
Trinomial Tree

• Set up a trinomial approximation to the geometric

Brownian motion dS/S = r dt+ σ dW .a

• The three stock prices at time ∆t are S, Su, and Sd,

where ud = 1.

• Impose the matching of mean and that of variance:

1 = pu + pm + pd,

SM = (puu+ pm + (pd/u))S,

S2V = pu(Su− SM)2 + pm(S − SM)2 + pd(Sd− SM)2.

aBoyle (1988).
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• Above,

M ≡ er∆t,

V ≡ M2(eσ
2∆t − 1),

by Eqs. (21) on p. 154.
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Trinomial Tree (concluded)

• Use linear algebra to verify that

pu =
u
(
V +M2 −M

)
− (M − 1)

(u− 1) (u2 − 1)
,

pd =
u2
(
V +M2 −M

)
− u3(M − 1)

(u− 1) (u2 − 1)
.

– In practice, we must also make sure the probabilities

lie between 0 and 1.

• Countless variations.
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A Trinomial Tree

• Use u = eλσ
√
∆t, where λ ≥ 1 is a tunable parameter.

• Then

pu → 1

2λ2
+

(
r + σ2

)√
∆t

2λσ
,

pd → 1

2λ2
−
(
r − 2σ2

)√
∆t

2λσ
.

• A nice choice for λ is
√
π/2 .a

aOmberg (1988).
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Barrier Options Revisited

• BOPM introduces a specification error by replacing the

barrier with a nonidentical effective barrier.

• The trinomial model solves the problem by adjusting λ

so that the barrier is hit exactly.a

• It takes

h =
ln(S/H)

λσ
√
∆t

consecutive down moves to go from S to H if h is an

integer, which is easy to achieve by adjusting λ.

– This is because Se−hλσ
√
∆t = H.

aRitchken (1995).
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Barrier Options Revisited (continued)

• Typically, we find the smallest λ ≥ 1 such that h is an

integer.a

• That is, we find the largest integer j ≥ 1 that satisfies
ln(S/H)

jσ
√
∆t

≥ 1 and then let

λ =
ln(S/H)

jσ
√
∆t

.

– Such a λ may not exist for very small n’s.

– This is not hard to check.

aWhy must λ ≥ 1?
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Barrier Options Revisited (concluded)

• This done, one of the layers of the trinomial tree

coincides with the barrier.

• The following probabilities may be used,

pu =
1

2λ2
+

µ′
√
∆t

2λσ
,

pm = 1− 1

λ2
,

pd =
1

2λ2
− µ′

√
∆t

2λσ
.

– µ′ ≡ r − σ2/2.
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Algorithms Comparisona

• So which algorithm is better, binomial or trinomial?

• Algorithms are often compared based on the n value at

which they converge.

– The one with the smallest n wins.

• So giraffes are faster than cheetahs because they take

fewer strides to travel the same distance!

• Performance must be based on actual running times, not

n.b

aLyuu (1998).
bPatterson and Hennessy (1994).
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Algorithms Comparison (continued)

• Pages 337 and 607 seem to show the trinomial model

converges at a smaller n than BOPM.

• It is in this sense when people say trinomial models

converge faster than binomial ones.

• But does it make the trinomial model better then?
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Algorithms Comparison (concluded)

• The linear-time binomial tree algorithm actually

performs better than the trinomial one.

• See the next page, expanded from p. 596.

• The barrier-too-close problem is also too hard for a

quadratic-time trinomial tree algorithm.a

• In fact, the trinomial model also has a linear-time

algorithm!b

aLyuu (1998).
bChen (R94922003) (2007).
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n Combinatorial method Trinomial tree algorithm

Value Time Value Time

21 5.507548 0.30

84 5.597597 0.90 5.634936 35.0

191 5.635415 2.00 5.655082 185.0

342 5.655812 3.60 5.658590 590.0

533 5.652253 5.60 5.659692 1440.0

768 5.654609 8.00 5.660137 3080.0

1047 5.658622 11.10 5.660338 5700.0

1368 5.659711 15.00 5.660432 9500.0

1731 5.659416 19.40 5.660474 15400.0

2138 5.660511 24.70 5.660491 23400.0

2587 5.660592 30.20 5.660493 34800.0

3078 5.660099 36.70 5.660488 48800.0

3613 5.660498 43.70 5.660478 67500.0

4190 5.660388 44.10 5.660466 92000.0

4809 5.659955 51.60 5.660454 130000.0

5472 5.660122 68.70

6177 5.659981 76.70

(All times in milliseconds.)
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Double-Barrier Options

• Double-barrier options are barrier options with two

barriers L < H.

