
Numerical Methods
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All science is dominated

by the idea of approximation.

— Bertrand Russell
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Finite-Difference Methods

• Place a grid of points on the space over which the

desired function takes value.

• Then approximate the function value at each of these

points (p. 667).

• Solve the equation numerically by introducing difference

equations in place of derivatives.
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Example: Poisson’s Equation

• It is ∂2θ/∂x2 + ∂2θ/∂y2 = −ρ(x, y).

• Replace second derivatives with finite differences

through central difference.

• Introduce evenly spaced grid points with distance of ∆x

along the x axis and ∆y along the y axis.

• The finite difference form is

−ρ(xi, yj) =
θ(xi+1, yj)− 2θ(xi, yj) + θ(xi−1, yj)

(∆x)2

+
θ(xi, yj+1)− 2θ(xi, yj) + θ(xi, yj−1)

(∆y)2
.
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Example: Poisson’s Equation (concluded)

• In the above, ∆x ≡ xi − xi−1 and ∆y ≡ yj − yj−1 for

i, j = 1, 2, . . . .

• When the grid points are evenly spaced in both axes so

that ∆x = ∆y = h, the difference equation becomes

−h2ρ(xi, yj) = θ(xi+1, yj) + θ(xi−1, yj)

+θ(xi, yj+1) + θ(xi, yj−1)− 4θ(xi, yj).

• Given boundary values, we can solve for the xis and the

yjs within the square [±L,±L ].

• From now on, θi,j will denote the finite-difference

approximation to the exact θ(xi, yj).
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Explicit Methods

• Consider the diffusion equation

D(∂2θ/∂x2)− (∂θ/∂t) = 0.

• Use evenly spaced grid points (xi, tj) with distances

∆x and ∆t, where ∆x ≡ xi+1 − xi and ∆t ≡ tj+1 − tj .

• Employ central difference for the second derivative and

forward difference for the time derivative to obtain

∂θ(x, t)

∂t

∣∣∣∣
t=tj

=
θ(x, tj+1)− θ(x, tj)

∆t
+ · · · , (78)

∂2θ(x, t)

∂x2

∣∣∣∣
x=xi

=
θ(xi+1, t)− 2θ(xi, t) + θ(xi−1, t)

(∆x)2
+ · · · . (79)
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Explicit Methods (continued)

• Next, assemble Eqs. (78) and (79) into a single equation

at (xi, tj).

• But we need to decide how to evaluate x in the first

equation and t in the second.

• Since central difference around xi is used in Eq. (79),

we might as well use xi for x in Eq. (78).

• Two choices are possible for t in Eq. (79).

• The first choice uses t = tj to yield the following

finite-difference equation,

θi,j+1 − θi,j
∆t

= D
θi+1,j − 2θi,j + θi−1,j

(∆x)2
. (80)
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Explicit Methods (continued)

• The stencil of grid points involves four values, θi,j+1,

θi,j , θi+1,j , and θi−1,j .

• Rearrange Eq. (80) on p. 671 as

θi,j+1 =
D∆t

(∆x)2
θi+1,j +

(
1− 2D∆t

(∆x)2

)
θi,j +

D∆t

(∆x)2
θi−1,j .

• We can calculate θi,j+1 from θi,j , θi+1,j , θi−1,j , at the

previous time tj (see exhibit (a) on next page).
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Explicit Methods (concluded)

• Starting from the initial conditions at t0, that is,

θi,0 = θ(xi, t0), i = 1, 2, . . . , we calculate

θi,1, i = 1, 2, . . . .

• And then

θi,2, i = 1, 2, . . . .

• And so on.
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Stability

• The explicit method is numerically unstable unless

∆t ≤ (∆x)2/(2D).

– A numerical method is unstable if the solution is

highly sensitive to changes in initial conditions.

• The stability condition may lead to high running times

and memory requirements.

• For instance, halving ∆x would imply quadrupling

(∆t)−1, resulting in a running time 8 times as much.
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Explicit Method and Trinomial Tree

• Recall that

θi,j+1 =
D∆t

(∆x)2
θi+1,j +

(
1− 2D∆t

(∆x)2

)
θi,j +

D∆t

(∆x)2
θi−1,j .

