
The Black-Derman-Toy Modela

• This model is extensively used by practitioners.

• The BDT short rate process is the lognormal binomial

interest rate process described on pp. 820ff (repeated on

next page).

• The volatility structure is given by the market.

• From it, the short rate volatilities (thus vi) are

determined together with ri.

aBlack, Derman, and Toy (BDT) (1990), but essentially finished in

1986 according to Mehrling (2005).
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r4

↗
r3

↗ ↘
r2 r4v4

↗ ↘ ↗
r1 r3v3

↘ ↗ ↘
r2v2 r4v24

↘ ↗
r3v23

↘
r4v34
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The Black-Derman-Toy Model (concluded)

• Our earlier binomial interest rate tree, in contrast,

assumes vi are given a priori.

– A related model of Salomon Brothers takes vi to be

a given constant.a

• Lognormal models preclude negative short rates.

aTuckman (2002).
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The BDT Model: Volatility Structure

• The volatility structure defines the yield volatilities of

zero-coupon bonds of various maturities.

• Let the yield volatility of the i-period zero-coupon bond

be denoted by κi.

• Pu is the price of the i-period zero-coupon bond one

period from now if the short rate makes an up move.

• Pd is the price of the i-period zero-coupon bond one

period from now if the short rate makes a down move.
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The BDT Model: Volatility Structure (concluded)

• Corresponding to these two prices are the following

yields to maturity,

yu ≡ P−1/(i−1)
u − 1,

yd ≡ P
−1/(i−1)
d − 1.

• The yield volatility is defined as

κi ≡
ln(yu/yd)

2
.
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The BDT Model: Calibration

• The inputs to the BDT model are riskless zero-coupon

bond yields and their volatilities.

• For economy of expression, all numbers are period based.

• Suppose inductively that we have calculated

(r1, v1), (r2, v2), . . . , (ri−1, vi−1).

– They define the binomial tree up to period i− 1.

• We now proceed to calculate ri and vi to extend the

tree to period i.
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The BDT Model: Calibration (continued)

• Assume the price of the i-period zero can move to Pu

or Pd one period from now.

• Let y denote the current i-period spot rate, which is

known.

• In a risk-neutral economy,

Pu + Pd

2(1 + r1)
=

1

(1 + y)i
. (117)

• Obviously, Pu and Pd are functions of the unknown ri

and vi.
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The BDT Model: Calibration (continued)

• Viewed from now, the future (i− 1)-period spot rate at

time 1 is uncertain.

• Recall that yu and yd represent the spot rates at the

up node and the down node, respectively (p. 984).

• With κ2 denoting their variance, we have

κi =
1

2
ln

(
Pu

−1/(i−1) − 1

Pd
−1/(i−1) − 1

)
. (118)
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The BDT Model: Calibration (continued)

• We will employ forward induction to derive a

quadratic-time calibration algorithm.a

• Recall that forward induction inductively figures out, by

moving forward in time, how much $1 at a node

contributes to the price (review p. 846(a)).

• This number is called the state price and is the price of

the claim that pays $1 at that node and zero elsewhere.

aChen (R84526007) and Lyuu (1997); Lyuu (1999).
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The BDT Model: Calibration (continued)

• Let the unknown baseline rate for period i be ri = r.

• Let the unknown multiplicative ratio be vi = v.

• Let the state prices at time i− 1 be P1, P2, . . . , Pi,

corresponding to rates r, rv, . . . , rvi−1, respectively.

• One dollar at time i has a present value of

f(r, v) ≡ P1

1 + r
+

P2

1 + rv
+

P3

1 + rv2
+ · · ·+ Pi

1 + rvi−1
.
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The BDT Model: Calibration (continued)

• The yield volatility is

g(r, v) ≡
1

2
ln


(

Pu,1

1+rv
+

Pu,2

1+rv2 + · · ·+ Pu,i−1

1+rvi−1

)−1/(i−1)
− 1(

Pd,1

1+r
+

Pd,2

1+rv
+ · · ·+ Pd,i−1

1+rvi−2

)−1/(i−1)
− 1

 .

• Above, Pu,1, Pu,2, . . . denote the state prices at time

i− 1 of the subtree rooted at the up node (like r2v2 on

p. 981).

