951229

4 98.7120 0× 0.951229

5 101.0564 0.4685× 0.951229

6 93.7270 5.6212× 0.951229

7 102.4177 4.0775× 0.951229

8 — —
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A Numerical Example (continued)

• We regress y on 1, x, and x2.

• The result is

f(x) = 22.08− 0.313114× x+ 0.00106918× x2.

• f(x) estimates the continuation value conditional on the

stock price at year 2.

• We next compare the immediate exercise value and the

continuation value.
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A Numerical Example (continued)

Optimal early exercise decision at year 2

Path Exercise Continuation

1 12.4185 f(92.5815) = 2.2558

2 — —

3 1.3990 f(103.6010) = 1.1168

4 6.2880 f(98.7120) = 1.5901

5 3.9436 f(101.0564) = 1.3568

6 11.2730 f(93.7270) = 2.1253

7 2.5823 f(102.4177) = 0.3326

8 — —
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A Numerical Example (continued)

• Amazingly, the put should be exercised in all 6 paths: 1,

3, 4, 5, 6, 7.

• Now, any positive cash flow at year 3 should be set to

zero or overridden for these paths as the put is exercised

before year 3.

– They are paths 5, 6, 7.

• Hence the cash flows on p. 750 become the next ones.
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A Numerical Example (continued)

Cash flows at years 2 & 3

Path Year 0 Year 1 Year 2 Year 3

1 — — 12.4185 0

2 — — 0 2.5476

3 — — 1.3990 0

4 — — 6.2880 0

5 — — 3.9436 0

6 — — 11.2730 0

7 — — 2.5823 0

8 — — 0 0
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A Numerical Example (continued)

• We move on to year 1.

• For each state that is in the money at year 1, we must

decide whether to exercise it.

• There are 5 paths for which the put is in the money: 1,

2, 4, 6, 8.

• Only in-the-money paths will be used in the regression

because they are where early exercise is relevant.

– If there were none, we would move on to year 0.
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A Numerical Example (continued)

• Let x denote the stock prices at year 1 for those 5 paths.

• Let y denote the corresponding discounted future cash

flows if the put is not exercised at year 1.

• From p. 758, we have the following table.
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A Numerical Example (continued)

Regression at year 1

Path x y

1 97.6424 12.4185× 0.951229

2 101.2103 2.5476× 0.9512292

3 — —

4 96.4411 6.2880× 0.951229

5 — —

6 95.8375 11.2730× 0.951229

7 — —

8 104.1475 0
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A Numerical Example (continued)

• We regress y on 1, x, and x2.

• The result is

f(x) = −420.964 + 9.78113× x− 0.0551567× x2.

• f(x) estimates the continuation value conditional on the

stock price at year 1.

• We next compare the immediate exercise value and the

continuation value.
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A Numerical Example (continued)

Optimal early exercise decision at year 1

Path Exercise Continuation

1 7.3576 f(97.6424) = 8.2230

2 3.7897 f(101.2103) = 3.9882

3 — —

4 8.5589 f(96.4411) = 9.3329

5 — —

6 9.1625 f(95.8375) = 9.83042

7 — —

8 0.8525 f(104.1475) = −0.551885
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A Numerical Example (continued)

• The put should be exercised for 1 path only: 8.

• Now, any positive future cash flow should be set to zero

or overridden for this path.

– But there is none.

• Hence the cash flows on p. 758 become the next ones.

• They also confirm the plot on p. 749.
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A Numerical Example (continued)

Cash flows at years 1, 2, & 3

Path Year 0 Year 1 Year 2 Year 3

1 — 0 12.4185 0

2 — 0 0 2.5476

3 — 0 1.3990 0

4 — 0 6.2880 0

5 — 0 3.9436 0

6 — 0 11.2730 0

7 — 0 2.5823 0

8 — 0.8525 0 0
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A Numerical Example (continued)

• We move on to year 0.