• When the stability condition is satisfied, the three

coefficients for θi+1,j , θi,j , and θi−1,j all lie between

zero and one and sum to one.

• They can be interpreted as probabilities.

• So the finite-difference equation becomes identical to

backward induction on trinomial trees!

• The freedom in choosing ∆x corresponds to similar

freedom in the construction of trinomial trees.
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Implicit Methods

• Suppose we use t = tj+1 in Eq. (79) on p. 670 instead.

• The finite-difference equation becomes

θi,j+1 − θi,j
∆t

= D
θi+1,j+1 − 2θi,j+1 + θi−1,j+1

(∆x)2
.

(81)

• The stencil involves θi,j , θi,j+1, θi+1,j+1, and θi−1,j+1.

• This method is implicit:

– The value of any one of the three quantities at tj+1

cannot be calculated unless the other two are known.

– See exhibit (b) on p. 673.
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Implicit Methods (continued)

• Equation (81) can be rearranged as

θi−1,j+1 − (2 + γ) θi,j+1 + θi+1,j+1 = −γθi,j ,

where γ ≡ (∆x)2/(D∆t).

• This equation is unconditionally stable.

• Suppose the boundary conditions are given at x = x0

and x = xN+1.

• After θi,j has been calculated for i = 1, 2, . . . , N , the

values of θi,j+1 at time tj+1 can be computed as the

solution to the following tridiagonal linear system,
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Implicit Methods (continued)
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,

where a ≡ −2− γ.
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Implicit Methods (concluded)

• Tridiagonal systems can be solved in O(N) time and

O(N) space.

– Never invert a matrix to solve a tridiagonal system.

• The matrix above is nonsingular when γ ≥ 0.

– A square matrix is nonsingular if its inverse exists.
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Crank-Nicolson Method
• Take the average of explicit method (80) on p. 671 and

implicit method (81) on p. 677:

θi,j+1 − θi,j

∆t

=
1

2

(
D

θi+1,j − 2θi,j + θi−1,j

(∆x)2
+ D

θi+1,j+1 − 2θi,j+1 + θi−1,j+1

(∆x)2

)
.

• After rearrangement,

γθi,j+1 −
θi+1,j+1 − 2θi,j+1 + θi−1,j+1

2
= γθi,j +

θi+1,j − 2θi,j + θi−1,j

2
.

• This is an unconditionally stable implicit method with

excellent rates of convergence.

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 681



Stencil

tj tj+1

xi

xi+1

xi+1
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Numerically Solving the Black-Scholes PDE

• See text.

• Brennan and Schwartz (1978) analyze the stability of

the implicit method.
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Monte Carlo Simulationa

• Monte Carlo simulation is a sampling scheme.

• In many important applications within finance and

without, Monte Carlo is one of the few feasible tools.

• When the time evolution of a stochastic process is not

easy to describe analytically, Monte Carlo may very well

be the only strategy that succeeds consistently.

aA top 10 algorithm according to Dongarra and Sullivan (2000).
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The Big Idea

• Assume X1, X2, . . . , Xn have a joint distribution.

• θ ≡ E[ g(X1, X2, . . . , Xn) ] for some function g is

desired.

• We generate(
x
(i)
1 , x

(i)
2 , . . . , x(i)

n

)
, 1 ≤ i ≤ N

independently with the same joint distribution as

(X1, X2, . . . , Xn).

• Set

Yi ≡ g
(
x
(i)
1 , x

(i)
2 , . . . , x(i)

n

)
.
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The Big Idea (concluded)

• Y1, Y2, . . . , YN are independent and identically

distributed random variables.

• Each Yi has the same distribution as

Y ≡ g(X1, X2, . . . , Xn).

• Since the average of these N random variables, Y ,

satisfies E[Y ] = θ, it can be used to estimate θ.

• The strong law of large numbers says that this

procedure converges almost surely.

• The number of replications (or independent trials), N , is

called the sample size.
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Accuracy

• The Monte Carlo estimate and true value may differ

owing to two reasons:

1. Sampling variation.

2. The discreteness of the sample paths.a

• The first can be controlled by the number of replications.

