
Swaps

• Swaps are agreements between two counterparties to

exchange cash flows in the future according to a

predetermined formula.

• There are two basic types of swaps: interest rate and

currency.

• An interest rate swap occurs when two parties exchange

interest payments periodically.

• Currency swaps are agreements to deliver one currency

against another (our focus here).
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Currency Swaps

• A currency swap involves two parties to exchange cash

flows in different currencies.

• Consider the following fixed rates available to party A

and party B in U.S. dollars and Japanese yen:

Dollars Yen

A DA% YA%

B DB% YB%

• Suppose A wants to take out a fixed-rate loan in yen,

and B wants to take out a fixed-rate loan in dollars.
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Currency Swaps (continued)

• A straightforward scenario is for A to borrow yen at

YA% and B to borrow dollars at DB%.

• But suppose A is relatively more competitive in the

dollar market than the yen market, i.e.,

YB − YA < DB −DA.

• Consider this alternative arrangement:

– A borrows dollars.

– B borrows yen.

– They enter into a currency swap with a bank as the

intermediary.
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Currency Swaps (concluded)

• The counterparties exchange principal at the beginning

and the end of the life of the swap.

• This act transforms A’s loan into a yen loan and B’s yen

loan into a dollar loan.

• The total gain is ((DB −DA)− (YB − YA))%:

– The total interest rate is originally (YA +DB)%.

– The new arrangement has a smaller total rate of

(DA + YB)%.

• Transactions will happen only if the gain is distributed

so that the cost to each party is less than the original.
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Example

• A and B face the following borrowing rates:

Dollars Yen

A 9% 10%

B 12% 11%

• A wants to borrow yen, and B wants to borrow dollars.

• A can borrow yen directly at 10%.

• B can borrow dollars directly at 12%.
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Example (continued)

• The rate differential in dollars (3%) is different from

that in yen (1%).

• So a currency swap with a total saving of 3− 1 = 2% is

possible.

• A is relatively more competitive in the dollar market.

• B is relatively more competitive in the yen market.
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Example (concluded)

• Next page shows an arrangement which is beneficial to

all parties involved.

– A effectively borrows yen at 9.5% (lower than 10%).

– B borrows dollars at 11.5% (lower than 12%).

– The gain is 0.5% for A, 0.5% for B, and, if we treat

dollars and yen identically, 1% for the bank.
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Party BBankParty A

Dollars 9% Yen 11%

Dollars 9%

Yen 11%Yen 9.5%

Dollars 11.5%
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As a Package of Cash Market Instruments

• Assume no default risk.

• Take B on p. 432 as an example.

• The swap is equivalent to a long position in a yen bond

paying 11% annual interest and a short position in a

dollar bond paying 11.5% annual interest.

• The pricing formula is SPY − PD.

– PD is the dollar bond’s value in dollars.

– PY is the yen bond’s value in yen.

– S is the $/yen spot exchange rate.
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As a Package of Cash Market Instruments (concluded)

• The value of a currency swap depends on:

– The term structures of interest rates in the currencies

involved.

– The spot exchange rate.

• It has zero value when

SPY = PD.
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Example

• Take a 3-year swap on p. 432 with principal amounts of

US$1 million and 100 million yen.

• The payments are made once a year.

• The spot exchange rate is 90 yen/$ and the term

structures are flat in both nations—8% in the U.S. and

9% in Japan.

• For B, the value of the swap is (in millions of USD)

1

90
×

(
11× e−0.09 + 11× e−0.09×2 + 111× e−0.09×3

)
−

(
0.115× e−0.08 + 0.115× e−0.08×2 + 1.115× e−0.08×3

)
= 0.074.
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As a Package of Forward Contracts

• From Eq. (37) on p. 402, the forward contract maturing

i years from now has a dollar value of

fi ≡ (SYi) e
−qi −Die

−ri. (42)

– Yi is the yen inflow at year i.

– S is the $/yen spot exchange rate.

– q is the yen interest rate.

