
Product of Geometric Brownian Motion Processes

• Let

dY/Y = a dt+ b dWY ,

dZ/Z = f dt+ g dWZ .

• Consider the Ito process U ≡ Y Z.

• Apply Ito’s lemma (Theorem 20 on p. 510):

dU = Z dY + Y dZ + dY dZ

= ZY (a dt+ b dWY ) + Y Z(f dt+ g dWZ)

+Y Z(a dt+ b dWY )(f dt+ g dWZ)

= U(a+ f + bgρ) dt+ Ub dWY + Ug dWZ .
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Product of Geometric Brownian Motion Processes
(continued)

• The product of two (or more) correlated geometric

Brownian motion processes thus remains geometric

Brownian motion.

• Note that

Y = exp
[(
a− b2/2

)
dt+ b dWY

]
,

Z = exp
[(
f − g2/2

)
dt+ g dWZ

]
,

U = exp
[ (

a+ f −
(
b2 + g2

)
/2
)
dt+ b dWY + g dWZ

]
.
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Product of Geometric Brownian Motion Processes
(concluded)

• lnU is Brownian motion with a mean equal to the sum

of the means of lnY and lnZ.

• This holds even if Y and Z are correlated.

• Finally, lnY and lnZ have correlation ρ.
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Quotients of Geometric Brownian Motion Processes

• Suppose Y and Z are drawn from p. 514.

• Let U ≡ Y/Z.

• We now show thata

dU

U
= (a− f + g2 − bgρ) dt+ b dWY − g dWZ .

(57)

• Keep in mind that dWY and dWZ have correlation ρ.

aExercise 14.3.6 of the textbook is erroneous.
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Quotients of Geometric Brownian Motion Processes
(concluded)

• The multidimensional Ito’s lemma (Theorem 20 on

p. 510) can be employed to show that

dU

= (1/Z) dY − (Y/Z2) dZ − (1/Z2) dY dZ + (Y/Z3) (dZ)2

= (1/Z)(aY dt+ bY dWY )− (Y/Z2)(fZ dt+ gZ dWZ)

−(1/Z2)(bgY Zρ dt) + (Y/Z3)(g2Z2 dt)

= U(a dt+ b dWY )− U(f dt+ g dWZ)

−U(bgρ dt) + U(g2 dt)

= U(a− f + g2 − bgρ) dt+ Ub dWY − Ug dWZ .
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Forward Price

• Suppose S follows

dS

S
= µdt+ σ dW.

• Consider F (S, t) ≡ Sey(T−t).

• Observe that

∂F

∂S
= ey(T−t),

∂2F

∂S2
= 0,

∂F

∂t
= −ySey(T−t).

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 519



Forward Prices (concluded)

• Then

dF = ey(T−t) dS − ySey(T−t) dt

= Sey(T−t) (µdt+ σ dW )− ySey(T−t) dt

= F (µ− y) dt+ Fσ dW

by Eq. (55) on p. 509.

• Thus F follows

dF

F
= (µ− y) dt+ σ dW.

• This result has applications in forward and futures

contracts.a

aIt is also consistent with p. 464.
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Ornstein-Uhlenbeck Process

• The Ornstein-Uhlenbeck process:

dX = −κX dt+ σ dW,

where κ, σ ≥ 0.

• It is known that

E[X(t) ] = e
−κ(t−t0)

E[ x0 ],

Var[X(t) ] =
σ2

2κ

(
1 − e

−2κ(t−t0)
)
+ e

−2κ(t−t0)
Var[x0 ],

Cov[X(s), X(t) ] =
σ2

2κ
e
−κ(t−s)

[
1 − e

−2κ(s−t0)
]

+e
−κ(t+s−2t0)

Var[x0 ],

for t0 ≤ s ≤ t and X(t0) = x0.
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Ornstein-Uhlenbeck Process (continued)

• X(t) is normally distributed if x0 is a constant or

normally distributed.

• X is said to be a normal process.

• E[x0 ] = x0 and Var[x0 ] = 0 if x0 is a constant.

• The Ornstein-Uhlenbeck process has the following mean

reversion property.

– When X > 0, X is pulled toward zero.

– When X < 0, it is pulled toward zero again.
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Ornstein-Uhlenbeck Process (continued)

• A generalized version:

dX = κ(µ−X) dt+ σ dW,

where κ, σ ≥ 0.