• Assume L < S < H.

• The binomial model produces oscillating option values

(see plot on next page).a

• The combinatorial method gives a linear-time algorithm

(see text).

aChao (R86526053) (1999); Dai (R86526008, D8852600) and Lyuu

(2005).
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Double-Barrier Knock-Out Options

• We knew how to pick the λ so that one of the layers of

the trinomial tree coincides with one barrier, say H.

• This choice, however, does not guarantee that the other

barrier, L, is also hit.

• One way to handle this problem is to lower the layer of

the tree just above L to coincide with L.a

– More general ways to make the trinomial model hit

both barriers are available.b

aRitchken (1995).
bHsu (R7526001, D89922012) and Lyuu (2006). Dai (R86526008,

D8852600) and Lyuu (2006) combine binomial and trinomial trees to de-

rive an O(n)-time algorithm for double-barrier options (see pp. 619ff).
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Double-Barrier Knock-Out Options (continued)

• The probabilities of the nodes on the layer above L

must be adjusted.

• Let ℓ be the positive integer such that

Sdℓ+1 < L < Sdℓ.

• Hence the layer of the tree just above L has price Sdℓ.a

aYou probably can do the same thing for binomial models. But the

benefits are most likely nil (why?). Thanks to a lively discussion on April

25, 2012.
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Double-Barrier Knock-Out Options (concluded)

• Define γ > 1 as the number satisfying

L = Sdℓ−1e−γλσ
√
∆t.

– The prices between the barriers are

L, Sdℓ−1, . . . , Sd2, Sd, S, Su, Su2, . . . , Suh−1, Suh = H.

• The probabilities for the nodes with price equal to

Sdℓ−1 are

p′u =
b+ aγ

1 + γ
, p′d =

b− a

γ + γ2
, and p′m = 1− p′u − p′d,

where a ≡ µ′
√
∆t/(λσ) and b ≡ 1/λ2.
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The Binomial-Trinomial Tree

• Append a trinomial structure to a binomial tree can lead

to improved convergence and efficiency.a

• The resulting tree is called the binomial-trinomial tree.b

• Suppose a binomial tree will be built with ∆t as the

duration of one period.

• Node X at time t needs to pick three nodes on the

binomial tree at time t+∆t′ as its successor nodes.

– ∆t ≤ ∆t′ < 2∆t.

aDai (R86526008, D8852600) and Lyuu (2006, 2008, 2010).
bThe idea first emerged in a hotel in Muroran, Hokkaido, Japan, in

May of 2005.
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The Binomial-Trinomial Tree (continued)
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The Binomial-Trinomial Tree (continued)

• These three nodes should guarantee:

1. The mean and variance of the stock price are

matched.

2. The branching probabilities are between 0 and 1.

• Let S be the stock price at node X.

• Use s(z) to denote the stock price at node z.
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The Binomial-Trinomial Tree (continued)

• Recall (p. 259, e.g.) that the expected value of the

logarithmic return ln(St+∆t′/S) at time t+∆t′ equals

µ ≡
(
r − σ2/2

)
∆t′. (66)

• Its variance equals

Var ≡ σ2∆t′. (67)

• Let node B be the node whose logarithmic return

µ̂ ≡ ln(s(B)/S) is closest to µ among all the nodes on

the binomial tree at time t+∆t′.
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The Binomial-Trinomial Tree (continued)

• The middle branch from node X will end at node B.

• The two nodes A and C, which bracket node B, are the

destinations of the other two branches from node X.

• Recall that adjacent nodes on the binomial tree are

spaced at 2σ
√
∆t apart.

• Review the figure on p. 620 for illustration.
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The Binomial-Trinomial Tree (continued)

• The three branching probabilities from node X are

obtained through matching the mean and variance of

the logarithmic return ln(St+∆t′/S).