• And Pd,1, Pd,2, . . . denote the state prices at time i− 1

of the subtree rooted at the down node (like r2 on

p. 981).
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The BDT Model: Calibration (concluded)

• Note that every node maintains 3 state prices.

• Now solve

f(r, v) =
1

(1 + y)i
,

g(r, v) = κi,

for r = ri and v = vi.

• This O(n2)-time algorithm appears in the text.
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The BDT Model: Continuous-Time Limit

• The continuous-time limit of the BDT model is

d ln r =

(
θ(t) +

σ′(t)

σ(t)
ln r

)
dt+ σ(t) dW.

• The short rate volatility clearly should be a declining

function of time for the model to display mean reversion.

– That makes σ′(t) < 0.

• In particular, constant volatility will not attain mean

reversion.
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The Black-Karasinski Modela

• The BK model stipulates that the short rate follows

d ln r = κ(t)(θ(t)− ln r) dt+ σ(t) dW.

• This explicitly mean-reverting model depends on time

through κ( · ), θ( · ), and σ( · ).

• The BK model hence has one more degree of freedom

than the BDT model.

• The speed of mean reversion κ(t) and the short rate

volatility σ(t) are independent.

aBlack and Karasinski (1991).
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The Black-Karasinski Model: Discrete Time

• The discrete-time version of the BK model has the same

representation as the BDT model.

• To maintain a combining binomial tree, however,

requires some manipulations.

• The next plot illustrates the ideas in which

t2 ≡ t1 +∆t1,

t3 ≡ t2 +∆t2.
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↗

ln rd(t2)

↗ ↘

ln r(t1) ln rdu(t3) = ln rud(t3)

↘ ↗

ln ru(t2)

↘
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The Black-Karasinski Model: Discrete Time
(continued)

• Note that

ln rd(t2) = ln r(t1) + κ(t1)(θ(t1)− ln r(t1))∆t1 − σ(t1)
√

∆t1 ,

ln ru(t2) = ln r(t1) + κ(t1)(θ(t1)− ln r(t1))∆t1 + σ(t1)
√

∆t1 .

• To ensure that an up move followed by a down move
coincides with a down move followed by an up move,
impose

ln rd(t2) + κ(t2)(θ(t2)− ln rd(t2))∆t2 + σ(t2)
√

∆t2 ,

= ln ru(t2) + κ(t2)(θ(t2)− ln ru(t2))∆t2 − σ(t2)
√

∆t2 .
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The Black-Karasinski Model: Discrete Time
(concluded)

• They imply

κ(t2) =
1− (σ(t2)/σ(t1))

√
∆t2/∆t1

∆t2
.

(119)

• So from ∆t1, we can calculate the ∆t2 that satisfies the

combining condition and then iterate.

– t0 → ∆t0 → t1 → ∆t1 → t2 → ∆t2 → · · · → T

(roughly).a

aAs κ(t), θ(t), σ(t) are independent of r, the ∆tis will not depend on

r.
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Problems with Lognormal Models in General

• Lognormal models such as BDT and BK share the

problem that Eπ[M(t) ] = ∞ for any finite t if they

the continuously compounded rate.

• Hence periodic compounding should be used.

• Another issue is computational.

• Lognormal models usually do not give analytical

solutions to even basic fixed-income securities.

• As a result, to price short-dated derivatives on long-term

bonds, the tree has to be built over the life of the

underlying asset instead of the life of the derivative.
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Problems with Lognormal Models in General
(concluded)

• This problem can be somewhat mitigated by adopting

different time steps: Use a fine time step up to the

maturity of the short-dated derivative and a coarse time

step beyond the maturity.a

• A down side of this procedure is that it has to be

tailor-made for each derivative.

• Finally, empirically, interest rates do not follow the

lognormal distribution.

aHull and White (1993).
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The Extended Vasicek Modela

• Hull and White proposed models that extend the

Vasicek model and the CIR model.

• They are called the extended Vasicek model and the

extended CIR model.

• The extended Vasicek model adds time dependence to

the original Vasicek model,

dr = (θ(t)− a(t) r) dt+ σ(t) dW.

• Like the Ho-Lee model, this is a normal model, and the

inclusion of θ(t) allows for an exact fit to the current

spot rate curve.

aHull and White (1990).
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The Extended Vasicek Model (concluded)

• Function σ(t) defines the short rate volatility, and a(t)

determines the shape of the volatility structure.