• The second can be controlled by the number of

observations along the sample path.

aThis may not be an issue if the financial derivative only requires

discrete sampling along the time dimension, such as the discrete barrier

option.
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Accuracy and Number of Replications

• The statistical error of the sample mean Y of the

random variable Y grows as 1/
√
N .

– Because Var[Y ] = Var[Y ]/N .

• In fact, this convergence rate is asymptotically optimal.a

• So the variance of the estimator Y can be reduced by a

factor of 1/N by doing N times as much work.

• This is amazing because the same order of convergence

holds independently of the dimension n.

aThe Berry-Esseen theorem.
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Accuracy and Number of Replications (concluded)

• In contrast, classic numerical integration schemes have

an error bound of O(N−c/n) for some constant c > 0.

– n is the dimension.

• The required number of evaluations thus grows

exponentially in n to achieve a given level of accuracy.

– The curse of dimensionality.

• The Monte Carlo method, for example, is more efficient

than alternative procedures for multivariate derivatives.
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Monte Carlo Option Pricing

• For the pricing of European options on a

dividend-paying stock, we may proceed as follows.

• Assume dS/S = µdt+ σ dW .

• Stock prices S1, S2, S3, . . . at times ∆t, 2∆t, 3∆t, . . .

can be generated via

Si+1 = Sie
(µ−σ2/2)∆t+σ

√
∆t ξ, ξ ∼ N(0, 1). (82)
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Monte Carlo Option Pricing (continued)

• If we discretize dS/S = µdt+ σ dW directly, we will

obtain

Si+1 = Si + Siµ∆t+ Siσ
√
∆t ξ.

• But this is locally normally distributed, not lognormally,

hence biased.a

• In practice, this is not expected to be a major problem

as long as ∆t is sufficiently small.

aContributed by Mr. Tai, Hui-Chin (R97723028) on April 22, 2009.
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Monte Carlo Option Pricing (continued)

• Non-dividend-paying stock prices in a risk-neutral

economy can be generated by setting µ = r and ∆t = T .

1: C := 0; {Accumulated terminal option value.}
2: for i = 1, 2, 3, . . . ,m do

3: P := S × e(r−σ2/2)T+σ
√
T ξ, ξ ∼ N(0, 1);

4: C := C +max(P −X, 0);

5: end for

6: return Ce−rT /m;
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Monte Carlo Option Pricing (concluded)

• Pricing Asian options is also easy.

1: C := 0;

2: for i = 1, 2, 3, . . . ,m do

3: P := S; M := S;

4: for j = 1, 2, 3, . . . , n do

5: P := P × e(r−σ2/2)(T/n)+σ
√

T/n ξ;

6: M := M + P ;

7: end for

8: C := C +max(M/(n+ 1)−X, 0);

9: end for

10: return Ce−rT /m;
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How about American Options?

• Standard Monte Carlo simulation is inappropriate for

American options because of early exercise (why?).

• It is difficult to determine the early-exercise point based

on one single path.

• But Monte Carlo simulation can be modified to price

American options with small biases (pp. 743ff).a

aLongstaff and Schwartz (2001).
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Delta and Common Random Numbers

• In estimating delta, it is natural to start with the

finite-difference estimate

e−rτ E[P (S + ϵ) ]− E[P (S − ϵ) ]

2ϵ
.

– P (x) is the terminal payoff of the derivative security

when the underlying asset’s initial price equals x.

• Use simulation to estimate E[P (S + ϵ) ] first.

• Use another simulation to estimate E[P (S − ϵ) ].

• Finally, apply the formula to approximate the delta.

• This is also called the bump-and-revalue method.
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Delta and Common Random Numbers (concluded)

• This method is not recommended because of its high

variance.

• A much better approach is to use common random

numbers to lower the variance:

e−rτ E

[
P (S + ϵ)− P (S − ϵ)

2ϵ

]
.

• Here, the same random numbers are used for P (S + ϵ)

and P (S − ϵ).

• This holds for gamma and cross gammas (for

multivariate derivatives).
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Problems with the Bump-and-Revalue Method

• Consider the binary option with payoff 1, if S(T ) > X,

0, otherwise.