• Given X(t0) = x0, a constant, it is known that

E[X(t) ] = µ+ (x0 − µ) e−κ(t−t0), (58)

Var[X(t) ] =
σ2

2κ

[
1− e−2κ(t−t0)

]
,

for t0 ≤ t.
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Ornstein-Uhlenbeck Process (concluded)

• The mean and standard deviation are roughly µ and

σ/
√
2κ , respectively.

• For large t, the probability of X < 0 is extremely

unlikely in any finite time interval when µ > 0 is large

relative to σ/
√
2κ .

• The process is mean-reverting.

– X tends to move toward µ.

– Useful for modeling term structure, stock price

volatility, and stock price return.
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Square-Root Process

• Suppose X is an Ornstein-Uhlenbeck process.

• Ito’s lemma says V ≡ X2 has the differential,

dV = 2X dX + (dX)2

= 2
√
V (−κ

√
V dt+ σ dW ) + σ2 dt

=
(
−2κV + σ2

)
dt+ 2σ

√
V dW,

a square-root process.

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 525



Square-Root Process (continued)

• In general, the square-root process has the stochastic

differential equation,

dX = κ(µ−X) dt+ σ
√
X dW,

where κ, σ ≥ 0 and X(0) is a nonnegative constant.

• Like the Ornstein-Uhlenbeck process, it possesses mean

reversion: X tends to move toward µ, but the volatility

is proportional to
√
X instead of a constant.
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Square-Root Process (continued)

• When X hits zero and µ ≥ 0, the probability is one

that it will not move below zero.

– Zero is a reflecting boundary.

• Hence, the square-root process is a good candidate for

modeling interest rates.a

• The Ornstein-Uhlenbeck process, in contrast, allows

negative interest rates.

• The two processes are related (see p. 525).

aCox, Ingersoll, and Ross (1985).
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Square-Root Process (concluded)

• The random variable 2cX(t) follows the noncentral

chi-square distribution,a

χ

(
4κµ

σ2
, 2cX(0) e−κt

)
,

where c ≡ (2κ/σ2)(1− e−κt)−1.

• Given X(0) = x0, a constant,

E[X(t) ] = x0e
−κt + µ

(
1− e−κt

)
,

Var[X(t) ] = x0
σ2

κ

(
e−κt − e−2κt

)
+ µ

σ2

2κ

(
1− e−κt

)2
,

for t ≥ 0.

aWilliam Feller (1906–1970) in 1951.
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Modeling Stock Prices

• The most popular stochastic model for stock prices has

been the geometric Brownian motion,

dS

S
= µdt+ σ dW.

• The continuously compounded rate of return X ≡ lnS

follows

dX = (µ− σ2/2) dt+ σ dW

by Ito’s lemma.a

aSee also Eq. (56) on p. 513. Also consistent with Lemma 9 (p. 259).
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Modeling Stock Prices (continued)

• The more general deterministic volatility model posits

dS

S
= (rt − qt) dt+ σ(S, t) dW,

where σ(S, t) is called the local volatility function.a

• The trees for the deterministic volatility model are

called implied trees.b

• Their construction requires option prices at all strike

prices and maturities.

aDerman and Kani (1994).
bDerman and Kani (1994); Dupire (1994); Rubinstein (1994).
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Modeling Stock Prices (continued)

• How to construct an implied tree with efficiency, valid

probabilities and stability remains open for a long time.a

– Reasons may include: noise and nonsynchrony in

data, arbitrage opportunities in the smoothed and

interpolated/extrapolated implied volatility surface,

wrong model, etc.

• Numerically, the inversion problem is an ill-posed

problem.

• It is partially solved recently.b

aDerman and Kani (1994); Derman, Kani, and Chriss (1996); Cole-

man, Kim, Li, and Verma (2000); Ayache, Henrotte, Nassar, and Wang

(2004); Kamp (2009).
bFebruary 12, 2013.
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Modeling Stock Prices (continued)

• Theoretically,a

σ(X,T )2 = 2
∂C
∂T + (rT − qT )X

∂C
∂X + qTC

X2 ∂2C
∂X2

, (59)

where C is the call price at time t with strike price X and

maturity date T .

• In practice, like implied trees and for similar reasons,

σ(K,T )2 may have spikes, vary wildly, or even be

negative.

• Worse, the appearance of ∂2C/∂X2 in the denominator

results in numerical instability.

aDupire (1994); Andersen and Brotherton-Ratcliffe (1998).