• Under this model, many European-style securities can be

evaluated analytically, and efficient numerical procedures

can be developed for American-style securities.
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The Hull-White Model

• The Hull-White model is the following special case,

dr = (θ(t)− ar) dt+ σ dW.

• When the current term structure is matched,a

θ(t) =
∂f(0, t)

∂t
+ af(0, t) +

σ2

2a

(
1− e−2at

)
.

aHull and White (1993).
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The Extended CIR Model

• In the extended CIR model the short rate follows

dr = (θ(t)− a(t) r) dt+ σ(t)
√
r dW.

• The functions θ(t), a(t), and σ(t) are implied from

market observables.

• With constant parameters, there exist analytical

solutions to a small set of interest rate-sensitive

securities.

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 1003



The Hull-White Model: Calibrationa

• We describe a trinomial forward induction scheme to

calibrate the Hull-White model given a and σ.

• As with the Ho-Lee model, the set of achievable short

rates is evenly spaced.

• Let r0 be the annualized, continuously compounded

short rate at time zero.

• Every short rate on the tree takes on a value

r0 + j∆r

for some integer j.

aHull and White (1993).
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The Hull-White Model: Calibration (continued)

• Time increments on the tree are also equally spaced at

∆t apart.

• Hence nodes are located at times i∆t for i = 0, 1, 2, . . . .

• We shall refer to the node on the tree with

ti ≡ i∆t,

rj ≡ r0 + j∆r,

as the (i, j) node.

• The short rate at node (i, j), which equals rj , is

effective for the time period [ ti, ti+1).
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The Hull-White Model: Calibration (continued)

• Use

µi,j ≡ θ(ti)− arj (120)

to denote the drift rate, or the expected change, of the

short rate as seen from node (i, j).

• The three distinct possibilities for node (i, j) with three

branches incident from it are displayed on p. 1007.a

• The interest rate movement described by the middle

branch may be an increase of ∆r, no change, or a

decrease of ∆r.

aA predecessor to Lyuu and Wu’s (R90723065) (2003, 2005) mean-

tracking idea.
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The Hull-White Model: Calibration (continued)

(i, j)

�
(i+ 1, j + 2)

*(i+ 1, j + 1)

- (i+ 1, j)(i, j)

*(i+ 1, j + 1)

- (i+ 1, j)

j(i+ 1, j − 1)

(i, j) - (i+ 1, j)

j(i+ 1, j − 1)

R
(i+ 1, j − 2)
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The Hull-White Model: Calibration (continued)

• The upper and the lower branches bracket the middle

branch.

• Define

p1(i, j) ≡ the probability of following the upper branch from node (i, j)

p2(i, j) ≡ the probability of following the middle branch from node (i, j)

p3(i, j) ≡ the probability of following the lower branch from node (i, j)

• The root of the tree is set to the current short rate r0.

• Inductively, the drift µi,j at node (i, j) is a function of

θ(ti).
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The Hull-White Model: Calibration (continued)

• Once θ(ti) is available, µi,j can be derived via

Eq. (120) on p. 1006.

• This in turn determines the branching scheme at every

node (i, j) for each j, as we will see shortly.

• The value of θ(ti) must thus be made consistent with

the spot rate r(0, ti+2).
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The Hull-White Model: Calibration (continued)

• The branches emanating from node (i, j) with their

accompanying probabilitiesa must be chosen to be

consistent with µi,j and σ.

• This is accomplished by letting the middle node be as

close as possible to the current value of the short rate

plus the drift.

• Let k be the number among { j − 1, j, j + 1 } that

makes the short rate reached by the middle branch, rk,

closest to

rj + µi,j∆t.

ap1(i, j), p2(i, j), and p3(i, j).
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The Hull-White Model: Calibration (continued)

• Then the three nodes following node (i, j) are nodes

(i+ 1, k + 1), (i+ 1, k), and (i+ 1, k − 1).

• The resulting tree may have the geometry depicted on

p. 1012.