– Di is the dollar outflow at year i.

– r is the dollar interest rate.
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As a Package of Forward Contracts (concluded)

• For simplicity, flat term structures were assumed.

• Generalization is straightforward.
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Example

• Take the swap in the example on p. 435.

• Every year, B receives 11 million yen and pays 0.115

million dollars.

• In addition, at the end of the third year, B receives 100

million yen and pays 1 million dollars.

• Each of these transactions represents a forward contract.

• Y1 = Y2 = 11, Y3 = 111, S = 1/90, D1 = D2 = 0.115,

D3 = 1.115, q = 0.09, and r = 0.08.

• Plug in these numbers to get f1 + f2 + f3 = 0.074

million dollars as before.
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Stochastic Processes and Brownian Motion
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Of all the intellectual hurdles which the human mind

has confronted and has overcome in the last

fifteen hundred years, the one which seems to me

to have been the most amazing in character and

the most stupendous in the scope of its

consequences is the one relating to

the problem of motion.

— Herbert Butterfield (1900–1979)
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Stochastic Processes

• A stochastic process

X = {X(t) }

is a time series of random variables.

• X(t) (or Xt) is a random variable for each time t and

is usually called the state of the process at time t.

• A realization of X is called a sample path.

• A sample path defines an ordinary function of t.
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Stochastic Processes (concluded)

• If the times t form a countable set, X is called a

discrete-time stochastic process or a time series.

• In this case, subscripts rather than parentheses are

usually employed, as in

X = {Xn }.

• If the times form a continuum, X is called a

continuous-time stochastic process.
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Random Walks

• The binomial model is a random walk in disguise.

• Consider a particle on the integer line, 0,±1,±2, . . . .

• In each time step, it can make one move to the right

with probability p or one move to the left with

probability 1− p.

– This random walk is symmetric when p = 1/2.

• Connection with the BOPM: The particle’s position

denotes the total number of up moves minus that of

down moves up to that time.
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Random Walk with Drift

Xn = µ+Xn−1 + ξn.

• ξn are independent and identically distributed with zero

mean.

• Drift µ is the expected change per period.

• Note that this process is continuous in space.
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Martingalesa

• {X(t), t ≥ 0 } is a martingale if E[ |X(t) | ] < ∞ for

t ≥ 0 and

E[X(t) |X(u), 0 ≤ u ≤ s ] = X(s), s ≤ t. (43)

• In the discrete-time setting, a martingale means

E[Xn+1 |X1, X2, . . . , Xn ] = Xn. (44)

• Xn can be interpreted as a gambler’s fortune after the

nth gamble.

• Identity (44) then says the expected fortune after the

(n+ 1)th gamble equals the fortune after the nth

gamble regardless of what may have occurred before.
aThe origin of the name is somewhat obscure.
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Martingales (concluded)

• A martingale is therefore a notion of fair games.

• Apply the law of iterated conditional expectations to

both sides of Eq. (44) on p. 446 to yield

E[Xn ] = E[X1 ] (45)

for all n.

• Similarly, E[X(t) ] = E[X(0) ] in the continuous-time

case.
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Still a Martingale?

• Suppose we replace Eq. (44) on p. 446 with

E[Xn+1 |Xn ] = Xn.

• It also says past history cannot affect the future.

• But is it equivalent to the original definition (44) on

p. 446?a

aContributed by Mr. Hsieh, Chicheng (M9007304) on April 13, 2005.
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Still a Martingale? (continued)

• Well, no.a

• Consider this random walk with drift:

Xi =

 Xi−1 + ξi, if i is even,

Xi−2, otherwise.

• Above, ξn are random variables with zero mean.

aContributed by Mr. Zhang, Ann-Sheng (B89201033) on April 13,

2005.
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Still a Martingale? (concluded)

• It is not hard to see that

E[Xi |Xi−1 ] =

 Xi−1, if i is even,

Xi−1, otherwise.

– It is a martingale by the “new” definition.