• Let µ̂ ≡ ln (s(B)/S) be the logarithmic return of the

middle node B.

• Also, let α, β, and γ be the differences between µ and

the logarithmic returns ln(s(Z)/S) of nodes

Z = A,B,C, in that order.
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The Binomial-Trinomial Tree (continued)

• In other words,

α ≡ µ̂+ 2σ
√
∆t− µ = β + 2σ

√
∆t , (68)

β ≡ µ̂− µ, (69)

γ ≡ µ̂− 2σ
√
∆t− µ = β − 2σ

√
∆t . (70)

• The three branching probabilities pu, pm, pd then satisfy

puα+ pmβ + pdγ = 0, (71)

puα
2 + pmβ2 + pdγ

2 = Var, (72)

pu + pm + pd = 1. (73)
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The Binomial-Trinomial Tree (concluded)

• Equation (71) matches the mean (66) of the logarithmic

return ln(St+∆t′/S) on p. 622.

• Equation (72) matches its variance (67) on p. 622.

• The three probabilities can be proved to lie between 0

and 1.
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Pricing Double-Barrier Options

• Consider a double-barrier option with two barriers L

and H, where L < S < H.

• We need to make each barrier coincide with a layer of

the binomial tree for better convergence.

• This means choosing a ∆t such that

κ ≡ ln(H/L)

2σ
√
∆t

is a positive integer.

– The distance between two adjacent nodes such as

nodes Y and Z in the figure on p. 628 is 2σ
√
∆t .
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Pricing Double-Barrier Options (continued)
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Pricing Double-Barrier Options (continued)

• Suppose that the goal is a tree with ∼ m periods.

• Suppose we pick ∆τ ≡ T/m for the length of each

period.

• There is no guarantee that ln(H/L)

2σ
√
∆τ

is an integer.

• So we pick a ∆t that is close to, but does not exceed,

∆τ and makes ln(H/L)

2σ
√
∆t

an integer.

• Specifically, we select

∆t =

(
ln(H/L)

2κσ

)2

,

where κ =
⌈
ln(H/L)

2σ
√
∆τ

⌉
.
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Pricing Double-Barrier Options (continued)

• We now proceed to build the binomial-trinomial tree.

• Start with the binomial part.

• Lay out the nodes from the low barrier L upward and

downward.

• Automatically, a layer coincides with the high barrier H.

• It is unlikely that ∆t divides T , however.

• As a consequence, the position at time 0 and with

logarithmic return ln(S/S) = 0 is not occupied by a

binomial node to serve as the root node.
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Pricing Double-Barrier Options (continued)

• The binomial-trinomial structure can address this

problem as follows.

• Between time 0 and time T , the binomial tree spans

T/∆t periods.

• Keep only the last ⌊T/∆t⌋ − 1 periods and let the first

period have a duration equal to

∆t′ = T −
(⌊

T

∆t

⌋
− 1

)
∆t.

• Then these ⌊T/∆t⌋ periods span T years.

• It is easy to verify that ∆t ≤ ∆t′ < 2∆t.
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Pricing Double-Barrier Options (continued)

• Start with the root node at time 0 and at a price with

logarithmic return ln(S/S) = 0.

• Find the three nodes on the binomial tree at time ∆t′

as described earlier.

• Calculate the three branching probabilities to them.

• Grow the binomial tree from these three nodes until

time T to obtain a binomial-trinomial tree with

⌊T/∆t⌋ periods.

• See the figure on p. 628 for illustration.
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Pricing Double-Barrier Options (continued)

• Now the binomial-trinomial tree can be used to price

double-barrier options by backward induction.

• That takes quadratic time.

• But we know a linear-time algorithm exists for

double-barrier options on the binomial tree (see text).

• Apply that algorithm to price the double-barrier

option’s prices at the three nodes at time ∆t′.

– That is, nodes A, B, and C on p. 628.

• Then calculate their expected discounted value for the

root node.

• The overall running time is only linear.
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Pricing Double-Barrier Options (continued)

• Binomial trees have troubles with pricing barrier options

(see p. 337, p. 613, and p. 618).