• The resulting tree combines because of the constant

jump sizes to reach k.
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The Hull-White Model: Calibration (continued)

• The probabilities for moving along these branches are

functions of µi,j , σ, j, and k:

p1(i, j) =
σ2∆t+ η2

2(∆r)2
+

η

2∆r
(121)

p2(i, j) = 1− σ2∆t+ η2

(∆r)2
(121′)

p3(i, j) =
σ2∆t+ η2

2(∆r)2
− η

2∆r
(121′′)

where

η ≡ µi,j∆t+ (j − k)∆r.
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The Hull-White Model: Calibration (continued)

• As trinomial tree algorithms are but explicit methods in

disguise, certain relations must hold for ∆r and ∆t to

guarantee stability.

• It can be shown that their values must satisfy

σ
√
3∆t

2
≤ ∆r ≤ 2σ

√
∆t

for the probabilities to lie between zero and one.

– For example, ∆r can be set to σ
√
3∆t .a

aHull and White (1988).
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The Hull-White Model: Calibration (continued)

• Now it only remains to determine θ(ti).

• At this point at time ti, r(0, t1), r(0, t2), . . . , r(0, ti+1)

have already been matched.

• Let Q(i, j) denote the value of the state contingent

claim that pays one dollar at node (i, j) and zero

otherwise.

• By construction, the state prices Q(i, j) for all j are

known by now.

• We begin with state price Q(0, 0) = 1.
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The Hull-White Model: Calibration (continued)

• Let r̂(i) refer to the short rate value at time ti.

• The value at time zero of a zero-coupon bond maturing

at time ti+2 is then

e−r(0,ti+2)(i+2)∆t

=
∑
j

Q(i, j) e−rj∆t Eπ
[
e−r̂(i+1)∆t

∣∣∣ r̂(i) = rj

]
.(122)

• The right-hand side represents the value of $1 obtained

by holding a zero-coupon bond until time ti+1 and then

reinvesting the proceeds at that time at the prevailing

short rate r̂(i+ 1), which is stochastic.
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The Hull-White Model: Calibration (continued)

• The expectation (122) can be approximated by

Eπ
[
e−r̂(i+1)∆t

∣∣∣ r̂(i) = rj

]
≈ e−rj∆t

(
1− µi,j(∆t)2 +

σ2(∆t)3

2

)
. (123)

• Substitute Eq. (123) into Eq. (122) and replace µi,j

with θ(ti)− arj to obtain

θ(ti) ≈

∑
j Q(i, j) e

−2rj∆t (
1 + arj(∆t)2 + σ2(∆t)3/2

)
− e

−r(0,ti+2)(i+2)∆t

(∆t)2
∑

j Q(i, j) e
−2rj∆t

.
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The Hull-White Model: Calibration (continued)

• For the Hull-White model, the expectation in Eq. (123)

on p. 1017 is actually known analytically by Eq. (19) on

p. 152:

Eπ
[
e−r̂(i+1)∆t

∣∣∣ r̂(i) = rj

]
= e−rj∆t+(−θ(ti)+arj+σ2∆t/2)(∆t)2 .

• Therefore, alternatively,

θ(ti) =
r(0, ti+2)(i+ 2)

∆t
+
σ2∆t

2
+
ln
∑

j Q(i, j) e−2rj∆t+arj(∆t)2

(∆t)2
.
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The Hull-White Model: Calibration (concluded)

• With θ(ti) in hand, we can compute µi,j , the

probabilities, and finally the state prices at time ti+1:

Q(i+ 1, j)

=
∑

(i, j∗) is connected to (i + 1, j) with probability pj∗

pj∗e
−rj∗∆tQ(i, j∗).

• There are at most 5 choices for j∗ (why?).

• The total running time is O(n2).

• The space requirement is O(n) (why?).
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Comments on the Hull-White Model

• One can try different values of a and σ for each option

or have an a value common to all options but use a

different σ value for each option.

• Either approach can match all the option prices exactly.

• If the demand is for a single set of parameters that

replicate all option prices, the Hull-White model can be

calibrated to all the observed option prices by choosing

a and σ that minimize the mean-squared pricing error.a

aHull and White (1995).
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The Hull-White Model: Calibration with Irregular
Trinomial Trees

• The previous calibration algorithm is quite general.

• For example, it can be modified to apply to cases where

the diffusion term has the form σrb.

• But it has at least two shortcomings.

• First, the resulting trinomial tree is irregular (p. 1012).

– So it is harder to program.

• The second shortcoming is again a consequence of the

tree’s irregular shape.
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The Hull-White Model: Calibration with Irregular
Trinomial Trees (concluded)

• Recall that the algorithm figured out θ(ti) that matches

the spot rate r(0, ti+2) in order to determine the

branching schemes for the nodes at time ti.