• But

E[Xi | . . . , Xi−2, Xi−1 ] =

 Xi−1, if i is even,

Xi−2, otherwise.

– It is not a martingale by the original definition.
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Example

• Consider the stochastic process

{Zn ≡
n∑

i=1

Xi, n ≥ 1 },

where Xi are independent random variables with zero

mean.

• This process is a martingale because

E[Zn+1 |Z1, Z2, . . . , Zn ]

= E[Zn +Xn+1 |Z1, Z2, . . . , Zn ]

= E[Zn |Z1, Z2, . . . , Zn ] + E[Xn+1 |Z1, Z2, . . . , Zn ]

= Zn + E[Xn+1 ] = Zn.
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Probability Measure

• A probability measure assigns probabilities to states of

the world.

• A martingale is defined with respect to a probability

measure, under which the expectation is taken.

• A martingale is also defined with respect to an

information set.

– In the characterizations (43)–(44) on p. 446, the

information set contains the current and past values

of X by default.

– But it need not be so.
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Probability Measure (continued)

• A stochastic process {X(t), t ≥ 0 } is a martingale with

respect to information sets { It } if, for all t ≥ 0,

E[ |X(t) | ] < ∞ and

E[X(u) | It ] = X(t)

for all u > t.

• The discrete-time version: For all n > 0,

E[Xn+1 | In ] = Xn,

given the information sets { In }.
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Probability Measure (concluded)

• The above implies

E[Xn+m | In ] = Xn

for any m > 0 by Eq. (19) on p. 146.

– A typical In is the price information up to time n.

– Then the above identity says the FVs of X will not

deviate systematically from today’s value given the

price history.
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Example

• Consider the stochastic process {Zn − nµ, n ≥ 1 }.
– Zn ≡

∑n
i=1 Xi.

– X1, X2, . . . are independent random variables with

mean µ.

• Now,

E[Zn+1 − (n+ 1)µ |X1, X2, . . . , Xn ]

= E[Zn+1 |X1, X2, . . . , Xn ]− (n+ 1)µ

= E[Zn +Xn+1 |X1, X2, . . . , Xn ]− (n+ 1)µ

= Zn + µ− (n+ 1)µ

= Zn − nµ.
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Example (concluded)

• Define

In ≡ {X1, X2, . . . , Xn }.

• Then

{Zn − nµ, n ≥ 1 }

is a martingale with respect to { In }.
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Martingale Pricing

• Recall that the price of a European option is the

expected discounted future payoff at expiration in a

risk-neutral economy.

• This principle can be generalized using the concept of

martingale.

• Recall the recursive valuation of European option via

C = [ pCu + (1− p)Cd ]/R.

– p is the risk-neutral probability.

– $1 grows to $R in a period.
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Martingale Pricing (continued)

• Let C(i) denote the value of the option at time i.

• Consider the discount process{
C(i)

Ri
, i = 0, 1, . . . , n

}
.

• Then,

E

[
C(i+ 1)

Ri+1

∣∣∣∣ C(i) = C

]
=

pCu + (1− p)Cd

Ri+1
=

C

Ri
.

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 458



Martingale Pricing (continued)

• It is easy to show that

E

[
C(k)

Rk

∣∣∣∣ C(i) = C

]
=

C

Ri
, i ≤ k. (46)

• This formulation assumes:a

1. The model is Markovian: The distribution of the

future is determined by the present (time i ) and not

the past.

2. The payoff depends only on the terminal price of the

underlying asset (Asian options do not qualify).

aContributed by Mr. Wang, Liang-Kai (Ph.D. student, ECE, Univer-

sity of Wisconsin-Madison) and Mr. Hsiao, Huan-Wen (B90902081) on

May 3, 2006.

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 459



Martingale Pricing (continued)

• In general, the discount process is a martingale in thata

Eπ
i

[
C(k)

Rk

]
=

C(i)

Ri
, i ≤ k. (47)

– Eπ
i is taken under the risk-neutral probability

conditional on the price information up to time i.