• Even pit against the much better trinomial tree, the

binomial-trinomial tree converges faster and smoother

(see p. 635).

• In fact, the binomial-trinomial tree has an error of

O(1/n) for single-barrier options.a

aLyuu and Palmer (2010).
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Pricing Double-Barrier Options (concluded)
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The thin line denotes the double-barrier option prices

computed by the trinomial tree against the running time in

seconds (such as point A). The thick line denotes those

computed by the binomial-trinomial tree (such as point B).
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Pricing Discrete Barrier Options

• Barrier options whose barrier is monitored only at

discrete times are called discrete barrier options.

• They are more common than the continuously

monitored versions.

• The main difficulty with pricing discrete barrier options

lies in matching the monitored times.

• Here is why.

• Suppose each period has a duration of ∆t and the

ℓ > 1 monitored times are t0 = 0, t1, t2, . . . , tℓ = T .
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Pricing Discrete Barrier Options (continued)

• It is unlikely that all monitored times coincide with the

end of a period on the tree, meaning ∆t divides ti for

all i.

• The binomial-trinomial tree can handle discrete options

with ease, however.

• Simply build a binomial-trinomial tree from time 0 to

time t1, followed by one from time t1 to time t2, and so

on until time tℓ.

• See p. 638.
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Pricing Discrete Barrier Options (concluded)

• This procedure works even if each ti is associated with

a distinct barrier or if each window [ ti, ti+1) has its own

continuously monitored barrier or double barriers.
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Options on a Stock That Pays Known Dividends

• Many ad hoc assumptions have been postulated for

option pricing with known dividends.a

1. The one we saw earlier models the stock price minus

the present value of the anticipated dividends as

following geometric Brownian motion.

2. One can also model the stock price plus the forward

values of the dividends as following geometric

Brownian motion.

aFrishling (2002).

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 640



Options on a Stock That Pays Known Dividends (continued)

• The most realistic model assumes the stock price

decreases by the amount of the dividend paid at the

ex-dividend date.

• The stock price follows geometric Brownian motion

between adjacent ex-dividend dates.

• But this model results in binomial trees that grow

exponentially (recall p. 273).

• The binomial-trinomial tree can often avoid the

exponential explosion for the known-dividends case.
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Options on a Stock That Pays Known Dividends (continued)

• Suppose that the known dividend is D dollars and the

ex-dividend date is at time t.

• So there are m ≡ t/∆t periods between time 0 and the

ex-dividend date.

• To avoid negative stock prices, we need to make sure the

lowest stock price at time t is at least D, i.e.,

Se−(t/∆t)σ
√
∆t ≥ D.

– Equivalently,

∆t ≥
[

tσ

ln(S/D)

]2
.
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Options on a Stock That Pays Known Dividends (continued)

• Build a binomial tree from time 0 to time t as before.

• Subtract D from all the stock prices on the tree at time

t to represent the price drop on the ex-dividend date.

• Assume the top node’s price equals S′.

– As usual, its two successor nodes will have prices

S′u and S′u−1.

• The remaining nodes’ successor nodes will have prices

S′u−3, S′u−5, S′u−7, . . . ,

same as the binomial tree.
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Options on a Stock That Pays Known Dividends (concluded)

• For each node at time t below the top node, we build

the trinomial connection.

• Note that the binomial-trinomial structure remains valid

in the special case when ∆t′ = ∆t on p. 620.

• Hence the construction can be completed.

• From time t+∆t onward, the standard binomial tree

will be used until the maturity date or the next

ex-dividend date when the procedure can be repeated.

• The resulting tree is called the stair tree.a

aDai (R86526008, D8852600) and Lyuu (2004).
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Other Applications of Binomial-Trinomial Trees

• Pricing guaranteed minimum withdrawal benefits.a

• Option pricing with stochastic volatilities.b

• Efficient Parisian option pricing.c

• Option pricing with time-varying volatilities and

time-varying barriers.d

• Defaultable bond pricing.e

aWu (R96723058) (2009).
bHuang (R97922073) (2010).
cHuang (R97922081) (2010).
dChou (R97944012) (2010) and Chen (R98922127) (2011).
eDai (R86526008, D8852600), Lyuu, and Wang (F95922018) (2009,

2010).
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General Properties of Treesa

• Consider the Ito process,

dX = a(X, t) dt+ σ dW,

where a(X, t) = O(1) and σ is a constant.