• The continuation value is, from p 765,

(12.4185× 0.9512292 + 2.5476× 0.9512293

+1.3990× 0.9512292 + 6.2880× 0.9512292

+3.9436× 0.9512292 + 11.2730× 0.9512292

+2.5823× 0.9512292 + 0.8525× 0.951229)/8

= 4.66263.
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A Numerical Example (concluded)

• As this is larger than the immediate exercise value of

105− 101 = 4, the put should not be exercised at year 0.

• Hence the put’s value is estimated to be 4.66263.

• Compare this to the European put’s value of 1.3680

(p. 751).

• Why is the LSM estimate a lower bound?a

aContributed by Mr. Yang, Jui-Chung (D97723002) on April 29, 2009.
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Time Series Analysis
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The historian is a prophet in reverse.

— Friedrich von Schlegel (1772–1829)
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GARCH Option Pricinga

• Options can be priced when the underlying asset’s

return follows a GARCH process.

• Let St denote the asset price at date t.

• Let h2
t be the conditional variance of the return over

the period [ t, t+ 1 ] given the information at date t.

– “One day” is merely a convenient term for any

elapsed time ∆t.

aARCH (autoregressive conditional heteroskedastic) is due to Engle

(1982), co-winner of the 2003 Nobel Prize in Economic Sciences. GARCH

(generalized ARCH ) is due to Bollerslev (1986) and Taylor (1986). A

Bloomberg quant said to me on Feb 29, 2008, that GARCH is seldom

used in trading.
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GARCH Option Pricing (continued)

• Adopt the following risk-neutral process for the price

dynamics:a

ln
St+1

St
= r − h2

t

2
+ htϵt+1, (85)

where

h2
t+1 = β0 + β1h

2
t + β2h

2
t (ϵt+1 − c)2, (86)

ϵt+1 ∼ N(0, 1) given information at date t,

r = daily riskless return,

c ≥ 0.

aDuan (1995).
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GARCH Option Pricing (continued)

• The five unknown parameters of the model are c, h0, β0,

β1, and β2.

• It is postulated that β0, β1, β2 ≥ 0 to make the

conditional variance positive.

• There are other inequalities to satisfy (see text).

• The above process is called the nonlinear asymmetric

GARCH (or NGARCH) model.
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GARCH Option Pricing (continued)

• It captures the volatility clustering in asset returns first

noted by Mandelbrot (1963).a

– When c = 0, a large ϵt+1 results in a large ht+1,

which in turns tends to yield a large ht+2, and so on.

• It also captures the negative correlation between the

asset return and changes in its (conditional) volatility.b

– For c > 0, a positive ϵt+1 (good news) tends to

decrease ht+1, whereas a negative ϵt+1 (bad news)

tends to do the opposite.
a“. . . large changes tend to be followed by large changes—of either

sign—and small changes tend to be followed by small changes . . . ”
bNoted by Black (1976): Volatility tends to rise in response to “bad

news” and fall in response to “good news.”
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GARCH Option Pricing (concluded)

• With yt ≡ lnSt denoting the logarithmic price, the

model becomes

yt+1 = yt + r − h2
t

2
+ htϵt+1. (87)

• The pair (yt, h
2
t ) completely describes the current state.

• The conditional mean and variance of yt+1 are clearly

E[ yt+1 | yt, h2
t ] = yt + r − h2

t

2
, (88)

Var[ yt+1 | yt, h2
t ] = h2

t . (89)
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GARCH Model: Inferences

• Suppose the parameters c, h0, β0, β1, and β2 are given.

• Then we can recover h1, h2, . . . , hn and ϵ1, ϵ2, . . . , ϵn

from the prices

S0, S1, . . . , Sn

under the GARCH model (85) on p. 771.

• This property is useful in statistical inferences.
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The Ritchken-Trevor (RT) Algorithma

• The GARCH model is a continuous-state model.

• To approximate it, we turn to trees with discrete states.

• Path dependence in GARCH makes the tree for asset

prices explode exponentially (why?).