• This risk-neutral probability is also called the EMM, or

the equivalent martingale (probability) measure.

aIn this general formulation, Asian options do qualify.
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Martingale Pricing (continued)

• Equation (47) holds for all assets, not just options.

• When interest rates are stochastic, the equation becomes

C(i)

M(i)
= Eπ

i

[
C(k)

M(k)

]
, i ≤ k. (48)

– M(j) is the balance in the money market account at

time j using the rollover strategy with an initial

investment of $1.

– It is called the bank account process.

• It says the discount process is a martingale under π.
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Martingale Pricing (continued)

• If interest rates are stochastic, then M(j) is a random

variable.

– M(0) = 1.

– M(j) is known at time j − 1.

• Identity (48) on p. 461 is the general formulation of

risk-neutral valuation.
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Martingale Pricing (concluded)

Theorem 16 A discrete-time model is arbitrage-free if and

only if there exists a probability measure such that the

discount process is a martingale.a

aThis probability measure is called the risk-neutral probability mea-

sure.

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 463



Futures Price under the BOPM

• Futures prices form a martingale under the risk-neutral

probability.

– The expected futures price in the next period is

pfFu+ (1− pf)Fd = F

(
1− d

u− d
u+

u− 1

u− d
d

)
= F

(p. 421).

• Can be generalized to

Fi = Eπ
i [Fk ], i ≤ k,

where Fi is the futures price at time i.

• This equation holds under stochastic interest rates, too.
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Martingale Pricing and Numerairea

• The martingale pricing formula (48) on p. 461 uses the

money market account as numeraire.b

– It expresses the price of any asset relative to the

money market account.

• The money market account is not the only choice for

numeraire.

• Suppose asset S’s value is positive at all times.

aJohn Law (1671–1729), “Money to be qualified for exchaning goods

and for payments need not be certain in its value.”
bLeon Walras (1834–1910).
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Martingale Pricing and Numeraire (concluded)

• Choose S as numeraire.

• Martingale pricing says there exists a risk-neutral

probability π under which the relative price of any asset

C is a martingale:

C(i)

S(i)
= Eπ

i

[
C(k)

S(k)

]
, i ≤ k.

– S(j) denotes the price of S at time j.

• So the discount process remains a martingale.
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Example

• Take the binomial model with two assets.

• In a period, asset one’s price can go from S to S1 or

S2.

• In a period, asset two’s price can go from P to P1 or

P2.

• Both assets must move up or down at the same time.

• Assume
S1

P1
<

S

P
<

S2

P2

to rule out arbitrage opportunities.
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Example (continued)

• For any derivative security, let C1 be its price at time

one if asset one’s price moves to S1.

• Let C2 be its price at time one if asset one’s price

moves to S2.

• Replicate the derivative by solving

αS1 + βP1 = C1,

αS2 + βP2 = C2,

using α units of asset one and β units of asset two.
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Example (continued)

• This yields

α =
P2C1 − P1C2

P2S1 − P1S2
and β =

S2C1 − S1C2

S2P1 − S1P2
.

• The derivative costs

C = αS + βP

=
P2S − PS2

P2S1 − P1S2
C1 +

PS1 − P1S

P2S1 − P1S2
C2.
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Example (concluded)

• It is easy to verify that

C

P
= p

C1

P1
+ (1− p)

C2

P2
.

– Above,

p ≡ (S/P )− (S2/P2)

(S1/P1)− (S2/P2)
.

• The derivative’s price using asset two as numeraire (i.e.,

C/P ) is a martingale under the risk-neutral probability

p.

• The expected returns of the two assets are irrelevant.
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Brownian Motiona

• Brownian motion is a stochastic process {X(t), t ≥ 0 }
with the following properties.