• The mean and volatility of the next move’s size are

O(∆t) and O(
√
∆t), respectively.

• Note that
√
∆t ≫ ∆t.

• The tree spacing must be in the order of σ
√
∆t if the

variance is to be matched.b

aChiu (R98723059) (2012) and Wu (R99922149) (2012).
bLyuu and Wang (F95922018) (2009, 2011) and Lyuu and Wen

(D94922003) (2012).
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General Properties of Trees (concluded)

• It can also be proved that either B is a tree node or both

A and C are tree nodes.
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Multivariate Contingent Claims

• They depend on two or more underlying assets.

• The basket call on m assets has the terminal payoff

max

(
m∑
i=1

αiSi(τ)−X, 0

)
,

where αi is the percentage of asset i.

• Basket options are essentially options on a portfolio of

stocks or index options.

• Option on the best of two risky assets and cash has a

terminal payoff of max(S1(τ), S2(τ), X).
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Multivariate Contingent Claims (concluded)

From Lyuu and Teng (R91723054) (2011):

Name Payoff

Exchange option max(S1(τ)− S2(τ), 0)

Better-off option max(S1(τ), . . . , Sk(τ), 0)

Worst-off option min(S1(τ), . . . , Sk(τ), 0)

Binary maximum option I{max(S1(τ), . . . , Sk(τ)) > X }
Maximum option max(max(S1(τ), . . . , Sk(τ))−X, 0)

Minimum option max(min(S1(τ), . . . , Sk(τ))−X, 0)

Spread option max(S1(τ)− S2(τ)−X, 0)

Basket average option max((S1(τ), . . . , Sk(τ))/k −X, 0)

Multi-strike option max(S1(τ)−X1, . . . , Sk(τ)−Xk, 0)

Pyramid rainbow option max(|S1(τ)−X1 |+ · · ·+ |Sk(τ)−Xk | −X, 0)

Madonna option max(
√

(S1(τ)−X1)2 + · · ·+ (Sk(τ)−Xk)2 −X, 0)
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Correlated Trinomial Modela

• Two risky assets S1 and S2 follow

dSi/Si = r dt+ σi dWi in a risk-neutral economy,

i = 1, 2.

• Let

Mi ≡ er∆t,

Vi ≡ M2
i (e

σ2
i∆t − 1).

– SiMi is the mean of Si at time ∆t.

– S2
i Vi the variance of Si at time ∆t.

aBoyle, Evnine, and Gibbs (1989).
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Correlated Trinomial Model (continued)

• The value of S1S2 at time ∆t has a joint lognormal

distribution with mean S1S2M1M2e
ρσ1σ2∆t, where ρ is

the correlation between dW1 and dW2.

• Next match the 1st and 2nd moments of the

approximating discrete distribution to those of the

continuous counterpart.

• At time ∆t from now, there are five distinct outcomes.
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Correlated Trinomial Model (continued)

• The five-point probability distribution of the asset prices

is (as usual, we impose uidi = 1)

Probability Asset 1 Asset 2

p1 S1u1 S2u2

p2 S1u1 S2d2

p3 S1d1 S2d2

p4 S1d1 S2u2

p5 S1 S2
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Correlated Trinomial Model (continued)

• The probabilities must sum to one, and the means must

be matched:

1 = p1 + p2 + p3 + p4 + p5,

S1M1 = (p1 + p2)S1u1 + p5S1 + (p3 + p4)S1d1,

S2M2 = (p1 + p4)S2u2 + p5S2 + (p2 + p3)S2d2.
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Correlated Trinomial Model (concluded)

• Let R ≡ M1M2e
ρσ1σ2∆t.

• Match the variances and covariance:

S
2
1V1 = (p1 + p2)((S1u1)

2 − (S1M1)
2
) + p5(S

2
1 − (S1M1)

2
)

+(p3 + p4)((S1d1)
2 − (S1M1)

2
),

S
2
2V2 = (p1 + p4)((S2u2)

2 − (S2M2)
2
) + p5(S

2
2 − (S2M2)

2
)

+(p2 + p3)((S2d2)
2 − (S2M2)

2
),

S1S2R = (p1u1u2 + p2u1d2 + p3d1d2 + p4d1u2 + p5)S1S2.