• Then

P (S + ϵ)− P (S − ϵ) =


1, if P (S + ϵ) > X and

P (S − ϵ) ] < X ,

0, otherwise.

• So the finite-difference estimate per run for the

(undicsounted) delta is 0 or O(1/ϵ).

• This means high variance.
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Gamma

• The finite-difference formula for gamma is

e−rτ E

[
P (S + ϵ)− 2× P (S) + P (S − ϵ)

ϵ2

]
.

• For a correlation option with multiple underlying assets,

the finite-difference formula for the cross gamma

∂2P (S1, S2, . . . )/(∂S1∂S2) is:

e−rτ E

[
P (S1 + ϵ1, S2 + ϵ2)− P (S1 − ϵ1, S2 + ϵ2)

4ϵ1ϵ2

−P (S1 + ϵ1, S2 − ϵ2) + P (S1 − ϵ1, S2 − ϵ2)
]
.
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Gamma (continued)

• Choosing an ϵ of the right magnitude can be

challenging.

– If ϵ is too large, inaccurate Greeks result.

– If ϵ is too small, unstable Greeks result.

• This phenomenon is sometimes called the curse of

differentiation.
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Gamma (continued)

• In general, suppose

∂i

∂θi
e−rτE[P (S) ] = e−rτE

[
∂iP (S)

∂θi

]
holds for all i > 0, where θ is a parameter of interest.

• Then formulas for the Greeks become integrals.

• As a result, we avoid ϵ, finite differences, and

resimulation.
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Gamma (concluded)

• This is indeed possible for a broad class of payoff

functions.a

– Roughly speaking, any payoff function that is equal

to a sum of products of differentiable functions and

indicator functions with the right kind of support.

– For example, the payoff of a call is

max(S(T )−X, 0) = (S(T )−X)I{S(T )−X≥0 }.

– The results are too technical to cover here.

aTeng (R91723054) (2004) and Lyuu and Teng (R91723054) (2011).
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Biases in Pricing Continuously Monitored Options
with Monte Carlo

• We are asked to price a continuously monitored

up-and-out call with barrier H.

• The Monte Carlo method samples the stock price at n

discrete time points t1, t2, . . . , tn.

• A sample pathS(t0), S(t1), . . . , S(tn) is produced.

– Here, t0 = 0 is the current time, and tn = T is the

expiration time of the option.
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Biases in Pricing Continuously Monitored Options
with Monte Carlo (continued)

• If all of the sampled prices are below the barrier, this

sample path pays max(S(tn)−X, 0).

• Repeating these steps and averaging the payoffs yield a

Monte Carlo estimate.
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1: C := 0;

2: for i = 1, 2, 3, . . . ,m do

3: P := S; hit := 0;

4: for j = 1, 2, 3, . . . , n do

5: P := P × e(r−σ2/2) (T/n)+σ
√

(T/n) ξ;

6: if P ≥ H then

7: hit := 1;

8: break;

9: end if

10: end for

11: if hit = 0 then

12: C := C +max(P −X, 0);

13: end if

14: end for

15: return Ce−rT /m;
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Biases in Pricing Continuously Monitored Options
with Monte Carlo (continued)

• This estimate is biased.a

– Suppose none of the sampled prices on a sample path

equals or exceeds the barrier H.

– It remains possible for the continuous sample path

that passes through them to hit the barrier between

sampled time points (see plot on next page).

aShevchenko (2003).
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H
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Biases in Pricing Continuously Monitored Options
with Monte Carlo (concluded)

• The bias can certainly be lowered by increasing the

number of observations along the sample path.

• However, even daily sampling may not suffice.

• The computational cost also rises as a result.
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Brownian Bridge Approach to Pricing Barrier Options

• We desire an unbiased estimate which can be calculated

efficiently.

• The above-mentioned payoff should be multiplied by the

probability p that a continuous sample path does not

hit the barrier conditional on the sampled prices.

• This methodology is called the Brownian bridge

approach.