1. X(0) = 0, unless stated otherwise.

2. for any 0 ≤ t0 < t1 < · · · < tn, the random variables

X(tk)−X(tk−1)

for 1 ≤ k ≤ n are independent.b

3. for 0 ≤ s < t, X(t)−X(s) is normally distributed

with mean µ(t− s) and variance σ2(t− s), where µ

and σ ̸= 0 are real numbers.

aRobert Brown (1773–1858).
bSo X(t)−X(s) is independent of X(r) for r ≤ s < t.
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Brownian Motion (concluded)

• The existence and uniqueness of such a process is

guaranteed by Wiener’s theorem.a

• This process will be called a (µ, σ) Brownian motion

with drift µ and variance σ2.

• Although Brownian motion is a continuous function of t

with probability one, it is almost nowhere differentiable.

• The (0, 1) Brownian motion is called the Wiener process.

aNorbert Wiener (1894–1964).
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Example

• If {X(t), t ≥ 0 } is the Wiener process, then

X(t)−X(s) ∼ N(0, t− s).

• A (µ, σ) Brownian motion Y = {Y (t), t ≥ 0 } can be

expressed in terms of the Wiener process:

Y (t) = µt+ σX(t). (49)

• Note that Y (t+ s)− Y (t) ∼ N(µs, σ2s).
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Brownian Motion as Limit of Random Walk

Claim 1 A (µ, σ) Brownian motion is the limiting case of

random walk.

• A particle moves ∆x to the left with probability 1− p.

• It moves to the right with probability p after ∆t time.

• Assume n ≡ t/∆t is an integer.

• Its position at time t is

Y (t) ≡ ∆x (X1 +X2 + · · ·+Xn) .
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Brownian Motion as Limit of Random Walk (continued)

• (continued)

– Here

Xi ≡

 +1 if the ith move is to the right,

−1 if the ith move is to the left.

– Xi are independent with

Prob[Xi = 1 ] = p = 1− Prob[Xi = −1 ].

• Recall E[Xi ] = 2p− 1 and Var[Xi ] = 1− (2p− 1)2.
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Brownian Motion as Limit of Random Walk (continued)

• Therefore,

E[Y (t) ] = n(∆x)(2p− 1),

Var[Y (t) ] = n(∆x)2
[
1− (2p− 1)2

]
.

• With ∆x ≡ σ
√
∆t and p ≡ [ 1 + (µ/σ)

√
∆t ]/2,

E[Y (t) ] = nσ
√
∆t (µ/σ)

√
∆t = µt,

Var[Y (t) ] = nσ2∆t
[
1− (µ/σ)2∆t

]
→ σ2t,

as ∆t → 0.
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Brownian Motion as Limit of Random Walk (concluded)

• Thus, {Y (t), t ≥ 0 } converges to a (µ, σ) Brownian

motion by the central limit theorem.

• Brownian motion with zero drift is the limiting case of

symmetric random walk by choosing µ = 0.

• Note that

Var[Y (t+∆t)− Y (t) ]

=Var[∆xXn+1 ] = (∆x)2 ×Var[Xn+1 ] → σ2∆t.

• Similarity to the the BOPM: The p is identical to the

probability in Eq. (27) on p. 256 and ∆x = lnu.
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Geometric Brownian Motion

• Let X ≡ {X(t), t ≥ 0 } be a Brownian motion process.

• The process

{Y (t) ≡ eX(t), t ≥ 0 },

is called geometric Brownian motion.

• Suppose further that X is a (µ, σ) Brownian motion.

• X(t) ∼ N(µt, σ2t) with moment generating function

E
[
esX(t)

]
= E [Y (t)s ] = eµts+(σ2ts2/2)

from Eq. (20) on p 148.
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Geometric Brownian Motion (continued)

• In particular,

E[Y (t) ] = eµt+(σ2t/2),

Var[Y (t) ] = E
[
Y (t)2

]
− E[Y (t) ]2

= e2µt+σ2t
(
eσ

2t − 1
)
.
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Geometric Brownian Motion (continued)

• It is useful for situations in which percentage changes

are independent and identically distributed.

• Let Yn denote the stock price at time n and Y0 = 1.

