Option Pricing Models

If the world of sense does not fit mathematics, so much the worse for the world of sense. — Bertrand Russell (1872–1970)

> Black insisted that anything one could do with a mouse could be done better with macro redefinitions of particular keys on the keyboard. — Emanuel Derman, My Life as a Quant (2004)

The Setting

- The no-arbitrage principle is insufficient to pin down the exact option value.
- Need a model of probabilistic behavior of stock prices.
- One major obstacle is that it seems a risk-adjusted interest rate is needed to discount the option's payoff.
- Breakthrough came in 1973 when Black (1938–1995) and Scholes with help from Merton published their celebrated option pricing model.^a
 - Known as the Black-Scholes option pricing model.

^aThe results were obtained as early as June 1969.

Terms and Approach

- C: call value.
- P: put value.
- X: strike price
- S: stock price
- $\hat{r} > 0$: the continuously compounded riskless rate per period.
- $R \equiv e^{\hat{r}}$: gross return.
- Start from the discrete-time binomial model.

Binomial Option Pricing Model (BOPM)

- Time is discrete and measured in periods.
- If the current stock price is S, it can go to Su with probability q and Sd with probability 1 - q, where 0 < q < 1 and d < u.

– In fact, d < R < u must hold to rule out arbitrage.

Six pieces of information will suffice to determine the option value based on arbitrage considerations: S, u, d, X, r̂, and the number of periods to expiration.

Call on a Non-Dividend-Paying Stock: Single Period

- The expiration date is only one period from now.
- C_u is the call price at time one if the stock price moves to Su.
- C_d is the call price at time one if the stock price moves to Sd.
- Clearly,

$$C_u = \max(0, Su - X),$$

$$C_d = \max(0, Sd - X).$$

Call on a Non-Dividend-Paying Stock: Single Period (continued)

- Set up a portfolio of *h* shares of stock and *B* dollars in riskless bonds.
 - This costs hS + B.
 - We call h the hedge ratio or delta.
- The value of this portfolio at time one is either hSu + RB or hSd + RB.
- Choose *h* and *B* such that the portfolio replicates the payoff of the call,

$$hSu + RB = C_u,$$

$$hSd + RB = C_d.$$

Call on a Non-Dividend-Paying Stock: Single Period (concluded)

• Solve the above equations to obtain

$$h = \frac{C_u - C_d}{Su - Sd} \ge 0, \tag{23}$$

$$B = \frac{uC_d - dC_u}{(u-d)R}.$$
 (24)

• By the no-arbitrage principle, the European call should cost the same as the equivalent portfolio,^a

$$C = hS + B.$$

• As $uC_d - dC_u < 0$, the equivalent portfolio is a levered long position in stocks.

^aOr the replicating portfolio, as it replicates the option.

American Call Pricing in One Period

- Have to consider immediate exercise.
- $C = \max(hS + B, S X).$
 - When $hS + B \ge S X$, the call should not be exercised immediately.
 - When hS + B < S X, the option should be exercised immediately.
- For non-dividend-paying stocks, early exercise is not optimal by Theorem 4 (p. 198).

• So
$$C = hS + B$$
.

Put Pricing in One Period

- Puts can be similarly priced.
- The delta for the put is $(P_u P_d)/(Su Sd) \le 0$, where

$$P_u = \max(0, X - Su),$$

$$P_d = \max(0, X - Sd).$$

• Let
$$B = \frac{uP_d - dP_u}{(u-d)R}$$
.

- The European put is worth hS + B.
- The American put is worth $\max(hS + B, X S)$.
 - Early exercise is always possible with American puts.

Risk

- Surprisingly, the option value is independent of $q.^{a}$
- Hence it is independent of the expected gross return of the stock, qSu + (1 q)Sd.
- It therefore does not directly depend on investors' risk preferences.
- The option value depends on the sizes of price changes, u and d, which the investors must agree upon.
- Note that the set of possible stock prices is the same whatever q is.

^aMore precisely, not directly dependent on q. Thanks to a lively class discussion on March 16, 2011.

Pseudo Probability

• After substitution and rearrangement,

$$hS + B = \frac{\left(\frac{R-d}{u-d}\right)C_u + \left(\frac{u-R}{u-d}\right)C_d}{R}.$$

• Rewrite it as

$$hS + B = \frac{pC_u + (1-p)C_d}{R},$$

where

$$p \equiv \frac{R-d}{u-d}.$$

• As 0 , it may be interpreted as a probability.