• Formally, we have

p ≡ Prob[S(t) < H, 0 ≤ t ≤ T |S(t0), S(t1), . . . , S(tn) ].
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Brownian Bridge Approach to Pricing Barrier Options
(continued)

• As a barrier is hit over a time interval if and only if the

maximum stock price over that period is at least H,

p = Prob

[
max
0≤t≤T

S(t) < H |S(t0), S(t1), . . . , S(tn)
]
.

• Luckily, the conditional distribution of the maximum

over a time interval given the beginning and ending

stock prices is known.
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Brownian Bridge Approach to Pricing Barrier Options
(continued)

Lemma 21 Assume S follows dS/S = µdt+ σ dW and define

ζ(x) ≡ exp

[
−2 ln(x/S(t)) ln(x/S(t+∆t))

σ2∆t

]
.

(1) If H > max(S(t), S(t+∆t)), then

Prob

[
max

t≤u≤t+∆t
S(u) < H

∣∣∣∣ S(t), S(t+∆t)

]
= 1− ζ(H).

(2) If h < min(S(t), S(t+∆t)), then

Prob

[
min

t≤u≤t+∆t
S(u) > h

∣∣∣∣ S(t), S(t+∆t)

]
= 1− ζ(h).
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Brownian Bridge Approach to Pricing Barrier Options
(continued)

• Lemma 21 gives the probability that the barrier is not

hit in a time interval, given the starting and ending

stock prices.

• For our up-and-out call, choose n = 1.

• As a result,

p =

 1− exp
[
− 2 ln(H/S(0)) ln(H/S(T ))

σ2T

]
, if H > max(S(0), S(T )),

0, otherwise.
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Brownian Bridge Approach to Pricing Barrier Options
(continued)

1: C := 0;

2: for i = 1, 2, 3, . . . ,m do

3: P := S × e(r−q−σ2/2)T+σ
√

T ξ( );

4: if (S < H and P < H) or (S > H and P > H) then

5: C := C+max(P−X, 0)×
{
1− exp

[
− 2 ln(H/S)×ln(H/P )

σ2T

]}
;

6: end if

7: end for

8: return Ce−rT /m;
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Brownian Bridge Approach to Pricing Barrier Options
(concluded)

• The idea can be generalized.

• For example, we can handle more complex barrier

options.

• Consider an up-and-out call with barrier Hi for the

time interval (ti, ti+1 ], 0 ≤ i < n.

• This option thus contains n barriers.

• Multiply the probabilities for the n time intervals to

obtain the desired probability adjustment term.
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Variance Reduction

• The statistical efficiency of Monte Carlo simulation can

be measured by the variance of its output.

• If this variance can be lowered without changing the

expected value, fewer replications are needed.

• Methods that improve efficiency in this manner are

called variance-reduction techniques.

• Such techniques become practical when the added costs

are outweighed by the reduction in sampling.
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Variance Reduction: Antithetic Variates

• We are interested in estimating E[ g(X1, X2, . . . , Xn) ],

where X1, X2, . . . , Xn are independent.

• Let Y1 and Y2 be random variables with the same

distribution as g(X1, X2, . . . , Xn).

• Then

Var

[
Y1 + Y2

2

]
=

Var[Y1 ]

2
+

Cov[Y1, Y2 ]

2
.

– Var[Y1 ]/2 is the variance of the Monte Carlo

method with two independent replications.

• The variance Var[ (Y1 + Y2)/2 ] is smaller than

Var[Y1 ]/2 when Y1 and Y2 are negatively correlated.
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Variance Reduction: Antithetic Variates (continued)

• For each simulated sample path X, a second one is

obtained by reusing the random numbers on which the

first path is based.

• This yields a second sample path Y .

• Two estimates are then obtained: One based on X and

the other on Y .

• If N independent sample paths are generated, the

antithetic-variates estimator averages over 2N

estimates.
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Variance Reduction: Antithetic Variates (continued)

• Consider process dX = at dt+ bt
√
dt ξ.

• Let g be a function of n samples X1, X2, . . . , Xn on

the sample path.

• We are interested in E[ g(X1, X2, . . . , Xn) ].

• Suppose one simulation run has realizations

ξ1, ξ2, . . . , ξn for the normally distributed fluctuation

term ξ.

• This generates samples x1, x2, . . . , xn.