• Assume relative returns

Xi ≡
Yi

Yi−1

are independent and identically distributed.
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Geometric Brownian Motion (concluded)

• Then

lnYn =
n∑

i=1

lnXi

is a sum of independent, identically distributed random

variables.

• Thus { lnYn, n ≥ 0 } is approximately Brownian motion.

– And {Yn, n ≥ 0 } is approximately geometric

Brownian motion.
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Continuous-Time Financial Mathematics
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A proof is that which convinces a reasonable man;

a rigorous proof is that which convinces an

unreasonable man.

— Mark Kac (1914–1984)

The pursuit of mathematics is a

divine madness of the human spirit.

— Alfred North Whitehead (1861–1947),

Science and the Modern World
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Stochastic Integrals

• Use W ≡ {W (t), t ≥ 0 } to denote the Wiener process.

• The goal is to develop integrals of X from a class of

stochastic processes,a

It(X) ≡
∫ t

0

X dW, t ≥ 0.

• It(X) is a random variable called the stochastic integral

of X with respect to W .

• The stochastic process { It(X), t ≥ 0 } will be denoted

by
∫
X dW .

aKiyoshi Ito (1915–2008).
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Stochastic Integrals (concluded)

• Typical requirements for X in financial applications are:

– Prob[
∫ t

0
X2(s) ds < ∞ ] = 1 for all t ≥ 0 or the

stronger
∫ t

0
E[X2(s) ] ds < ∞.

– The information set at time t includes the history of

X and W up to that point in time.

– But it contains nothing about the evolution of X or

W after t (nonanticipating, so to speak).

– The future cannot influence the present.

• {X(s), 0 ≤ s ≤ t } is independent of

{W (t+ u)−W (t), u > 0 }.
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Ito Integral

• A theory of stochastic integration.

• As with calculus, it starts with step functions.

• A stochastic process {X(t) } is simple if there exist

0 = t0 < t1 < · · · such that

X(t) = X(tk−1) for t ∈ [ tk−1, tk), k = 1, 2, . . .

for any realization (see figure on next page).
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Ito Integral (continued)

• The Ito integral of a simple process is defined as

It(X) ≡
n−1∑
k=0

X(tk)[W (tk+1)−W (tk) ], (50)

where tn = t.

– The integrand X is evaluated at tk, not tk+1.

• Define the Ito integral of more general processes as a

limiting random variable of the Ito integral of simple

stochastic processes.
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Ito Integral (continued)

• Let X = {X(t), t ≥ 0 } be a general stochastic process.

• Then there exists a random variable It(X), unique

almost certainly, such that It(Xn) converges in

probability to It(X) for each sequence of simple

stochastic processes X1, X2, . . . such that Xn converges

in probability to X.

• If X is continuous with probability one, then It(Xn)

converges in probability to It(X) as

δn ≡ max1≤k≤n(tk − tk−1) goes to zero.
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Ito Integral (concluded)

• It is a fundamental fact that
∫
X dW is continuous

almost surely.

• The following theorem says the Ito integral is a

martingale.

– A corollary is the mean value formula

E

[∫ b

a

X dW

]
= 0.

Theorem 17 The Ito integral
∫
X dW is a martingale.
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Discrete Approximation

• Recall Eq. (50) on p. 489.

• The following simple stochastic process { X̂(t) } can be

used in place of X to approximate the stochastic

integral
∫ t

0
X dW ,

X̂(s) ≡ X(tk−1) for s ∈ [ tk−1, tk), k = 1, 2, . . . , n.

• Note the nonanticipating feature of X̂.

– The information up to time s,

{ X̂(t),W (t), 0 ≤ t ≤ s },

cannot determine the future evolution of X or W .
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Discrete Approximation (concluded)

• Suppose we defined the stochastic integral as

n−1∑
k=0

X(tk+1)[W (tk+1)−W (tk) ].

• Then we would be using the following different simple

stochastic process in the approximation,

Ŷ (s) ≡ X(tk) for s ∈ [ tk−1, tk), k = 1, 2, . . . , n.