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 532



Modeling Stock Prices (concluded)

• The relation between the implied volatility surface

Σ(X,T ) and the local volatility surface σ(X,T ) isa

σ(X,T )2 =
Σ2 + 2Στ

[
∂Σ
∂T

+ (rT − qT )X
∂Σ
∂X

](
1− Xy

Σ
∂Σ
∂X

)2
+XΣτ

[
∂Σ
∂X

− XΣτ
4

(
∂Σ
∂X

)2
+X ∂2Σ

∂X2

] ,
where τ ≡ T − t and y ≡ ln(X/St) +

∫ T

t
(qs − rs) ds.

• Although this version may be more stable than Eq. (59)

on p. 532, it is expected to suffer from similar problems.

aAndreasen (1996); Andersen and Brotherton-Ratcliffe (1998);

Gatheral (2003); Wilmott (2006); Kamp (2009).
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Continuous-Time Derivatives Pricing
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I have hardly met a mathematician

who was capable of reasoning.

— Plato (428 B.C.–347 B.C.)

Fischer [Black] is the only real genius

I’ve ever met in finance. Other people,

like Robert Merton or Stephen Ross,

are just very smart and quick,

but they think like me.

Fischer came from someplace else entirely.

— John C. Cox, quoted in Mehrling (2005)
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Toward the Black-Scholes Differential Equation

• The price of any derivative on a non-dividend-paying

stock must satisfy a partial differential equation (PDE).

• The key step is recognizing that the same random

process drives both securities.

• As their prices are perfectly correlated, we figure out the

amount of stock such that the gain from it offsets

exactly the loss from the derivative.

• The removal of uncertainty forces the portfolio’s return

to be the riskless rate.

• PDEs allow many numerical methods to be applicable.
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Assumptionsa

• The stock price follows dS = µS dt+ σS dW .

• There are no dividends.

• Trading is continuous, and short selling is allowed.

• There are no transactions costs or taxes.

• All securities are infinitely divisible.

• The term structure of riskless rates is flat at r.

• There is unlimited riskless borrowing and lending.

• t is the current time, T is the expiration time, and

τ ≡ T − t.
aDerman and Taleb (2005) summarizes criticisms on these assump-

tions and the replication argument.
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Black-Scholes Differential Equation

• Let C be the price of a derivative on S.

• From Ito’s lemma (p. 506),

dC =

(
µS

∂C

∂S
+

∂C

∂t
+

1

2
σ2S2 ∂2C

∂S2

)
dt+ σS

∂C

∂S
dW.

– The same W drives both C and S.

• Short one derivative and long ∂C/∂S shares of stock

(call it Π).

• By construction,

Π = −C + S(∂C/∂S).
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Black-Scholes Differential Equation (continued)

• The change in the value of the portfolio at time dt isa

dΠ = −dC +
∂C

∂S
dS.

• Substitute the formulas for dC and dS into the partial

differential equation to yield

dΠ =

(
−∂C

∂t
− 1

2
σ2S2 ∂2C

∂S2

)
dt.

• As this equation does not involve dW , the portfolio is

riskless during dt time: dΠ = rΠ dt.

aMathematically speaking, it is not quite right (Bergman, 1982).
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Black-Scholes Differential Equation (concluded)

• So (
∂C

∂t
+

1

2
σ2S2 ∂2C

∂S2

)
dt = r

(
C − S

∂C

∂S

)
dt.

• Equate the terms to finally obtain

∂C

∂t
+ rS

∂C

∂S
+

1

2
σ2S2 ∂2C

∂S2
= rC.

• When there is a dividend yield q,

∂C

∂t
+ (r − q)S

∂C

∂S
+

1

2
σ2S2 ∂2C

∂S2
= rC.
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Rephrase

• The Black-Scholes differential equation can be expressed

in terms of sensitivity numbers,

Θ + rS∆+
1

2
σ2S2Γ = rC. (60)

• Identity (60) leads to an alternative way of computing

Θ numerically from ∆ and Γ.

• When a portfolio is delta-neutral,

Θ +
1

2
σ2S2Γ = rC.

– A definite relation thus exists between Γ and Θ.
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[Black] got the equation [in 1969] but then

was unable to solve it. Had he been a better

physicist he would have recognized it as a form

of the familiar heat exchange equation,

and applied the known solution. Had he been

a better mathematician, he could have

solved the equation from first principles.