• We need to mitigate this combinatorial explosion.

aRitchken and Trevor (1999).
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The Ritchken-Trevor Algorithm (continued)

• Partition a day into n periods.

• Three states follow each state (yt, h
2
t ) after a period.

• As the trinomial model combines, 2n+ 1 states at date

t+ 1 follow each state at date t (recall p. 601).

• These 2n+ 1 values must approximate the distribution

of (yt+1, h
2
t+1).

• So the conditional moments (88)–(89) at date t+ 1 on

p. 774 must be matched by the trinomial model to

guarantee convergence to the continuous-state model.
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The Ritchken-Trevor Algorithm (continued)

• It remains to pick the jump size and the three branching

probabilities.

• The role of σ in the Black-Scholes option pricing model

is played by ht in the GARCH model.

• As a jump size proportional to σ/
√
n is picked in the

BOPM, a comparable magnitude will be chosen here.

• Define γ ≡ h0, though other multiples of h0 are

possible, and

γn ≡ γ√
n
.

• The jump size will be some integer multiple η of γn.

• We call η the jump parameter (p. 779).
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(0, 0)
yt

(1, 1)

(1, 0)

(1,−1)

6
?
ηγn

-� 1 day

The seven values on the right approximate the distribution

of logarithmic price yt+1.
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The Ritchken-Trevor Algorithm (continued)

• The middle branch does not change the underlying

asset’s price.

• The probabilities for the up, middle, and down branches

are

pu =
h2
t

2η2γ2
+

r − (h2
t/2)

2ηγ
√
n

, (90)

pm = 1− h2
t

η2γ2
, (91)

pd =
h2
t

2η2γ2
− r − (h2

t/2)

2ηγ
√
n

. (92)
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The Ritchken-Trevor Algorithm (continued)

• It can be shown that:

– The trinomial model takes on 2n+ 1 values at date

t+ 1 for yt+1 .

– These values have a matching mean for yt+1 .

– These values have an asymptotically matching

variance for yt+1 .

• The central limit theorem guarantees the desired

convergence as n increases (if the probabilities are

valid).
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The Ritchken-Trevor Algorithm (continued)

• We can dispense with the intermediate nodes between

dates to create a (2n+ 1)-nomial tree (p. 783).

• The resulting model is multinomial with 2n+ 1

branches from any state (yt, h
2
t ).

• There are two reasons behind this manipulation.

– Interdate nodes are created merely to approximate

the continuous-state model after one day.

– Keeping the interdate nodes results in a tree that can

be n times larger.a

aContrast that with the case on p. 338.
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yt

6
?
ηγn

-� 1 day

This heptanomial tree is the outcome of the trinomial tree

on p. 779 after its intermediate nodes are removed.
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The Ritchken-Trevor Algorithm (continued)

• A node with logarithmic price yt + ℓηγn at date t+ 1

follows the current node at date t with price yt, where

−n ≤ ℓ ≤ n.

• To reach that price in n periods, the number of up

moves must exceed that of down moves by exactly ℓ.

• The probability that this happens is

P (ℓ) ≡
∑

ju,jm,jd

n!

ju! jm! jd!
pjuu pjmm pjdd ,

with ju, jm, jd ≥ 0, n = ju + jm + jd, and ℓ = ju − jd.
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The Ritchken-Trevor Algorithm (continued)

• A particularly simple way to calculate the P (ℓ)s starts

by noting that

(pux+ pm + pdx
−1)n =

n∑
ℓ=−n

P (ℓ)xℓ. (93)

– Convince yourself that this trick does the

“accounting” correctly.

• So we expand (pux+ pm + pdx
−1)n and retrieve the

probabilities by reading off the coefficients.

• It can be computed in O(n2) time.
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The Ritchken-Trevor Algorithm (continued)

• The updating rule (86) on p. 771 must be modified to

account for the adoption of the discrete-state model.