• This clearly anticipates the future evolution of X.a

aSee Exercise 14.1.2 of the textbook for an example where it matters.
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Ito Process

• The stochastic process X = {Xt, t ≥ 0 } that solves

Xt = X0 +

∫ t

0

a(Xs, s) ds+

∫ t

0

b(Xs, s) dWs, t ≥ 0

is called an Ito process.

– X0 is a scalar starting point.

– { a(Xt, t) : t ≥ 0 } and { b(Xt, t) : t ≥ 0 } are

stochastic processes satisfying certain regularity

conditions.

• a(Xt, t): the drift.

• b(Xt, t): the diffusion.
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Ito Process (continued)

• A shorthanda is the following stochastic differential

equation for the Ito differential dXt,

dXt = a(Xt, t) dt+ b(Xt, t) dWt. (51)

– Or simply

dXt = at dt+ bt dWt.

– This is Brownian motion with an instantaneous drift

at and an instantaneous variance b2t .

• X is a martingale if at = 0 (Theorem 17 on p. 491).

aPaul Langevin (1904).
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Ito Process (concluded)

• dW is normally distributed with mean zero and

variance dt.

• An equivalent form of Eq. (51) is

dXt = at dt+ bt
√
dt ξ, (52)

where ξ ∼ N(0, 1).
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Euler Approximation

• The following approximation follows from Eq. (52),

X̂(tn+1)

=X̂(tn) + a(X̂(tn), tn)∆t+ b(X̂(tn), tn)∆W (tn),

(53)

where tn ≡ n∆t.

• It is called the Euler or Euler-Maruyama method.

• Recall that ∆W (tn) should be interpreted as

W (tn+1)−W (tn), not W (tn)−W (tn−1).

• Under mild conditions, X̂(tn) converges to X(tn).
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More Discrete Approximations

• Under fairly loose regularity conditions, Eq. (53) on

p. 498 can be replaced by

X̂(tn+1)

=X̂(tn) + a(X̂(tn), tn)∆t+ b(X̂(tn), tn)
√
∆t Y (tn).

– Y (t0), Y (t1), . . . are independent and identically

distributed with zero mean and unit variance.
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More Discrete Approximations (concluded)

• An even simpler discrete approximation scheme:

X̂(tn+1)

=X̂(tn) + a(X̂(tn), tn)∆t+ b(X̂(tn), tn)
√
∆t ξ.

– Prob[ ξ = 1 ] = Prob[ ξ = −1 ] = 1/2.

– Note that E[ ξ ] = 0 and Var[ ξ ] = 1.

• This is a binomial model.

• As ∆t goes to zero, X̂ converges to X.
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Trading and the Ito Integral

• Consider an Ito process dSt = µt dt+ σt dWt.

– St is the vector of security prices at time t.

• Let ϕt be a trading strategy denoting the quantity of

each type of security held at time t.

– Hence the stochastic process ϕtSt is the value of the

portfolio ϕt at time t.

• ϕt dSt ≡ ϕt(µt dt+ σt dWt) represents the change in the

value from security price changes occurring at time t.
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Trading and the Ito Integral (concluded)

• The equivalent Ito integral,

GT (ϕ) ≡
∫ T

0

ϕt dSt =

∫ T

0

ϕtµt dt+

∫ T

0

ϕtσt dWt,

measures the gains realized by the trading strategy over

the period [ 0, T ].
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Ito’s Lemma

A smooth function of an Ito process is itself an Ito process.

Theorem 18 Suppose f : R → R is twice continuously

differentiable and dX = at dt+ bt dW . Then f(X) is the

Ito process,

f(Xt)

= f(X0) +

∫ t

0

f ′(Xs) as ds+

∫ t

0

f ′(Xs) bs dW

+
1

2

∫ t

0

f ′′(Xs) b
2
s ds

for t ≥ 0.
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Ito’s Lemma (continued)

• In differential form, Ito’s lemma becomes

df(X) = f ′(X) a dt+ f ′(X) b dW +
1

2
f ′′(X) b2 dt.