Certainly Merton would have known exactly

what to do with the equation

had he ever seen it.

— Perry Mehrling (2005)
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PDEs for Asian Options

• Add the new variable A(t) ≡
∫ t

0
S(u) du.

• Then the value V of the Asian option satisfies this

two-dimensional PDE:a

∂V

∂t
+ rS

∂V

∂S
+

1

2
σ2S2 ∂2V

∂S2
+ S

∂V

∂A
= rV.

• The terminal conditions are

V (T, S,A) = max

(
A

T
−X, 0

)
for call,

V (T, S,A) = max

(
X − A

T
, 0

)
for put.

aKemna and Vorst (1990).
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PDEs for Asian Options (continued)

• The two-dimensional PDE produces algorithms similar

to that on pp. 357ff.

• But one-dimensional PDEs are available for Asian

options.a

• For example, Večeř (2001) derives the following PDE for

Asian calls:

∂u

∂t
+ r

(
1− t

T
− z

)
∂u

∂z
+

(
1− t

T − z
)2

σ2

2

∂2u

∂z2
= 0

with the terminal condition u(T, z) = max(z, 0).

aRogers and Shi (1995); Večeř (2001); Dubois and Lelièvre (2005).
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PDEs for Asian Options (concluded)

• For Asian puts:

∂u

∂t
+ r

(
t

T
− 1− z

)
∂u

∂z
+

(
t
T − 1− z

)2
σ2

2

∂2u

∂z2
= 0

with the same terminal condition.

• One-dimensional PDEs lead to highly efficient numerical

methods.
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The Hull-White Model

• Hull and White (1987) postulate the following model,

dS

S
= r dt+

√
V dW1,

dV = µvV dt+ bV dW2.

• Above, V is the instantaneous variance.

• They assume µv depends on V and t (but not S).
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The SABR Model

• Hagan, Kumar, Lesniewski, and Woodward (2002)

postulate the following model,

dS

S
= r dt+ SθV dW1,

dV = bV dW2,

for 0 ≤ θ ≤ 1.

• A nice feature of this model is that the implied volatility

surface has a compact approximate closed form.
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The Hilliard-Schwartz Model

• Hilliard and Schwartz (1996) postulate the following

general model,

dS

S
= r dt+ f(S)V a dW1,

dV = µ(V ) dt+ bV dW2,

for some well-behaved function f(S) and constant a.
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The Blacher Model

• Blacher (2002) postulates the following model,

dS

S
= r dt+ σ

[
1 + α(S − S0) + β(S − S0)

2
]
dW1,

dσ = κ(θ − σ) dt+ ϵσ dW2.

• So the volatility σ follows a mean-reverting process to

level θ.
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Heston’s Stochastic-Volatility Modela

• Heston assumes the stock price follows

dS

S
= (µ− q) dt+

√
V dW1, (61)

dV = κ(θ − V ) dt+ σ
√
V dW2. (62)

– V is the instantaneous variance, which follows a

square-root process.

– dW1 and dW2 have correlation ρ.

– The riskless rate r is constant.

• It may be the most popular continuous-time

stochastic-volatility model.

aHeston (1993).
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Heston’s Stochastic-Volatility Model (continued)

• Heston assumes the market price of risk is b2
√
V .

• So µ = r + b2V .

• Define

dW ∗
1 = dW1 + b2

√
V dt,

dW ∗
2 = dW2 + ρb2

√
V dt,

κ∗ = κ+ ρb2σ,

θ∗ =
θκ

κ+ ρb2σ
.

• dW ∗
1 and dW ∗

2 have correlation ρ.
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Heston’s Stochastic-Volatility Model (continued)

• Under the risk-neutral probability measure Q, both W ∗
1

and W ∗
2 are Wiener processes.

