

To set up a philosophy against physics is rash; philosophers who have done so have always ended in disaster. — Bertrand Russell

Definitions and Basic Results

- Let $A \equiv [a_{ij}]_{1 \le i \le m, 1 \le j \le n}$, or simply $A \in \mathbb{R}^{m \times n}$, denote an $m \times n$ matrix.
- It can also be represented as $[a_1, a_2, \ldots, a_n]$ where $a_i \in \mathbb{R}^m$ are vectors.
 - Vectors are column vectors unless stated otherwise.
- A is a square matrix when m = n.
- The rank of a matrix is the largest number of linearly independent columns.

Definitions and Basic Results (continued)

- A square matrix A is said to be symmetric if $A^{T} = A$.
- A real $n \times n$ matrix

$$A \equiv [a_{ij}]_{i,j}$$

is diagonally dominant if $|a_{ii}| > \sum_{j \neq i} |a_{ij}|$ for $1 \leq i \leq n$.

- Such matrices are nonsingular.
- The identity matrix is the square matrix

$$I \equiv \operatorname{diag}[1, 1, \dots, 1].$$

Definitions and Basic Results (concluded)

- A matrix has full column rank if its columns are linearly independent.
- A real symmetric matrix A is positive definite if

$$x^{\mathrm{T}}Ax = \sum_{i,j} a_{ij}x_ix_j > 0$$

for any nonzero vector x.

• A matrix A is positive definite if and only if there exists a matrix W such that $A = W^{T}W$ and W has full column rank.

Cholesky Decomposition

• Positive definite matrices can be factored as

$$A = LL^{\mathrm{T}}$$
,

called the Cholesky decomposition.

- Above, L is a lower triangular matrix.

Generation of Multivariate Distribution

- Let $\mathbf{x} \equiv [x_1, x_2, \dots, x_n]^T$ be a vector random variable with a positive definite covariance matrix C.
- As usual, assume E[x] = 0.
- This covariance structure can be matched by Py.
 - $-C = PP^{T}$ is the Cholesky decomposition of C.^a
 - $\mathbf{y} \equiv [y_1, y_2, \dots, y_n]^{\mathrm{T}}$ is a vector random variable with a covariance matrix equal to the identity matrix.

^aWhat if C is not positive definite? See Lai (R93942114) and Lyuu (2007).

Generation of Multivariate Normal Distribution

- Suppose we want to generate the multivariate normal distribution with a covariance matrix $C = PP^{T}$.
 - First, generate independent standard normal distributions y_1, y_2, \ldots, y_n .
 - Then

$$P[y_1, y_2, \ldots, y_n]^{\mathrm{T}}$$

has the desired distribution.

- These steps can then be repeated.

Multivariate Derivatives Pricing

- Generating the multivariate normal distribution is essential for the Monte Carlo pricing of multivariate derivatives (pp. 633ff).
- \bullet For example, the rainbow option on k assets has payoff

$$\max(\max(S_1, S_2, \dots, S_k) - X, 0)$$

at maturity.

• The closed-form formula is a multi-dimensional integral.^a

^aJohnson (1987); Chen (D95723006) and Lyuu (2009).

Multivariate Derivatives Pricing (concluded)

- Suppose $dS_j/S_j = r dt + \sigma_j dW_j$, $1 \le j \le k$, where C is the correlation matrix for dW_1, dW_2, \ldots, dW_k .
- Let $C = PP^{\mathrm{T}}$.
- Let ξ consist of k independent random variables from N(0,1).
- Let $\xi' = P\xi$.
- Similar to Eq. (78) on p. 675,

$$S_{i+1} = S_i e^{(r-\sigma_j^2/2)\Delta t + \sigma_j \sqrt{\Delta t} \xi_j'}, \quad 1 \le j \le k.$$

Least-Squares Problems

• The least-squares (LS) problem is concerned with

$$\min_{x \in R^n} \parallel Ax - b \parallel,$$

where $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, $m \ge n$.

- The LS problem is called regression analysis in statistics and is equivalent to minimizing the mean-square error.
- Often written as

$$Ax = b$$
.

Polynomial Regression

- In polynomial regression, $x_0 + x_1x + \cdots + x_nx^n$ is used to fit the data $\{(a_1, b_1), (a_2, b_2), \dots, (a_m, b_m)\}.$
- This leads to the LS problem,

$$\begin{bmatrix} 1 & a_1 & a_1^2 & \cdots & a_1^n \\ 1 & a_2 & a_2^2 & \cdots & a_2^n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & a_m & a_m^2 & \cdots & a_m^n \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}.$$

• Consult the text for solutions.