• But without those branches, the tree was not specified,

and backward induction on the tree was not possible.

• To avoid this dilemma, the algorithm turned to the

continuous-time model to evaluate Eq. (122) on p. 1016

that helps derive θ(ti) later.

• The resulting θ(ti) hence might not yield a tree that

matches the spot rates exactly.
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The Hull-White Model: Calibration with Regular
Trinomial Treesa

• The next, simpler algorithm exploits the fact that the

Hull-White model has a constant diffusion term σ.

• The resulting trinomial tree will be regular.

• All the θ(ti) terms can be chosen by backward

induction to match the spot rates exactly.

• The tree is constructed in two phases.

aHull and White (1994).
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The Hull-White Model: Calibration with Regular
Trinomial Trees (continued)

• In the first phase, a tree is built for the θ(t) = 0 case,

which is an Ornstein-Uhlenbeck process:

dr = −ar dt+ σ dW, r(0) = 0.

– The tree is dagger-shaped (p. 1026).

– The number of nodes above the r0-line, jmax, and

that below the line, jmin, will be picked so that the

probabilities (121) on p. 1013 are positive for all

nodes.

– The tree’s branches and probabilities are in place.
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The Hull-White Model: Calibration with Regular
Trinomial Trees (concluded)

• Phase two fits the term structure.

– Backward induction is applied to calculate the βi to

add to the short rates on the tree at time ti so that

the spot rate r(0, ti+1) is matched.
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The short rate at node (0, 0) equals r0 = 0; here jmax = 3

and jmin = 2.
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The Hull-White Model: Calibration

• Set ∆r = σ
√
3∆t and assume that a > 0.

• Node (i, j) is a top node if j = jmax and a bottom node

if j = −jmin.

• Because the root of the tree has a short rate of r0 = 0,

phase one adopts rj = j∆r.

• Hence the probabilities in Eqs. (121) on p. 1013 use

η ≡ −aj∆r∆t+ (j − k)∆r.
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The Hull-White Model: Calibration (continued)

• The probabilities become

p1(i, j) =
1

6
+

a2j2(∆t)2 − 2aj∆t(j − k) + (j − k)2 − aj∆t + (j − k)

2
,(124)

p2(i, j) =
2

3
−

[
a
2
j
2
(∆t)

2 − 2aj∆t(j − k) + (j − k)
2

]
, (125)

p3(i, j) =
1

6
+

a2j2(∆t)2 − 2aj∆t(j − k) + (j − k)2 + aj∆t − (j − k)

2
.(126)
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The Hull-White Model: Calibration (continued)

• The dagger shape dictates this:

– Let k = j − 1 if node (i, j) is a top node.

– Let k = j + 1 if node (i, j) is a bottom node.

– Let k = j for the rest of the nodes.

• Note that the probabilities are identical for nodes (i, j)

with the same j.

• Furthermore, p1(i, j) = p3(i,−j).
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The Hull-White Model: Calibration (continued)

• The inequalities

3−
√
6

3
< ja∆t <

√
2

3
(127)

ensure that all the branching probabilities are positive in

the upper half of the tree, that is, j > 0 (verify this).

• Similarly, the inequalities

−
√

2

3
< ja∆t < −3−

√
6

3

ensure that the probabilities are positive in the lower

half of the tree, that is, j < 0.
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The Hull-White Model: Calibration (continued)

• To further make the tree symmetric across the r0-line,

we let jmin = jmax.

• As 3−
√
6

3 ≈ 0.184, a good choice is

jmax = ⌈0.184/(a∆t)⌉.

• Phase two computes the βis to fit the spot rates.

• We begin with state price Q(0, 0) = 1.

• Inductively, suppose that spot rates r(0, t1), r(0, t2),

. . . , r(0, ti) have already been matched at time ti.
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The Hull-White Model: Calibration (continued)

• By construction, the state prices Q(i, j) for all j are

known by now.

• The value of a zero-coupon bond maturing at time ti+1

equals

e−r(0,ti+1)(i+1)∆t =
∑
j

Q(i, j) e−(βi+rj)∆t

by risk-neutral valuation.