• Heston’s model becomes, under probability measure Q,

dS

S
= (r − q) dt+

√
V dW ∗

1 ,

dV = κ∗(θ∗ − V ) dt+ σ
√
V dW ∗

2 .
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Heston’s Stochastic-Volatility Model (continued)

• Define

ϕ(u, τ) = exp { ıu(lnS + (r − q) τ)

+θ∗κ∗σ−2

[
(κ∗ − ρσuı− d) τ − 2 ln

1− ge−dτ

1− g

]
+

vσ−2(κ∗ − ρσuı− d)
(
1− e−dτ

)
1− ge−dτ

}
,

d =
√

(ρσuı− κ∗)2 − σ2(−ıu− u2) ,

g = (κ∗ − ρσuı− d)/(κ∗ − ρσuı+ d).
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Heston’s Stochastic-Volatility Model (concluded)

The formulas area

C = S

[
1

2
+

1

π

∫ ∞

0

Re

(
X−ıuϕ(u− ı, τ)

ıuSerτ

)
du

]
−Xe−rτ

[
1

2
+

1

π

∫ ∞

0

Re

(
X−ıuϕ(u, τ)

ıu

)
du

]
,

P = Xe−rτ

[
1

2
− 1

π

∫ ∞

0

Re

(
X−ıuϕ(u, τ)

ıu

)
du

]
,

−S

[
1

2
− 1

π

∫ ∞

0

Re

(
X−ıuϕ(u− ı, τ)

ıuSerτ

)
du

]
,

where ı =
√
−1 and Re(x) denotes the real part of the

complex number x.
aContributed by Mr. Chen, Chun-Ying (D95723006) on August 17,

2008 and Mr. Liou, Yan-Fu (R92723060) on August 26, 2008.
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Stochastic-Volatility Models and Further Extensionsa

• How to explain the October 1987 crash?

• Stochastic-volatility models require an implausibly

high-volatility level prior to and after the crash.

• Merton (1976) proposed jump models.

• Discontinuous jump models in the asset price can

alleviate the problem somewhat.

aEraker (2004).
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Stochastic-Volatility Models and Further Extensions
(continued)

• But if the jump intensity is a constant, it cannot explain

the tendency of large movements to cluster over time.

• This assumption also has no impacts on option prices.

• Jump-diffusion models combine both.

– E.g., add a jump process to Eq. (61) on p. 550.

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 556



Stochastic-Volatility Models and Further Extensions
(concluded)

• But they still do not adequately describe the systematic

variations in option prices.a

• Jumps in volatility are alternatives.b

– E.g., add correlated jump processes to Eqs. (61) and

Eq. (62) on p. 550.

• Such models allow high level of volatility caused by a

jump to volatility.c

aBates (2000) and Pan (2002).
bDuffie, Pan, and Singleton (2000).
cEraker, Johnnes, and Polson (2000).
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Complexities of Stochastic-Volatility Models

• A few stochastic-volatility models suffer from

subexponential (c
√
n) tree size.

• Examples include the Hull-White model (1987) and the

Hilliard-Schwartz model (1996).a

• Future research may extend this negative result to more

stochastic-volatility models.

– We suspect many GARCH option pricing models

entertain similar problems.b

aChiu (R98723059) (2012).
bChen (R95723051) (2008); Chen (R95723051), Lyuu, and Wen

(D94922003) (2011).
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Hedging
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When Professors Scholes and Merton and I

invested in warrants,

Professor Merton lost the most money.

And I lost the least.

— Fischer Black (1938–1995)
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Delta Hedge

• The delta (hedge ratio) of a derivative f is defined as

∆ ≡ ∂f/∂S.

• Thus ∆f ≈ ∆×∆S for relatively small changes in the

stock price, ∆S.

• A delta-neutral portfolio is hedged as it is immunized

against small changes in the stock price.

• A trading strategy that dynamically maintains a

delta-neutral portfolio is called delta hedge.
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Delta Hedge (concluded)

• Delta changes with the stock price.

• A delta hedge needs to be rebalanced periodically in

order to maintain delta neutrality.

• In the limit where the portfolio is adjusted continuously,

perfect hedge is achieved and the strategy becomes

self-financing.
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Implementing Delta Hedge

• We want to hedge N short derivatives.

• Assume the stock pays no dividends.

• The delta-neutral portfolio maintains N ×∆ shares of

stock plus B borrowed dollars such that

−N × f +N ×∆× S −B = 0.

• At next rebalancing point when the delta is ∆′, buy

N × (∆′ −∆) shares to maintain N ×∆′ shares with a

total borrowing of B′ = N ×∆′ × S′ −N × f ′.

• Delta hedge is the discrete-time analog of the

continuous-time limit and will rarely be self-financing.
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Example

• A hedger is short 10,000 European calls.

• σ = 30% and r = 6%.

• This call’s expiration is four weeks away, its strike price

is $50, and each call has a current value of f = 1.76791.