• The logarithmic price yt + ℓηγn at date t+ 1 following

state (yt, h
2
t ) at date t has a variance equal to

h2
t+1 = β0 + β1h

2
t + β2h

2
t (ϵ

′
t+1 − c)2, (94)

– Above,

ϵ′t+1 =
ℓηγn − (r − h2

t/2)

ht
, ℓ = 0,±1,±2, . . . ,±n,

is a discrete random variable with 2n+ 1 values.
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The Ritchken-Trevor Algorithm (continued)

• Different conditional variances h2
t may require different

η so that the probabilities calculated by Eqs. (90)–(92)

on p. 780 lie between 0 and 1.

• This implies varying jump sizes.

• The necessary requirement pm ≥ 0 implies η ≥ ht/γ.

• Hence we try

η = ⌈ht/γ ⌉, ⌈ht/γ ⌉+ 1, ⌈ht/γ ⌉+ 2, . . .

until valid probabilities are obtained or until their

nonexistence is confirmed.
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The Ritchken-Trevor Algorithm (continued)

• The sufficient and necessary condition for valid

probabilities to exist isa

| r − (h2
t/2) |

2ηγ
√
n

≤ h2
t

2η2γ2
≤ min

(
1− | r − (h2

t/2) |
2ηγ

√
n

,
1

2

)
.

• Obviously, the magnitude of η tends to grow with ht.

• The plot on p. 789 uses n = 1 to illustrate our points

for a 3-day model.

• For example, node (1, 1) of date 1 and node (2, 3) of

date 2 pick η = 2.

aLyuu and Wu (R90723065) (2003).

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 788



y0

(1, 1)

(2, 3)

(2, 0)

(2,−1)

6
?
γn = γ1

-� 3 days
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The Ritchken-Trevor Algorithm (continued)

• The topology of the tree is not a standard combining

multinomial tree.

• For example, a few nodes on p. 789 such as nodes (2, 0)

and (2,−1) have multiple jump sizes.

• The reason is the path dependence of the model.

– Two paths can reach node (2, 0) from the root node,

each with a different variance for the node.

– One of the variances results in η = 1, whereas the

other results in η = 2.
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The Ritchken-Trevor Algorithm (concluded)

• The number of possible values of h2
t at a node can be

exponential.

– Because each path brings with it a different variance

h2
t .

• To address this problem, we record only the maximum

and minimum h2
t at each node.a

• Therefore, each node on the tree contains only two

states (yt, h
2
max) and (yt, h

2
min).

• Each of (yt, h
2
max) and (yt, h

2
min) carries its own η and

set of 2n+ 1 branching probabilities.

aCakici and Topyan (2000). But see p. 825 for a potential problem.
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Negative Aspects of the Ritchken-Trevor Algorithma

• A small n may yield inaccurate option prices.

• But the tree will grow exponentially if n is large enough.

– Specifically, n > (1− β1)/β2 when r = c = 0.

• A large n has another serious problem: The tree cannot

grow beyond a certain date.

• Thus the choice of n may be quite limited in practice.

• The RT algorithm can be modified to be free of

shortened maturity and exponential complexity.b

aLyuu and Wu (R90723065) (2003, 2005).
bIt is only O(n2) if n ≤ (

√
(1− β1)/β2 − c)2!
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Numerical Examples

• Assume S0 = 100, y0 = lnS0 = 4.60517, r = 0,

h2
0 = 0.0001096, γ = h0 = 0.010469, n = 1,

γn = γ/
√
n = 0.010469, β0 = 0.000006575, β1 = 0.9,

β2 = 0.04, and c = 0.

• A daily variance of 0.0001096 corresponds to an annual

volatility of
√
365× 0.0001096 ≈ 20%.

• Let h2(i, j) denote the variance at node (i, j).

• Initially, h2(0, 0) = h2
0 = 0.0001096.
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Numerical Examples (continued)

• Let h2
max(i, j) denote the maximum variance at node

(i, j).

• Let h2
min(i, j) denote the minimum variance at node

(i, j).