Risk-Neutral Probability

- The expected rate of return for the stock is equal to the riskless rate \hat{r} under p as pSu + (1-p)Sd = RS.
- The expected rates of return of all securities must be the riskless rate when investors are risk-neutral.
- For this reason, p is called the risk-neutral probability.
- The value of an option is the expectation of its discounted future payoff in a risk-neutral economy.
- So the rate used for discounting the FV is the riskless rate in a risk-neutral economy.

Binomial Distribution

• Denote the binomial distribution with parameters nand p by

$$b(j;n,p) \equiv \binom{n}{j} p^{j} (1-p)^{n-j} = \frac{n!}{j! (n-j)!} p^{j} (1-p)^{n-j}.$$

$$-n! = 1 \times 2 \times \cdots \times n.$$

- Convention: 0! = 1.

- Suppose you toss a coin n times with p being the probability of getting heads.
- Then b(j; n, p) is the probability of getting j heads.

Option on a Non-Dividend-Paying Stock: Multi-Period

- Consider a call with two periods remaining before expiration.
- Under the binomial model, the stock can take on three possible prices at time two: *Suu*, *Sud*, and *Sdd*.
 - There are 4 paths.
 - But the tree combines.
- At any node, the next two stock prices only depend on the current price, not the prices of earlier times.

Option on a Non-Dividend-Paying Stock: Multi-Period (continued)

- Let C_{uu} be the call's value at time two if the stock price is Suu.
- Thus,

$$C_{uu} = \max(0, Suu - X).$$

• C_{ud} and C_{dd} can be calculated analogously,

$$C_{ud} = \max(0, Sud - X),$$

$$C_{dd} = \max(0, Sdd - X).$$

Option on a Non-Dividend-Paying Stock: Multi-Period (continued)

• The call values at time 1 can be obtained by applying the same logic:

$$C_{u} = \frac{pC_{uu} + (1-p)C_{ud}}{R}, \qquad (25)$$
$$C_{d} = \frac{pC_{ud} + (1-p)C_{dd}}{R}.$$

- Deltas can be derived from Eq. (23) on p. 214.
- For example, the delta at C_u is

$$\frac{C_{uu} - C_{ud}}{Suu - Sud}.$$

Option on a Non-Dividend-Paying Stock: Multi-Period (concluded)

- We now reach the current period.
- Compute

$$\frac{pC_u + (1-p)C_d}{R}$$

as the option price.

• The values of delta *h* and *B* can be derived from Eqs. (23)–(24) on p. 214.

Early Exercise

- Since the call will not be exercised at time 1 even if it is American, $C_u \ge Su - X$ and $C_d \ge Sd - X$.
- Therefore,

$$hS + B = \frac{pC_u + (1-p)C_d}{R} \ge \frac{[pu + (1-p)d]S - X}{R}$$

= $S - \frac{X}{R} > S - X.$

– The call again will not be exercised at present.^a

• So

$$C = hS + B = \frac{pC_u + (1-p)C_d}{R}$$

^aConsistent with Theorem 4 (p. 198).

Backward Induction of Zermelo (1871–1953)

- The above expression calculates C from the two successor nodes C_u and C_d and none beyond.
- The same computation happened at C_u and C_d , too, as demonstrated in Eq. (25) on p. 225.
- This recursive procedure is called backward induction.
- C equals

$$[p^{2}C_{uu} + 2p(1-p)C_{ud} + (1-p)^{2}C_{dd}](1/R^{2})$$

= $[p^{2}\max(0, Su^{2} - X) + 2p(1-p)\max(0, Sud - X) + (1-p)^{2}\max(0, Sd^{2} - X)]/R^{2}.$

Backward Induction (concluded)

• In the *n*-period case,

$$C = \frac{\sum_{j=0}^{n} {n \choose j} p^{j} (1-p)^{n-j} \times \max\left(0, Su^{j} d^{n-j} - X\right)}{R^{n}}.$$

- The value of a call on a non-dividend-paying stock is the expected discounted payoff at expiration in a risk-neutral economy.
- Similarly,

$$P = \frac{\sum_{j=0}^{n} \binom{n}{j} p^{j} (1-p)^{n-j} \times \max\left(0, X - Su^{j} d^{n-j}\right)}{R^{n}}$$

Risk-Neutral Pricing Methodology

- Every derivative can be priced as if the economy were risk-neutral.
- For a European-style derivative with the terminal payoff function \mathcal{D} , its value is

$$e^{-\hat{r}n}E^{\pi}[\mathcal{D}].$$

- E^{π} means the expectation is taken under the risk-neutral probability.
- The "equivalence" between arbitrage freedom in a model and the existence of a risk-neutral probability is called the (first) fundamental theorem of asset pricing.