• As an option covers 100 shares of stock, N = 1,000,000.

• The trader adjusts the portfolio weekly.

• The calls are replicated well if the cumulative cost of

trading stock is close to the call premium’s FV.a

aThis example takes the replication viewpoint.
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Example (continued)

• As ∆ = 0.538560, N ×∆ = 538, 560 shares are

purchased for a total cost of 538,560× 50 = 26,928,000

dollars to make the portfolio delta-neutral.

• The trader finances the purchase by borrowing

B = N ×∆× S −N × f = 25,160,090

dollars net.a

• The portfolio has zero net value now.

aThis takes the hedging viewpoint — an alternative. See an exercise

in the text.

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 565



Example (continued)

• At 3 weeks to expiration, the stock price rises to $51.

• The new call value is f ′ = 2.10580.

• So the portfolio is worth

−N × f ′ + 538,560× 51−Be0.06/52 = 171, 622

before rebalancing.
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Example (continued)

• A delta hedge does not replicate the calls perfectly; it is

not self-financing as $171,622 can be withdrawn.

• The magnitude of the tracking error—the variation in

the net portfolio value—can be mitigated if adjustments

are made more frequently.

• In fact, the tracking error over one rebalancing act is

positive about 68% of the time, but its expected value is

essentially zero.a

• The tracking error at maturity is proportional to vega.b

aBoyle and Emanuel (1980).
bKamal and Derman (1999).
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Example (continued)

• In practice tracking errors will cease to decrease beyond

a certain rebalancing frequency.

• With a higher delta ∆′ = 0.640355, the trader buys

N × (∆′ −∆) = 101, 795 shares for $5,191,545.

• The number of shares is increased to N ×∆′ = 640, 355.
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Example (continued)

• The cumulative cost is

26,928,000× e0.06/52 + 5,191,545 = 32,150,634.

• The portfolio is again delta-neutral.
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Option Change in No. shares Cost of Cumulative

value Delta delta bought shares cost

τ S f ∆ N×(5) (1)×(6) FV(8’)+(7)

(1) (2) (3) (5) (6) (7) (8)

4 50 1.7679 0.53856 — 538,560 26,928,000 26,928,000

3 51 2.1058 0.64036 0.10180 101,795 5,191,545 32,150,634

2 53 3.3509 0.85578 0.21542 215,425 11,417,525 43,605,277

1 52 2.2427 0.83983 −0.01595 −15,955 −829,660 42,825,960

0 54 4.0000 1.00000 0.16017 160,175 8,649,450 51,524,853

The total number of shares is 1,000,000 at expiration

(trading takes place at expiration, too).

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 570



Example (concluded)

• At expiration, the trader has 1,000,000 shares.

• They are exercised against by the in-the-money calls for

$50,000,000.

• The trader is left with an obligation of

51,524,853− 50,000,000 = 1,524,853,

which represents the replication cost.

• Compared with the FV of the call premium,

1,767,910× e0.06×4/52 = 1,776,088,

the net gain is 1,776,088− 1,524,853 = 251,235.
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Tracking Error Revisited

• Define the dollar gamma as S2Γ.

• The change in value of a delta-hedged long option

position after a duration of ∆t is proportional to the

dollar gamma.

• It is about

(1/2)S2Γ[ (∆S/S)2 − σ2∆t ].

– (∆S/S)2 is called the daily realized variance.
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Tracking Error Revisited (continued)

• Let the rebalancing times be t1, t2, . . . , tn.

• Let ∆Si = Si+1 − Si.

• The total tracking error at expiration is about

n−1∑
i=0

er(T−ti)
S2
i Γi

2

[(
∆Si

Si

)2

− σ2∆t

]
,

• The tracking error is path dependent.
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Tracking Error Revisited (concluded)a

• The tracking error ϵn over n rebalancing acts (such as

251,235 on p. 571) has about the same probability of

being positive as being negative.

• Subject to certain regularity conditions, the

root-mean-square tracking error
√
E[ ϵ2n ] is O(1/

√
n ).b

• The root-mean-square tracking error increases with σ at

first and then decreases.

aBertsimas, Kogan, and Lo (2000).
bSee also Grannan and Swindle (1996).

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 574



Delta-Gamma Hedge

• Delta hedge is based on the first-order approximation to

changes in the derivative price, ∆f , due to changes in

the stock price, ∆S.