• The estimate is then g(x), where x ≡ (x1, x2 . . . , xn).
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Variance Reduction: Antithetic Variates (concluded)

• The antithetic-variates method does not sample n more

numbers from ξ for the second estimate g(x′).

• Instead, generate the sample path x′ ≡ (x′
1, x

′
2 . . . , x

′
n)

from −ξ1,−ξ2, . . . ,−ξn.

• Compute g(x′).

• Output (g(x) + g(x′))/2.

• Repeat the above steps for as many times as required by

accuracy.
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Variance Reduction: Conditioning

• We are interested in estimating E[X ].

• Suppose here is a random variable Z such that

E[X |Z = z ] can be efficiently and precisely computed.

• E[X ] = E[E[X |Z ] ] by the law of iterated conditional

expectations.

• Hence the random variable E[X |Z ] is also an unbiased

estimator of E[X ].
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Variance Reduction: Conditioning (concluded)

• As

Var[E[X |Z ] ] ≤ Var[X ],

E[X |Z ] has a smaller variance than observing X

directly.

• First obtain a random observation z on Z.

• Then calculate E[X |Z = z ] as our estimate.

– There is no need to resort to simulation in computing

E[X |Z = z ].

• The procedure can be repeated a few times to reduce

the variance.
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Control Variates

• Use the analytic solution of a similar yet simpler

problem to improve the solution.

• Suppose we want to estimate E[X ] and there exists a

random variable Y with a known mean µ ≡ E[Y ].

• Then W ≡ X + β(Y − µ) can serve as a “controlled”

estimator of E[X ] for any constant β.

– However β is chosen, W remains an unbiased

estimator of E[X ] as

E[W ] = E[X ] + βE[Y − µ ] = E[X ].
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Control Variates (continued)

• Note that

Var[W ] = Var[X ] + β2 Var[Y ] + 2β Cov[X,Y ],

(83)

• Hence W is less variable than X if and only if

β2 Var[Y ] + 2β Cov[X,Y ] < 0. (84)
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Control Variates (concluded)

• The success of the scheme clearly depends on both β

and the choice of Y .

– For example, arithmetic average-rate options can be

priced by choosing Y to be the otherwise identical

geometric average-rate option’s price and β = −1.

• This approach is much more effective than the

antithetic-variates method.

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 723



Choice of Y

• In general, the choice of Y is ad hoc, and experiments

must be performed to confirm the wisdom of the choice.

• Try to match calls with calls and puts with puts.a

• On many occasions, Y is a discretized version of the

derivative that gives µ.

– Discretely monitored geometric average-rate option

vs. the continuously monitored geometric

average-rate option given by formulas (32) on p. 355.

• For some choices, the discrepancy can be significant,

such as the lookback option.b

aContributed by Ms. Teng, Huei-Wen (R91723054) on May 25, 2004.
bContributed by Mr. Tsai, Hwai (R92723049) on May 12, 2004.
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Optimal Choice of β

• Equation (83) on p. 722 is minimized when

β = −Cov[X,Y ]/Var[Y ].

– It is called beta in the book.

• For this specific β,

Var[W ] = Var[X ]− Cov[X,Y ]2

Var[Y ]
=

(
1− ρ2X,Y

)
Var[X ],

where ρX,Y is the correlation between X and Y .

• Note that the variance can never be increased with the

optimal choice.

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 725



Optimal Choice of β (continued)

• Furthermore, the stronger X and Y are correlated, the

greater the reduction in variance.

• For example, if this correlation is nearly perfect (±1),

we could control X almost exactly.

• Typically, neither Var[Y ] nor Cov[X,Y ] is known.

• Therefore, we cannot obtain the maximum reduction in

variance.

• We can guess these values and hope that the resulting

W does indeed have a smaller variance than X.
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Optimal Choice of β (continued)

• A second possibility is to use the simulated data to

estimate these quantities.

– How to do it efficiently in terms of time and space?

• Observe that −β has the same sign as the correlation

between X and Y .

• Hence, if X and Y are positively correlated, β < 0,

then X is adjusted downward whenever Y > µ and

upward otherwise.