• Hence

βi =
r(0, ti+1)(i+ 1)∆t+ ln

∑
j Q(i, j) e−rj∆t

∆t
,

and the short rate at node (i, j) equals βi + rj .
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The Hull-White Model: Calibration (concluded)

• The state prices at time ti+1,

Q(i+ 1, j), −min(i+ 1, jmax) ≤ j ≤ min(i+ 1, jmax),

can now be calculated as before.

• The total running time is O(njmax).

• The space requirement is O(n).
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A Numerical Example

• Assume a = 0.1, σ = 0.01, and ∆t = 1 (year).

• Immediately, ∆r = 0.0173205 and jmax = 2.

• The plot on p. 1035 illustrates the 3-period trinomial

tree after phase one.

• For example, the branching probabilities for node E are

calculated by Eqs. (124)–(126) on p. 1028 with j = 2

and k = 1.
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Node A, C, G B, F E D, H I

r (%) 0.00000 1.73205 3.46410 −1.73205 −3.46410

p1 0.16667 0.12167 0.88667 0.22167 0.08667

p2 0.66667 0.65667 0.02667 0.65667 0.02667

p3 0.16667 0.22167 0.08667 0.12167 0.88667
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A Numerical Example (continued)

• Suppose that phase two is to fit the spot rate curve

0.08− 0.05× e−0.18×t.

• The annualized continuously compounded spot rates are

r(0, 1) = 3.82365%, r(0, 2) = 4.51162%, r(0, 3) = 5.08626%.

• Start with state price Q(0, 0) = 1 at node A.
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A Numerical Example (continued)

• Now,

β0 = r(0, 1) + lnQ(0, 0) e−r0 = r(0, 1) = 3.82365%.

• Hence the short rate at node A equals

β0 + r0 = 3.82365%.

• The state prices at year one are calculated as

Q(1, 1) = p1(0, 0) e
−(β0+r0) = 0.160414,

Q(1, 0) = p2(0, 0) e
−(β0+r0) = 0.641657,

Q(1,−1) = p3(0, 0) e
−(β0+r0) = 0.160414.
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A Numerical Example (continued)

• The 2-year rate spot rate r(0, 2) is matched by picking

β1 = r(0, 2)×2+ln
[
Q(1, 1) e−∆r +Q(1, 0) +Q(1,−1) e∆r

]
= 5.20459%.

• Hence the short rates at nodes B, C, and D equal

β1 + rj ,

where j = 1, 0,−1, respectively.

• They are found to be 6.93664%, 5.20459%, and

3.47254%.
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A Numerical Example (continued)

• The state prices at year two are calculated as

Q(2, 2) = p1(1, 1) e
−(β1+r1)Q(1, 1) = 0.018209,

Q(2, 1) = p2(1, 1) e
−(β1+r1)Q(1, 1) + p1(1, 0) e

−(β1+r0)Q(1, 0)

= 0.199799,

Q(2, 0) = p3(1, 1) e
−(β1+r1)Q(1, 1) + p2(1, 0) e

−(β1+r0)Q(1, 0)

+p1(1,−1) e−(β1+r−1)Q(1,−1) = 0.473597,

Q(2,−1) = p3(1, 0) e
−(β1+r0)Q(1, 0) + p2(1,−1) e−(β1+r−1)Q(1,−1)

= 0.203263,

Q(2,−2) = p3(1,−1) e−(β1+r−1)Q(1,−1) = 0.018851.
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A Numerical Example (concluded)

• The 3-year rate spot rate r(0, 3) is matched by picking

β2 = r(0, 3)× 3 + ln
[
Q(2, 2) e−2×∆r +Q(2, 1) e−∆r +Q(2, 0)

+Q(2,−1) e∆r +Q(2,−2) e2×∆r
]
= 6.25359%.

• Hence the short rates at nodes E, F, G, H, and I equal

β2 + rj , where j = 2, 1, 0,−1,−2, respectively.

• They are found to be 9.71769%, 7.98564%, 6.25359%,

4.52154%, and 2.78949%.

• The figure on p. 1041 plots βi for i = 0, 1, . . . , 29.
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The (Whole) Yield Curve Approach

• We have seen several Markovian short rate models.

• The Markovian approach is computationally efficient.

• But it is difficult to model the behavior of yields and

bond prices of different maturities.