• When ∆S is not small, the second-order term, gamma

Γ ≡ ∂2f/∂S2, helps (theoretically).a

• A delta-gamma hedge is a delta hedge that maintains

zero portfolio gamma, or gamma neutrality.

• To meet this extra condition, one more security needs to

be brought in.

aSee the numerical example on pp. 231–232 of the text.
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Delta-Gamma Hedge (concluded)

• Suppose we want to hedge short calls as before.

• A hedging call f2 is brought in.

• To set up a delta-gamma hedge, we solve

−N × f + n1 × S + n2 × f2 −B = 0 (self-financing),

−N ×∆+ n1 + n2 ×∆2 − 0 = 0 (delta neutrality),

−N × Γ + 0 + n2 × Γ2 − 0 = 0 (gamma neutrality),

for n1, n2, and B.

– The gammas of the stock and bond are 0.
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Other Hedges

• If volatility changes, delta-gamma hedge may not work

well.

• An enhancement is the delta-gamma-vega hedge, which

also maintains vega zero portfolio vega.

• To accomplish this, one more security has to be brought

into the process.

• In practice, delta-vega hedge, which may not maintain

gamma neutrality, performs better than delta hedge.
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Trees
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I love a tree more than a man.

— Ludwig van Beethoven (1770–1827)

And though the holes were rather small,

they had to count them all.

— The Beatles, A Day in the Life (1967)
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The Combinatorial Method

• The combinatorial method can often cut the running

time by an order of magnitude.

• The basic paradigm is to count the number of admissible

paths that lead from the root to any terminal node.

• We first used this method in the linear-time algorithm

for standard European option pricing on p. 248.

• We will now apply it to price barrier options.
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The Reflection Principlea

• Imagine a particle at position (0,−a) on the integral

lattice that is to reach (n,−b).

• Without loss of generality, assume a > 0 and b ≥ 0.

• This particle’s movement:

(i, j)
*(i+ 1, j + 1) up move S → Su

j(i+ 1, j − 1) down move S → Sd

• How many paths touch the x axis?

aAndré (1887).

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 581



(0, a) (n, b)

(0, a)

J
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The Reflection Principle (continued)

• For a path from (0,−a) to (n,−b) that touches the x

axis, let J denote the first point this happens.

• Reflect the portion of the path from (0,−a) to J .

• A path from (0,a) to (n,−b) is constructed.

• It also hits the x axis at J for the first time.

• The one-to-one mapping shows the number of paths

from (0,−a) to (n,−b) that touch the x axis equals

the number of paths from (0,a) to (n,−b).
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The Reflection Principle (concluded)

• A path of this kind has (n+ b+ a)/2 down moves and

(n− b− a)/2 up moves.

• Hence there are (
n

n+a+b
2

)
=

(
n

n−a−b
2

)
(63)

such paths for even n+ a+ b.

– Convention:
(
n
k

)
= 0 for k < 0 or k > n.
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Pricing Barrier Options (Lyuu, 1998)

• Focus on the down-and-in call with barrier H < X.

• Assume H < S without loss of generality.

• Define

a ≡
⌈
ln (X/ (Sdn))

ln(u/d)

⌉
=

⌈
ln(X/S)

2σ
√
∆t

+
n

2

⌉
,

h ≡
⌊
ln (H/ (Sdn))

ln(u/d)

⌋
=

⌊
ln(H/S)

2σ
√
∆t

+
n

2

⌋
.

– h is such that H̃ ≡ Suhdn−h is the terminal price

that is closest to, but does not exceed H.

– a is such that X̃ ≡ Suadn−a is the terminal price

that is closest to, but is not exceeded by X.
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Pricing Barrier Options (continued)

• The true barrier is replaced by the effective barrier H̃

in the binomial model.

• A process with n moves hence ends up in the money if

and only if the number of up moves is at least a.

• The price Sukdn−k is at a distance of 2k from the

lowest possible price Sdn on the binomial tree.

–

Sukdn−k = Sd−kdn−k = Sdn−2k. (64)
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0

0

2 h
n2 a

S

0

0

0

0

2 j

~
X Su da n a

Su dj n j

~
H Su dh n h
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Pricing Barrier Options (continued)

• The number of paths from S to the terminal price

Sujdn−j is
(
n
j

)
, each with probability pj(1− p)n−j .