American Option Pricing by Simulation

- The continuation value of an American option is the conditional expectation of the payoff from keeping the option alive now.
- The option holder must compare the immediate exercise value and the continuation value.
- In standard Monte Carlo simulation, each path is treated independently of other paths.
- But the decision to exercise the option cannot be reached by looking at one path alone.

The Least-Squares Monte Carlo Approach

- The continuation value can be estimated from the cross-sectional information in the simulation by using least squares.^a
- The result is a function (of the state) for estimating the continuation values.
- Use the function to estimate the continuation value for each path to determine its cash flow.
- This is called the least-squares Monte Carlo (LSM) approach and is provably convergent.^b

^aLongstaff and Schwartz (2001).

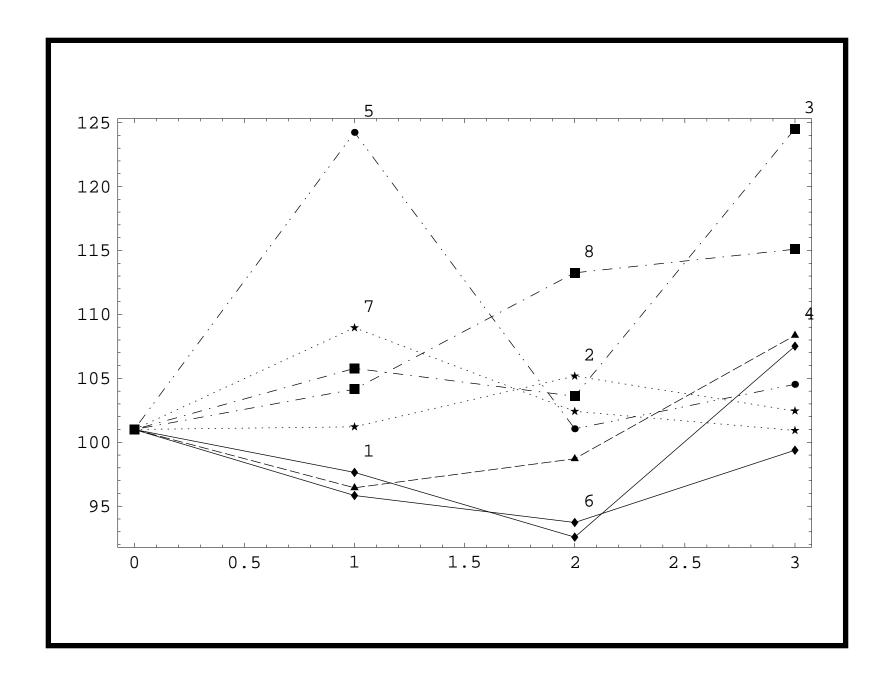
^bClément, Lamberton, and Protter (2002).

A Numerical Example

- Consider a 3-year American put on a non-dividend-paying stock.
- The put is exercisable at years 0, 1, 2, and 3.
- The strike price X = 105.
- The annualized riskless rate is r = 5%.
- The spot stock price is 101.
 - The annual discount factor hence equals 0.951229.
- We use only 8 price paths to illustrate the algorithm.