Self-Financing

- Delta changes over time.
- The maintenance of an equivalent portfolio is dynamic.
- The maintaining of an equivalent portfolio does not depend on our correctly predicting future stock prices.
- The portfolio's value at the end of the current period is precisely the amount needed to set up the next portfolio.
- The trading strategy is self-financing because there is neither injection nor withdrawal of funds throughout.^a

- Changes in value are due entirely to capital gains.

^aExcept at the beginning, of course, when you have to put up the option value C or P before the replication starts.

Hakansson's $\mathsf{Paradox}^{\mathrm{a}}$

• If options can be replicated, why are they needed at all?

^aHakansson (1979).

Can You Figure Out u, d without Knowing q?^a

- Yes, you can, under BOPM.
- Let us observe the time series of past stock prices, e.g.,

• So with sufficiently long history, you will figure out *u* and *d* without knowing *q*.

^aContributed by Mr. Hsu, Jia-Shuo (D97945003) on March 11, 2009.

The Binomial Option Pricing Formula

• The stock prices at time n are

$$Su^n, Su^{n-1}d, \ldots, Sd^n.$$

- Let *a* be the minimum number of upward price moves for the call to finish in the money.
- So a is the smallest nonnegative integer j such that

$$Su^j d^{n-j} \ge X,$$

or, equivalently,

$$a = \left\lceil \frac{\ln(X/Sd^n)}{\ln(u/d)} \right\rceil$$

The Binomial Option Pricing Formula (concluded)Hence,

 $= \frac{\sum_{j=a}^{n} \binom{n}{j} p^{j} (1-p)^{n-j} \left(S u^{j} d^{n-j} - X\right)}{R^{n}}$ (26) $= S \sum_{j=a}^{n} {n \choose j} \frac{(pu)^{j} [(1-p)d]^{n-j}}{R^{n}}$ $-\frac{X}{R^n}\sum_{i=n}^n \binom{n}{j} p^j (1-p)^{n-j}$ $= S\sum^{n} b\left(j;n,pu/R\right) - Xe^{-\hat{r}n}\sum^{n} b(j;n,p).$ j=aj=a

Numerical Examples

- A non-dividend-paying stock is selling for \$160.
- u = 1.5 and d = 0.5.
- r = 18.232% per period $(R = e^{0.18232} = 1.2)$. - Hence p = (R - d)/(u - d) = 0.7.
- Consider a European call on this stock with X = 150and n = 3.
- The call value is \$85.069 by backward induction.
- Or, the PV of the expected payoff at expiration:

 $\frac{390 \times 0.343 + 30 \times 0.441 + 0 \times 0.189 + 0 \times 0.027}{(1.2)^3} = 85.069.$

Numerical Examples (continued)

- Mispricing leads to arbitrage profits.
- Suppose the option is selling for \$90 instead.
- Sell the call for \$90 and invest \$85.069 in the replicating portfolio with 0.82031 shares of stock required by delta.
- Borrow $0.82031 \times 160 85.069 = 46.1806$ dollars.
- The fund that remains,

```
90 - 85.069 = 4.931 dollars,
```

is the arbitrage profit as we will see.

Numerical Examples (continued)

Time 1:

- Suppose the stock price moves to \$240.
- The new delta is 0.90625.
- Buy

0.90625 - 0.82031 = 0.08594

more shares at the cost of $0.08594 \times 240 = 20.6256$ dollars financed by borrowing.

• Debt now totals $20.6256 + 46.1806 \times 1.2 = 76.04232$ dollars.

Numerical Examples (continued)

Time 2:

- Suppose the stock price plunges to \$120.
- The new delta is 0.25.
- Sell 0.90625 0.25 = 0.65625 shares.
- This generates an income of $0.65625 \times 120 = 78.75$ dollars.
- Use this income to reduce the debt to

```
76.04232 \times 1.2 - 78.75 = 12.5
```

dollars.