• The alternative yield curve approach regards the whole

term structure as the state of a process and directly

specifies how it evolves.
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The Heath-Jarrow-Morton Modela

• This influential model is a forward rate model.

• It is also a popular model.

• The HJM model specifies the initial forward rate curve

and the forward rate volatility structure, which describes

the volatility of each forward rate for a given maturity

date.

• Like the Black-Scholes option pricing model, neither risk

preference assumptions nor the drifts of forward rates

are needed.

aHeath, Jarrow, and Morton (HJM) (1992).
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Introduction to Mortgage-Backed Securities
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Anyone stupid enough to promise to be

responsible for a stranger’s debts

deserves to have his own property

held to guarantee payment.

— Proverbs 27:13
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Mortgages

• A mortgage is a loan secured by the collateral of real

estate property.

• The lender — the mortgagee — can foreclose the loan by

seizing the property if the borrower — the mortgagor —

defaults, that is, fails to make the contractual payments.
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Mortgage-Backed Securities

• A mortgage-backed security (MBS) is a bond backed by

an undivided interest in a pool of mortgages.

• MBSs traditionally enjoy high returns, wide ranges of

products, high credit quality, and liquidity.

• The mortgage market has witnessed tremendous

innovations in product design.
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Mortgage-Backed Securities (concluded)

• The complexity of the products and the prepayment

option require advanced models and software techniques.

– In fact, the mortgage market probably could not

have operated efficiently without them.a

• They also consume lots of computing power.

• Our focus will be on residential mortgages.

• But the underlying principles are applicable to other

types of assets.

aMerton (1994).
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Types of MBSs

• An MBS is issued with pools of mortgage loans as the

collateral.

• The cash flows of the mortgages making up the pool

naturally reflect upon those of the MBS.

• There are three basic types of MBSs:

1. Mortgage pass-through security (MPTS).

2. Collateralized mortgage obligation (CMO).

3. Stripped mortgage-backed security (SMBS).
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Problems Investing in Mortgages

• The mortgage sector is one of the largest in the debt

market (see text).

• Individual mortgages are unattractive for many

investors.

• Often at hundreds of thousands of U.S. dollars or more,

they demand too much investment.

• Most investors lack the resources and knowledge to

assess the credit risk involved.
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Problems Investing in Mortgages (concluded)

• Recall that a traditional mortgage is fixed rate, level

payment, and fully amortized.

• So the percentage of principal and interest (P&I) varying

from month to month, creating accounting headaches.

• Prepayment levels fluctuate with a host of factors,

making the size and the timing of the cash flows

unpredictable.
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Mortgage Pass-Throughs

• The simplest kind of MBS.

• Payments from the underlying mortgages are passed

from the mortgage holders through the servicing agency,

after a fee is subtracted.

• They are distributed to the security holder on a pro rata

basis.

– The holder of a $25,000 certificate from a $1 million

pool is entitled to 21/2% (or 1/40th) of the cash flow.

• Because of higher marketability, a pass-through is easier

to sell than its individual loans.
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Rule for distribution of

cash flows: pro rata


Loan 2


Loan 10


Loan 1


Pass-through: $1 million

par pooled mortgage loans
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Collateralized Mortgage Obligations (CMOs)

• A pass-through exposes the investor to the total

prepayment risk.

• Such risk is undesirable from an asset/liability

perspective.

• To deal with prepayment uncertainty, CMOs were

created.a

• Mortgage pass-throughs have a single maturity and are

backed by individual mortgages.

aIn June 1983 by Freddie Mac with the help of First Boston.
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Collateralized Mortgage Obligations (CMOs)
(concluded)

• CMOs are multiple-maturity, multiclass debt

instruments collateralized by pass-throughs, stripped

mortgage-backed securities, and whole loans.

• The total prepayment risk is now divided among classes

of bonds called classes or tranches.a

• The principal, scheduled and prepaid, is allocated on a

prioritized basis so as to redistribute the prepayment

risk among the tranches in an unequal way.

aTranche is a French word for “slice.”
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Sequential Tranche Paydown

• In the sequential tranche paydown structure, Class A

receives principal paydown and prepayments before

Class B, which in turn does it before Class C, and so on.

• Each tranche thus has a different effective maturity.

• Each tranche may even have a different coupon rate.

• CMOs were the first successful attempt to alter

mortgage cash flows in a security form that attracts a

wide range of investors
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