• With reference to p. 587, the reflection principle can be

applied with a = n− 2h and b = 2j − 2h in Eq. (63)

on p. 584 by treating the H̃ line as the x axis.

• Therefore,(
n

n+(n−2h)+(2j−2h)
2

)
=

(
n

n− 2h+ j

)
paths hit H̃ in the process for h ≤ n/2.
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Pricing Barrier Options (concluded)

• The terminal price Sujdn−j is reached by a path that

hits the effective barrier with probability(
n

n− 2h+ j

)
pj(1− p)n−j .

• The option value equals∑2h
j=a

(
n

n−2h+j

)
pj(1− p)n−j

(
Sujdn−j −X

)
Rn

. (65)

– R ≡ erτ/n is the riskless return per period.

• It implies a linear-time algorithm.a

aLyuu (1998).
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Convergence of BOPM

• Equation (65) results in the sawtooth-like convergence

shown on p. 337.

• The reasons are not hard to see.

• The true barrier most likely does not equal the effective

barrier.

• The same holds between the strike price and the

effective strike price.

• The issue of the strike price is less critical.

• But the issue of the barrier is not negligible.
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Convergence of BOPM (continued)

• Convergence is actually good if we limit n to certain

values—191, for example.

• These values make the true barrier coincide with or just

above one of the stock price levels, that is,

H ≈ Sdj = Se−jσ
√

τ/n

for some integer j.

• The preferred n’s are thus

n =

⌊
τ

(ln(S/H)/(jσ))
2

⌋
, j = 1, 2, 3, . . .
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Convergence of BOPM (continued)

• There is only one minor technicality left.

• We picked the effective barrier to be one of the n+ 1

possible terminal stock prices.

• However, the effective barrier above, Sdj , corresponds to

a terminal stock price only when n− j is even.a

• To close this gap, we decrement n by one, if necessary,

to make n− j an even number.

aThis is because j = n − 2k for some k by Eq. (64) on p. 586. Of

course we could have adopted the form Sdj (−n ≤ j ≤ n) for the

effective barrier. It makes a good exercise.
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Convergence of BOPM (concluded)

• The preferred n’s are now

n =

 ℓ if ℓ− j is even

ℓ− 1 otherwise
,

j = 1, 2, 3, . . . , where

ℓ ≡

⌊
τ

(ln(S/H)/(jσ))
2

⌋
.

• Evaluate pricing formula (65) on p. 589 only with the

n’s above.
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Practical Implications

• Now that barrier options can be efficiently priced, we

can afford to pick very large n’s (p. 596).

• This has profound consequences (to explain later).
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n Combinatorial method

Value Time (milliseconds)

21 5.507548 0.30

84 5.597597 0.90

191 5.635415 2.00

342 5.655812 3.60

533 5.652253 5.60

768 5.654609 8.00

1047 5.658622 11.10

1368 5.659711 15.00

1731 5.659416 19.40

2138 5.660511 24.70

2587 5.660592 30.20

3078 5.660099 36.70

3613 5.660498 43.70

4190 5.660388 44.10

4809 5.659955 51.60

5472 5.660122 68.70

6177 5.659981 76.70

6926 5.660263 86.90

7717 5.660272 97.20
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Practical Implications (concluded)

• Pricing is prohibitively time consuming when S ≈ H

because n ∼ 1/ ln2(S/H).

– This is called the barrier-too-close problem.

• This observation is indeed true of standard

quadratic-time binomial tree algorithms.

• But it no longer applies to linear-time algorithms (see

p. 598).

• This binomial model is O(1/
√
n) convergent in general

but O(1/n) convergent when the barrier is matched.a

aLin (R95221010) (2008) and Lin (R95221010) and Palmer (2010).
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Barrier at 95.0 Barrier at 99.5 Barrier at 99.9

n Value Time n Value Time n Value Time

.

.

. 795 7.47761 8 19979 8.11304 253

2743 2.56095 31.1 3184 7.47626 38 79920 8.11297 1013

3040 2.56065 35.5 7163 7.47682 88 179819 8.11300 2200

3351 2.56098 40.1 12736 7.47661 166 319680 8.11299 4100

3678 2.56055 43.8 19899 7.47676 253 499499 8.11299 6300

4021 2.56152 48.1 28656 7.47667 368 719280 8.11299 8500

True 2.5615 7.4767 8.1130

(All times in milliseconds.)
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