Numerical Examples (continued)

Time 3 (the case of rising price):

- The stock price moves to \$180.
- The call we wrote finishes in the money.
- For a loss of 180 150 = 30 dollars, close out the position by either buying back the call or buying a share of stock for delivery.
- Financing this loss with borrowing brings the total debt to $12.5 \times 1.2 + 30 = 45$ dollars.
- It is repaid by selling the 0.25 shares of stock for $0.25 \times 180 = 45$ dollars.

Numerical Examples (concluded)

Time 3 (the case of declining price):

- The stock price moves to \$60.
- The call we wrote is worthless.
- Sell the 0.25 shares of stock for a total of

$$0.25 \times 60 = 15$$

dollars.

• Use it to repay the debt of $12.5 \times 1.2 = 15$ dollars.

Applications besides Exploiting Arbitrage Opportunities $^{\rm a}$

- Replicate an option using stocks and bonds.
- Hedge the options we issued (the mirror image of replication).
- • •

^aThanks to a lively class discussion on March 16, 2011.

Binomial Tree Algorithms for European Options

- The BOPM implies the binomial tree algorithm that applies backward induction.
- The total running time is $O(n^2)$ because there are $\sim n^2/2$ nodes.
- The memory requirement is $O(n^2)$.
 - Can be easily reduced to O(n) by reusing space.^a
- To price European puts, simply replace the payoff.

^aBut watch out for the proper updating of array entries.

Optimal Algorithm

- We can reduce the running time to O(n) and the memory requirement to O(1).
- Note that

$$b(j;n,p) = \frac{p(n-j+1)}{(1-p)j} b(j-1;n,p).$$

Optimal Algorithm (continued)

- The following program computes b(j; n, p) in b[j]:
- It runs in O(n) steps.

1:
$$b[a] := {n \choose a} p^a (1-p)^{n-a};$$

2: for $j = a + 1, a + 2, ..., n$ do
3: $b[j] := b[j-1] \times p \times (n-j+1)/((1-p) \times j);$
4: end for

Optimal Algorithm (concluded)

- With the b(j; n, p) available, the risk-neutral valuation formula (26) on p. 236 is trivial to compute.
- But we only need a single variable to store the b(j;n,p)s as they are being sequentially computed.
- This linear-time algorithm computes the discounted expected value of $\max(S_n X, 0)$.
- The above technique *cannot* be applied to American options because of early exercise.
- So binomial tree algorithms for American options usually run in $O(n^2)$ time.

Toward the Black-Scholes Formula

- The binomial model seems to suffer from two unrealistic assumptions.
 - The stock price takes on only two values in a period.
 - Trading occurs at discrete points in time.
- As *n* increases, the stock price ranges over ever larger numbers of possible values, and trading takes place nearly continuously.
- Any proper calibration of the model parameters makes the BOPM converge to the continuous-time model.
- We now skim through the proof.

- Let τ denote the time to expiration of the option measured in years.
- Let r be the continuously compounded annual rate.
- With n periods during the option's life, each period represents a time interval of τ/n .
- Need to adjust the period-based u, d, and interest rate \hat{r} to match the empirical results as n goes to infinity.
- First, $\hat{r} = r\tau/n$.

– The period gross return $R = e^{\hat{r}}$.

$$\widehat{\mu} \equiv \frac{1}{n} E\left[\ln \frac{S_{\tau}}{S}\right] \text{ and } \widehat{\sigma}^2 \equiv \frac{1}{n} \operatorname{Var}\left[\ln \frac{S_{\tau}}{S}\right]$$

to denote the expected value and variance of the continuously compounded rate of return per period.

• Under the BOPM, it is not hard to show that

$$\widehat{\mu} = q \ln(u/d) + \ln d,$$

$$\widehat{\sigma}^2 = q(1-q) \ln^2(u/d).$$

- Assume the stock's true continuously compounded rate of return over τ years has mean μτ and variance σ²τ.
 Call σ the stock's (annualized) volatility.
- The BOPM converges to the distribution only if

$$n\widehat{\mu} = n[q\ln(u/d) + \ln d] \to \mu\tau,$$

$$n\widehat{\sigma}^2 = nq(1-q)\ln^2(u/d) \to \sigma^2\tau.$$

- Impose ud = 1 to make nodes at the same horizontal level of the tree have identical price (review p. 247).
 - Other choices are possible (see text).
 - Exact solutions for u, d, q are also available.^a

^aChance (2008).