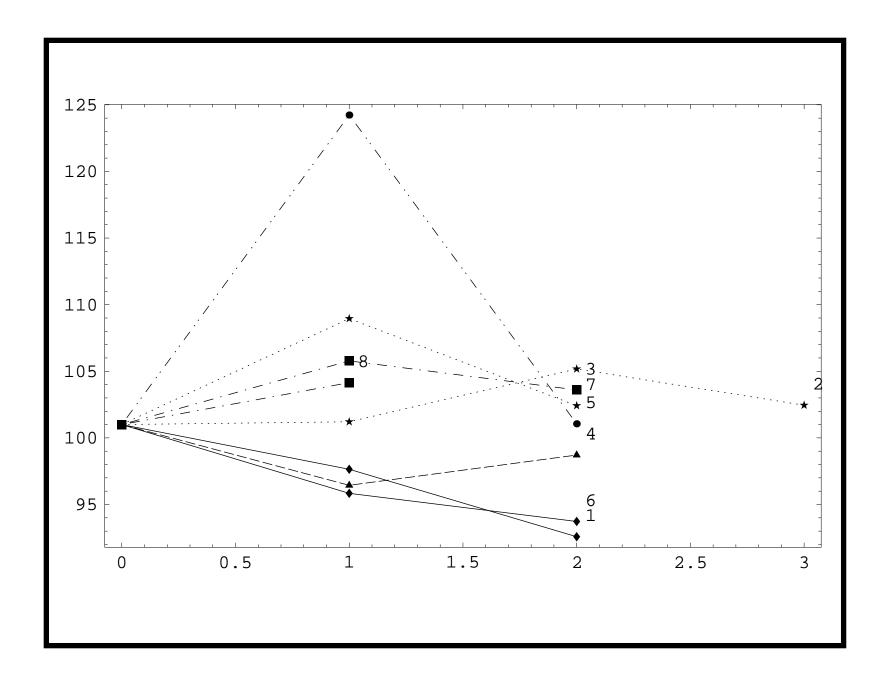
Stock price paths

Path	Year 0	Year 1	Year 2	Year 3
1	101	97.6424	92.5815	107.5178
2	101	101.2103	105.1763	102.4524
3	101	105.7802	103.6010	124.5115
4	101	96.4411	98.7120	108.3600
5	101	124.2345	101.0564	104.5315
6	101	95.8375	93.7270	99.3788
7	101	108.9554	102.4177	100.9225
8	101	104.1475	113.2516	115.0994



- We use the basis functions $1, x, x^2$.
 - Other basis functions are possible.^a
- The plot next page shows the final estimated optimal exercise strategy given by LSM.
- We now proceed to tackle our problem.
- The idea is to calculate the cash flow along each path, using information from all paths.

^aLaguerre polynomials, Hermite polynomials, Legendre polynomials, Chebyshev polynomials, Gedenbauer polynomials, and Jacobi polynomials.



Cash flows at year 3

Path	Year 0	Year 1	Year 2	Year 3
1				0
2				2.5476
3				0
4				0
5				0.4685
6				5.6212
7				4.0775
8				0

- The cash flows at year 3 are the exercise value if the put is in the money.
- Only 4 paths are in the money: 2, 5, 6, 7.
- Some of the cash flows may not occur if the put is exercised earlier, which we will find out step by step.
- Incidentally, the European counterpart has a value of

$$0.951229^3 \times \frac{2.5476 + 0.4685 + 5.6212 + 4.0775}{8} = 1.3680.$$

- We move on to year 2.
- For each state that is in the money at year 2, we must decide whether to exercise it.
- There are 6 paths for which the put is in the money: 1, 3, 4, 5, 6, 7.
- Only in-the-money paths will be used in the regression because they are where early exercise is relevant.
 - If there were none, we would move on to year 1.

- Let x denote the stock prices at year 2 for those 6 paths.
- Let y denote the corresponding discounted future cash flows (at year 3) if the put is not exercised at year 2.

Regression at year 2

Path	x	y
1	92.5815	0×0.951229
2		
3	103.6010	0×0.951229
4	98.7120	0×0.951229
5	101.0564	0.4685×0.951229
6	93.7270	5.6212×0.951229
7	102.4177	4.0775×0.951229
8		

- We regress y on 1, x, and x^2 .
- The result is

$$f(x) = 22.08 - 0.313114 \times x + 0.00106918 \times x^{2}.$$

- f estimates the continuation value conditional on the stock price at year 2.
- We next compare the immediate exercise value and the continuation value.

Optimal early exercise decision at year 2

Path	Exercise	Continuation
1	12.4185	f(92.5815) = 2.2558
2		
3	1.3990	f(103.6010) = 1.1168
4	6.2880	f(98.7120) = 1.5901
5	3.9436	f(101.0564) = 1.3568
6	11.2730	f(93.7270) = 2.1253
7	2.5823	f(102.4177) = 0.3326
8		

- Amazingly, the put should be exercised in all 6 paths: 1, 3, 4, 5, 6, 7.
- Now, any positive cash flow at year 3 should be set to zero for these paths as the put is exercised before year 3.
 - They are paths 5, 6, 7.
- Hence the cash flows on p. 734 become the next ones.

Cash flows at years 2 & 3

Path	Year 0	Year 1	Year 2	Year 3
1			12.4185	0
2			0	2.5476
3			1.3990	0
4			6.2880	0
5			3.9436	0
6			11.2730	0
7			2.5823	0
8			0	0

- We move on to year 1.
- For each state that is in the money at year 1, we must decide whether to exercise it.
- There are 5 paths for which the put is in the money: 1, 2, 4, 6, 8.
- Only in-the-money paths will be used in the regression because they are where early exercise is relevant.
 - If there were none, we would move on to year 0.