• Initially, h2
max(0, 0) = h2

min(0, 0) = h2
0.

• The resulting three-day tree is depicted on p. 795.
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• A top (bottom) number inside a gray box refers to the

minimum (maximum, resp.) variance h2
min (h2

max, resp.)

for the node.

• Variances are multiplied by 100,000 for readability.

• A top (bottom) number inside a white box refers to η

corresponding to h2
min (h2

max, resp.).
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Numerical Examples (continued)

• Let us see how the numbers are calculated.

• Start with the root node, node (0, 0).

• Try η = 1 in Eqs. (90)–(92) on p. 780 first to obtain

pu = 0.4974,

pm = 0,

pd = 0.5026.

• As they are valid probabilities, the three branches from

the root node use single jumps.
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Numerical Examples (continued)

• Move on to node (1, 1).

• It has one predecessor node—node (0, 0)—and it takes

an up move to reach the current node.

• So apply updating rule (94) on p. 786 with ℓ = 1 and

h2
t = h2(0, 0).

• The result is h2(1, 1) = 0.000109645.
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Numerical Examples (continued)

• Because ⌈h(1, 1)/γ ⌉ = 2, we try η = 2 in

Eqs. (90)–(92) on p. 780 first to obtain

pu = 0.1237,

pm = 0.7499,

pd = 0.1264.

• As they are valid probabilities, the three branches from

node (1, 1) use double jumps.
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Numerical Examples (continued)

• Carry out similar calculations for node (1, 0) with

ℓ = 0 in updating rule (94) on p. 786.

• Carry out similar calculations for node (1,−1) with

ℓ = −1 in updating rule (94).

• Single jump η = 1 works for both nodes.

• The resulting variances are

h2(1, 0) = 0.000105215,

h2(1,−1) = 0.000109553.
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Numerical Examples (continued)

• Node (2, 0) has 2 predecessor nodes, (1, 0) and (1,−1).

• Both have to be considered in deriving the variances.

• Let us start with node (1, 0).

• Because it takes a middle move to reach the current

node, we apply updating rule (94) on p. 786 with ℓ = 0

and h2
t = h2(1, 0).

• The result is h2
t+1 = 0.000101269.
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Numerical Examples (continued)

• Now move on to the other predecessor node (1,−1).

• Because it takes an up move to reach the current node,

apply updating rule (94) on p. 786 with ℓ = 1 and

h2
t = h2(1,−1).

• The result is h2
t+1 = 0.000109603.

• We hence record

h2
min(2, 0) = 0.000101269,

h2
max(2, 0) = 0.000109603.

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 802



Numerical Examples (continued)

• Consider state h2
max(2, 0) first.

• Because ⌈hmax(2, 0)/γ ⌉ = 2, we first try η = 2 in

Eqs. (90)–(92) on p. 780 to obtain

pu = 0.1237,

pm = 0.7500,

pd = 0.1263.

• As they are valid probabilities, the three branches from

node (2, 0) with the maximum variance use double

jumps.
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Numerical Examples (continued)

• Now consider state h2
min(2, 0).

• Because ⌈hmin(2, 0)/γ ⌉ = 1, we first try η = 1 in

Eqs. (90)–(92) on p. 780 to obtain

pu = 0.4596,

pm = 0.0760,

pd = 0.4644.

• As they are valid probabilities, the three branches from

node (2, 0) with the minimum variance use single jumps.
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Numerical Examples (continued)

• Node (2,−1) has 3 predecessor nodes.

• Start with node (1, 1).

• Because it takes a down move to reach the current node,

we apply updating rule (94) on p. 786 with ℓ = −1 and

h2
t = h2(1, 1).a

• The result is h2
t+1 = 0.0001227.

aNote that it is not ℓ = −2 and −n ≤ ℓ ≤ n.
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Numerical Examples (continued)

• Now move on to predecessor node (1, 0).