• The above requirements can be satisfied by

$$u = e^{\sigma\sqrt{\tau/n}}, \quad d = e^{-\sigma\sqrt{\tau/n}}, \quad q = \frac{1}{2} + \frac{1}{2} \frac{\mu}{\sigma} \sqrt{\frac{\tau}{n}}.$$
 (27)

• With Eqs. (27), it can be checked that

$$n\widehat{\mu} = \mu\tau,$$

$$n\widehat{\sigma}^2 = \left[1 - \left(\frac{\mu}{\sigma}\right)^2 \frac{\tau}{n}\right] \sigma^2\tau \to \sigma^2\tau.$$

• The choice (27) results in the CRR binomial model.^a

^aCox, Ross, and Rubinstein (1979).

- The no-arbitrage inequalities d < R < u may not hold under Eqs. (27) on p. 256.
 - If this happens, the risk-neutral probability may lie outside [0, 1].^a
- The problem disappears when n satisfies

$$e^{\sigma\sqrt{\tau/n}} > e^{r\tau/n},$$

i.e., when $n > r^2 \tau / \sigma^2$ (check it).

- So it goes away if n is large enough.
- Other solutions will be presented later.

^aMany papers and programs forget to check this condition!

- What is the limiting probabilistic distribution of the continuously compounded rate of return $\ln(S_{\tau}/S)$?
- The central limit theorem says $\ln(S_{\tau}/S)$ converges to the normal distribution with mean $\mu\tau$ and variance $\sigma^2\tau$.
- So $\ln S_{\tau}$ approaches the normal distribution with mean $\mu \tau + \ln S$ and variance $\sigma^2 \tau$.
- S_{τ} has a lognormal distribution in the limit.

Lemma 9 The continuously compounded rate of return $\ln(S_{\tau}/S)$ approaches the normal distribution with mean $(r - \sigma^2/2)\tau$ and variance $\sigma^2\tau$ in a risk-neutral economy.

• Let q equal the risk-neutral probability

$$p \equiv (e^{r\tau/n} - d)/(u - d).$$

• Let $n \to \infty$.

- The expected stock price at expiration in a risk-neutral economy is $Se^{r\tau}$.^a
- The stock's expected annual rate of return^b is thus the riskless rate r.

^aBy Lemma 9 (p. 259) and Eq. (21) on p. 154. ^bIn the sense of $(1/\tau) \ln E[S_{\tau}/S]$ (arithmetic average rate of return) not $(1/\tau)E[\ln(S_{\tau}/S)]$ (geometric average rate of return). Toward the Black-Scholes Formula (concluded)^a Theorem 10 (The Black-Scholes Formula) $C = SN(x) - Xe^{-r\tau}N(x - \sigma\sqrt{\tau}),$ $P = Xe^{-r\tau}N(-x + \sigma\sqrt{\tau}) - SN(-x),$

where

$$x \equiv \frac{\ln(S/X) + (r + \sigma^2/2) \tau}{\sigma\sqrt{\tau}}.$$

^aOn a United flight from San Francisco to Tokyo on March 7, 2010, a real-estate manager mentioned this formula to me!

BOPM and Black-Scholes Model

- The Black-Scholes formula needs 5 parameters: S, X, σ , τ , and r.
- Binomial tree algorithms take 6 inputs: S, X, u, d, \hat{r} , and n.
- The connections are

$$u = e^{\sigma\sqrt{\tau/n}}, \ d = e^{-\sigma\sqrt{\tau/n}}, \ \hat{r} = r\tau/n.$$

- The binomial tree algorithms converge reasonably fast.
- Oscillations can be dealt with by the judicious choices of u and d (see text).

Implied Volatility

- Volatility is the sole parameter not directly observable.
- The Black-Scholes formula can be used to compute the market's opinion of the volatility.^a
 - Solve for σ given the option price, S, X, τ , and r with numerical methods.
 - How about American options?
- This volatility is called the implied volatility.
- Implied volatility is often preferred to historical volatility^b in practice.

^aImplied volatility is hard to compute when τ is small (why?). ^bUsing the historical volatility is like driving a car with your eyes on the rearview mirror?