(54)

• Compared with calculus, the interesting part is the third

term on the right-hand side.

• A convenient formulation of Ito’s lemma is

df(X) = f ′(X) dX +
1

2
f ′′(X)(dX)2.
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Ito’s Lemma (continued)

• We are supposed to multiply out

(dX)2 = (a dt+ b dW )2 symbolically according to

× dW dt

dW dt 0

dt 0 0

– The (dW )2 = dt entry is justified by a known result.

• Hence (dX)2 = (a dt+ b dW )2 = b2 dt.

• This form is easy to remember because of its similarity

to the Taylor expansion.
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Ito’s Lemma (continued)

Theorem 19 (Higher-Dimensional Ito’s Lemma) Let

W1,W2, . . . ,Wn be independent Wiener processes and

X ≡ (X1, X2, . . . , Xm) be a vector process. Suppose

f : Rm → R is twice continuously differentiable and Xi is

an Ito process with dXi = ai dt+
∑n

j=1 bij dWj. Then

df(X) is an Ito process with the differential,

df(X) =
m∑
i=1

fi(X) dXi +
1

2

m∑
i=1

m∑
k=1

fik(X) dXi dXk,

where fi ≡ ∂f/∂Xi and fik ≡ ∂2f/∂Xi∂Xk.
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Ito’s Lemma (continued)

• The multiplication table for Theorem 19 is

× dWi dt

dWk δik dt 0

dt 0 0

in which

δik =

 1 if i = k,

0 otherwise.
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Ito’s Lemma (continued)

• In applying the higher-dimensional Ito’s lemma, usually

one of the variables, say X1, is time t and dX1 = dt.

• In this case, b1j = 0 for all j and a1 = 1.

• As an example, let

dXt = at dt+ bt dWt.

• Consider the process f(Xt, t).
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Ito’s Lemma (continued)

• Then

df =
∂f

∂Xt
dXt +

∂f

∂t
dt+

1

2

∂2f

∂X2
t

(dXt)
2

=
∂f

∂Xt
(at dt+ bt dWt) +

∂f

∂t
dt

+
1

2

∂2f

∂X2
t

(at dt+ bt dWt)
2

=

(
∂f

∂Xt
at +

∂f

∂t
+

1

2

∂2f

∂X2
t

b2t

)
dt

+
∂f

∂Xt
bt dWt. (55)
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Ito’s Lemma (continued)

Theorem 20 (Alternative Ito’s Lemma) Let

W1,W2, . . . ,Wm be Wiener processes and

X ≡ (X1, X2, . . . , Xm) be a vector process. Suppose

f : Rm → R is twice continuously differentiable and Xi is

an Ito process with dXi = ai dt+ bi dWi. Then df(X) is the

following Ito process,

df(X) =
m∑
i=1

fi(X) dXi +
1

2

m∑
i=1

m∑
k=1

fik(X) dXi dXk.

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 510



Ito’s Lemma (concluded)

• The multiplication table for Theorem 20 is

× dWi dt

dWk ρik dt 0

dt 0 0

• Above, ρik denotes the correlation between dWi and

dWk.
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Geometric Brownian Motion

• Consider geometric Brownian motion Y (t) ≡ eX(t)

– X(t) is a (µ, σ) Brownian motion.

– Hence dX = µdt+ σ dW by Eq. (49) on p. 473.

• As ∂Y/∂X = Y and ∂2Y/∂X2 = Y , Ito’s formula (54)

on p. 504 implies

dY = Y dX + (1/2)Y (dX)2

= Y (µdt+ σ dW ) + (1/2)Y (µdt+ σ dW )2

= Y (µdt+ σ dW ) + (1/2)Y σ2 dt.
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Geometric Brownian Motion (concluded)

• Hence

dY

Y
=

(
µ+ σ2/2

)
dt+ σ dW. (56)

• The annualized instantaneous rate of return is µ+ σ2/2

not µ.
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