• Because it also takes a down move to reach the current

node, we apply updating rule (94) on p. 786 with

ℓ = −1 and h2
t = h2(1, 0).

• The result is h2
t+1 = 0.000105609.
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Numerical Examples (continued)

• Finally, consider predecessor node (1,−1).

• Because it takes a middle move to reach the current

node, we apply updating rule (94) on p. 786 with ℓ = 0

and h2
t = h2(1,−1).

• The result is h2
t+1 = 0.000105173.

• We hence record

h2
min(2,−1) = 0.000105173,

h2
max(2,−1) = 0.0001227.
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Numerical Examples (continued)

• Consider state h2
max(2,−1).

• Because ⌈hmax(2,−1)/γ ⌉ = 2, we first try η = 2 in

Eqs. (90)–(92) on p. 780 to obtain

pu = 0.1385,

pm = 0.7201,

pd = 0.1414.

• As they are valid probabilities, the three branches from

node (2,−1) with the maximum variance use double

jumps.
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Numerical Examples (continued)

• Next, consider state h2
min(2,−1).

• Because ⌈hmin(2,−1)/γ ⌉ = 1, we first try η = 1 in

Eqs. (90)–(92) on p. 780 to obtain

pu = 0.4773,

pm = 0.0404,

pd = 0.4823.

• As they are valid probabilities, the three branches from

node (2,−1) with the minimum variance use single

jumps.
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Numerical Examples (concluded)

• Other nodes at dates 2 and 3 can be handled similarly.

• In general, if a node has k predecessor nodes, then up to

2k variances will be calculated using the updating rule.

– This is because each predecessor node keeps two

variance numbers.

• But only the maximum and minimum variances will be

kept.
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Negative Aspects of the RT Algorithm Revisiteda

• Recall the problems mentioned on p. 792.

• In our case, combinatorial explosion occurs when

n >
1− β1

β2
=

1− 0.9

0.04
= 2.5.

• Suppose we are willing to accept the exponential

running time and pick n = 100 to seek accuracy.

• But the problem of shortened maturity forces the tree to

stop at date 9!

aLyuu and Wu (R90723065) (2003).
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Dotted line: n = 3; dashed line: n = 4; solid line: n = 5.
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Backward Induction on the RT Tree

• After the RT tree is constructed, it can be used to price

options by backward induction.

• Recall that each node keeps two variances h2
max and

h2
min.

• We now increase that number to K equally spaced

variances between h2
max and h2

min at each node.

• Besides the minimum and maximum variances, the other

K − 2 variances in between are linearly interpolated.a

aIn practice, log-linear interpolation works better (Lyuu and Wu

(R90723065) (2005)). Log-cubic interpolation works even better (Liu

(R92922123) (2005)).
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Backward Induction on the RT Tree (continued)

• For example, if K = 3, then a variance of

10.5436× 10−6 will be added between the maximum

and minimum variances at node (2, 0) on p. 795.a

• In general, the kth variance at node (i, j) is

h2
min(i, j) + k

h2
max(i, j)− h2

min(i, j)

K − 1
,

k = 0, 1, . . . ,K − 1.

• Each interpolated variance’s jump parameter and

branching probabilities can be computed as before.

aRepeated on p. 815.
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Backward Induction on the RT Tree (concluded)

• Suppose a variance falls between two of the K variances

during backward induction.

• Linear interpolation of the option prices corresponding

to the two bracketing variances will be used as the

approximate option price.

• The above ideas are reminiscent of the ones on p. 360,

where we dealt with arithmetic average-rate options.

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 816



Numerical Examples

• We next use the numerical example on p. 815 to price a

European call option with a strike price of 100 and

expiring at date 3.

• Recall that the riskless interest rate is zero.

• Assume K = 2; hence there are no interpolated

variances.

• The pricing tree is shown on p. 818 with a call price of

0.66346.

– The branching probabilities needed in backward

induction can be found on p. 819.
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Numerical Examples (continued)

• Let us derive some of the numbers on p. 818.