• The solutions are complex (see text).
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Correlated Trinomial Model Simplifieda

• Let µ′
i ≡ r − σ2

i /2 and ui ≡ eλσi

√
∆t for i = 1, 2.

• The following simpler scheme is good enough:

p1 =
1

4

[
1

λ2
+

√
∆t

λ

(
µ′
1

σ1

+
µ′
2

σ2

)
+

ρ

λ2

]
,

p2 =
1

4

[
1

λ2
+

√
∆t

λ

(
µ′
1

σ1

−
µ′
2

σ2

)
−

ρ

λ2

]
,

p3 =
1

4

[
1

λ2
+

√
∆t

λ

(
−

µ′
1

σ1

−
µ′
2

σ2

)
+

ρ

λ2

]
,

p4 =
1

4

[
1

λ2
+

√
∆t

λ

(
−

µ′
1

σ1

+
µ′
2

σ2

)
−

ρ

λ2

]
,

p5 = 1 −
1

λ2
.

aMadan, Milne, and Shefrin (1989).
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Correlated Trinomial Model Simplified (continued)

• All of the probabilities lie between 0 and 1 if and only if

−1 + λ
√
∆t

∣∣∣∣ µ′
1

σ1
+

µ′
2

σ2

∣∣∣∣ ≤ ρ ≤ 1− λ
√
∆t

∣∣∣∣ µ′
1

σ1
−

µ′
2

σ2

∣∣∣∣ , (74)
1 ≤ λ (75)

• We call a multivariate tree (correlation-) optimal if it

guarantees valid probabilities as long as

−1 +O(
√
∆t) < ρ < 1−O(

√
∆t),

such as the above one.a

aKao (R98922093) (2011) and Kao (R98922093), Lyuu, and Wen

(D94922003) (2012).
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Correlated Trinomial Model Simplified (concluded)

• But this model cannot price 2-asset 2-barrier options

accurately.a

• Few multivariate trees are both optimal and able to

handle multiple barriers.b

• An alternative is to use orthogonalization.c

aSee Chang, Hsu, and Lyuu (2006) and Kao (R98922093), Lyuu and

Wen (D94922003) (2012) for solutions.
bSee Kao (R98922093), Lyuu, and Wen (D94922003) (2012) for one.
cHull and White (1990) and Dai (R86526008, D8852600), Lyuu, and

Wang (F95922018) (2012).
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Extrapolation

• It is a method to speed up numerical convergence.

• Say f(n) converges to an unknown limit f at rate of

1/n:

f(n) = f +
c

n
+ o

(
1

n

)
. (76)

• Assume c is an unknown constant independent of n.

– Convergence is basically monotonic and smooth.

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 658



Extrapolation (concluded)

• From two approximations f(n1) and f(n2) and

ignoring the smaller terms,

f(n1) = f +
c

n1
,

f(n2) = f +
c

n2
.

• A better approximation to the desired f is

f =
n1f(n1)− n2f(n2)

n1 − n2
. (77)

• This estimate should converge faster than 1/n.

• The Richardson extrapolation uses n2 = 2n1.
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Improving BOPM with Extrapolation

• Consider standard European options.

• Denote the option value under BOPM using n time

periods by f(n).

• It is known that BOPM convergences at the rate of 1/n,

consistent with Eq. (76) on p. 658.

• But the plots on p. 263 (redrawn on next page)

demonstrate that convergence to the true option value

oscillates with n.

• Extrapolation is inapplicable at this stage.
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Improving BOPM with Extrapolation (concluded)

• Take the at-the-money option in the left plot on p. 661.

• The sequence with odd n turns out to be monotonic

and smooth (see the left plot on p. 663).a

• Apply extrapolation (77) on p. 659 with n2 = n1 + 2,

where n1 is odd.

• Result is shown in the right plot on p. 663.

• The convergence rate is amazing.

• See Exercise 9.3.8 of the text (p. 111) for ideas in the

general case.

aThis can be proved; see Chang and Palmer (2007).
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