• The opposite is true when X and Y are negatively

correlated, in which case β > 0.
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Optimal Choice of β (concluded)

• Suppose a suboptimal β + ϵ is used instead.

• The variance increases by only ϵ2Var[Y ].a

aHan and Lai (2010).
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A Pitfall

• A potential pitfall is to sample X and Y independently.

• In this case, Cov[X,Y ] = 0.

• Equation (83) on p. 722 becomes

Var[W ] = Var[X ] + β2 Var[Y ].

• So whatever Y is, the variance is increased!

• Lesson: X and Y must be correlated.
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Problems with the Monte Carlo Method

• The error bound is only probabilistic.

• The probabilistic error bound of
√
N does not benefit

from regularity of the integrand function.

• The requirement that the points be independent random

samples are wasteful because of clustering.

• In reality, pseudorandom numbers generated by

completely deterministic means are used.

• Monte Carlo simulation exhibits a great sensitivity on

the seed of the pseudorandom-number generator.
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Matrix Computation
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To set up a philosophy against physics is rash;

philosophers who have done so

have always ended in disaster.

— Bertrand Russell
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Definitions and Basic Results

• Let A ≡ [ aij ]1≤i≤m,1≤j≤n, or simply A ∈ Rm×n,

denote an m× n matrix.

• It can also be represented as [ a1, a2, . . . , an ] where

ai ∈ Rm are vectors.

– Vectors are column vectors unless stated otherwise.

• A is a square matrix when m = n.

• The rank of a matrix is the largest number of linearly

independent columns.
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Definitions and Basic Results (continued)

• A square matrix A is said to be symmetric if AT = A.

• A real n× n matrix

A ≡ [ aij ]i,j

is diagonally dominant if | aii | >
∑

j ̸=i | aij | for

1 ≤ i ≤ n.

– Such matrices are nonsingular.

• The identity matrix is the square matrix

I ≡ diag[ 1, 1, . . . , 1 ].
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Definitions and Basic Results (concluded)

• A matrix has full column rank if its columns are linearly

independent.

• A real symmetric matrix A is positive definite if

xTAx =
∑
i,j

aijxixj > 0

for any nonzero vector x.

• A matrix A is positive definite if and only if there exists

a matrix W such that A = WTW and W has full

column rank.
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Cholesky Decomposition

• Positive definite matrices can be factored as

A = LLT,

called the Cholesky decomposition.

– Above, L is a lower triangular matrix.
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Generation of Multivariate Distribution

• Let x ≡ [x1, x2, . . . , xn ]
T be a vector random variable

with a positive definite covariance matrix C.

• As usual, assume E[x ] = 0.

• This covariance structure can be matched by Py.

– C = PPT is the Cholesky decomposition of C.a

– y ≡ [ y1, y2, . . . , yn ]
T is a vector random variable

with a covariance matrix equal to the identity matrix.

aWhat if C is not positive definite? See Lai (R93942114) and Lyuu

(2007).
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Generation of Multivariate Normal Distribution

• Suppose we want to generate the multivariate normal

distribution with a covariance matrix C = PPT.

– First, generate independent standard normal

distributions y1, y2, . . . , yn.

– Then

P [ y1, y2, . . . , yn ]
T

has the desired distribution.

– These steps can then be repeated.
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Multivariate Derivatives Pricing

• Generating the multivariate normal distribution is

essential for the Monte Carlo pricing of multivariate

derivatives (pp. 648ff).

• For example, the rainbow option on k assets has payoff

max(max(S1, S2, . . . , Sk)−X, 0)

at maturity.

• The closed-form formula is a multi-dimensional integral.a

aJohnson (1987); Chen (D95723006) and Lyuu (2009).
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Multivariate Derivatives Pricing (concluded)

• Suppose dSj/Sj = r dt+ σj dWj , 1 ≤ j ≤ k, where C is

the correlation matrix for dW1, dW2, . . . , dWk.

• Let C = PPT.

• Let ξ consist of k independent random variables from

N(0, 1).

• Let ξ′ = Pξ.

• Similar to Eq. (82) on p. 690,

Si+1 = Sie
(r−σ2

j/2)∆t+σj

√
∆t ξ′j , 1 ≤ j ≤ k.
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