• A gray line means the updated variance falls strictly

between h2
max and h2

min.

• The option price for a terminal node at date 3 equals

max(S3 − 100, 0), independent of the variance level.

• Now move on to nodes at date 2.

• The option price at node (2, 3) depends on those at

nodes (3, 5), (3, 3), and (3, 1).

• It therefore equals

0.1387 × 5.37392 + 0.7197 × 3.19054 + 0.1416 × 1.05240 = 3.19054.
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Numerical Examples (continued)

• Option prices for other nodes at date 2 can be computed

similarly.

• For node (1, 1), the option price for both variances is

0.1237 × 3.19054 + 0.7499 × 1.05240 + 0.1264 × 0.14573 = 1.20241.

• Node (1, 0) is most interesting.

• We knew that a down move from it gives a variance of

0.000105609.

• This number falls between the minimum variance

0.000105173 and the maximum variance 0.0001227 at

node (2,−1) on p. 815.
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Numerical Examples (continued)

• The option price corresponding to the minimum

variance is 0.

• The option price corresponding to the maximum

variance is 0.14573.

• The equation

x× 0.000105173 + (1− x)× 0.0001227 = 0.000105609

is satisfied by x = 0.9751.

• So the option for the down state is approximated by

x× 0 + (1− x)× 0.14573 = 0.00362.
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Numerical Examples (continued)

• The up move leads to the state with option price

1.05240.

• The middle move leads to the state with option price

0.48366.

• The option price at node (1, 0) is finally calculated as

0.4775 × 1.05240 + 0.0400 × 0.48366 + 0.4825 × 0.00362 = 0.52360.
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Numerical Examples (continued)

• A variance following an interpolated variance may

exceed the maximum variance or be exceeded by the

minimum variance.

• When this happens, the option price corresponding to

the maximum or minimum variance will be used during

backward induction.a

aCakici and Topyan (2000).
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Numerical Examples (concluded)

• But an interpolated variance may choose a branch that

goes into a node that is not reached in forward

induction.a

• In this case, the algorithm fails.

• The Ritchken-Trevor algorithm does not have this

problem as all interpolated variances are involved in the

forward-induction phase.

• It may be hard to calculate the implied β1 and β2 from

option prices.b

aLyuu and Wu (R90723065) (2005).
bChang (R93922034) (2006).
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Complexities of GARCH Modelsa

• The Ritchken-Trevor algorithm explodes exponentially if

n is big enough (p. 792).

• The mean-tracking algorithm of Lyuu and Wu (2005)

will make sure explosion does not happen if n is not too

large.b

• The next page summarizes the situations for many

GARCH option pricing models.

– Our earlier treatment is for NGARCH only.

aLyuu and Wu (R90723065) (2003, 2005).
bSimilar to, but earlier than, the idea behind the binomial-trinomial

tree on pp. 619ff.
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Complexities of GARCH Models (concluded)a

Model Explosion Non-explosion

NGARCH β1 + β2n > 1 β1 + β2(
√
n+ λ+ c)2 ≤ 1

LGARCH β1 + β2n > 1 β1 + β2(
√
n+ λ)2 ≤ 1

AGARCH β1 + β2n > 1 β1 + β2(
√
n+ λ)2 ≤ 1

GJR-GARCH β1 + β2n > 1 β1 + (β2 + β3)(
√
n+ λ)2 ≤ 1

TS-GARCH β1 + β2
√
n > 1 β1 + β2(λ+

√
n) ≤ 1

TGARCH β1 + β2
√
n > 1 β1 + (β2 + β3)(λ+

√
n) ≤ 1

Heston-Nandi β1 + β2(c− 1
2
)2 > 1 β1 + β2c2 ≤ 1

& c ≤ 1
2

VGARCH β1 + (β2/4) > 1 β1 ≤ 1

aChen (R95723051) (2008); Chen (R95723051), Lyuu, and Wen

(D94922003) (2011).
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