- \bullet Let x denote the stock prices at year 1 for those 5 paths.
- Let y denote the corresponding discounted future cash flows if the put is not exercised at year 1.
- From p. 742, we have the following table.

Regression at year 1

Path	x	y
1	97.6424	12.4185×0.951229
2	101.2103	2.5476×0.951229^2
3		
4	96.4411	6.2880×0.951229
5		
6	95.8375	11.2730×0.951229
7		
8	104.1475	0

- We regress y on 1, x, and x^2 .
- The result is

$$f(x) = -420.964 + 9.78113 \times x - 0.0551567 \times x^{2}.$$

- f estimates the continuation value conditional on the stock price at year 1.
- We next compare the immediate exercise value and the continuation value.

Optimal early exercise decision at year 1

Path	Exercise	Continuation
1	7.3576	f(97.6424) = 8.2230
2	3.7897	f(101.2103) = 3.9882
3		
4	8.5589	f(96.4411) = 9.3329
5		
6	9.1625	f(95.8375) = 9.83042
7		
8	0.8525	f(104.1475) = -0.551885

- The put should be exercised for 1 path only: 8.
- Now, any positive future cash flow should be set to zero for this path.
 - But there is none.
- Hence the cash flows on p. 742 become the next ones.
- They also confirm the plot on p. 733.

Cash flows at years 1, 2, & 3

Path	Year 0	Year 1	Year 2	Year 3
1		0	12.4185	0
2		0	0	2.5476
3		0	1.3990	0
4		0	6.2880	0
5		0	3.9436	0
6		0	11.2730	0
7		0	2.5823	0
8		0.8525	0	0

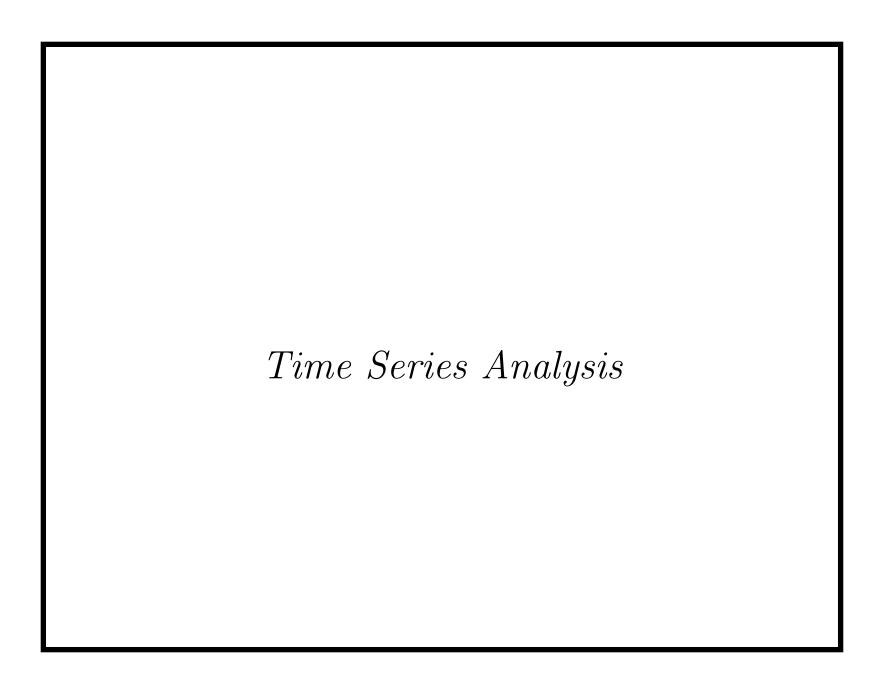
- We move on to year 0.
- The continuation value is, from p 749,

$$(12.4185 \times 0.951229^{2} + 2.5476 \times 0.951229^{3} + 1.3990 \times 0.951229^{2} + 6.2880 \times 0.951229^{2} + 3.9436 \times 0.951229^{2} + 11.2730 \times 0.951229^{2} + 2.5823 \times 0.951229^{2} + 0.8525 \times 0.951229)/8 = 4.66263.$$

A Numerical Example (concluded)

- As this is larger than the immediate exercise value of 105 101 = 4, the put should not be exercised at year 0.
- Hence the put's value is estimated to be 4.66263.
- Compare this to the European put's value of 1.3680 (p. 735).
- Why is the LSM estimate a lower bound?^a

^aContributed by Mr. Yang, Jui-Chung (D97723002) on April 29, 2009.



The historian is a prophet in reverse. — Friedrich von Schlegel (1772–1829)

GARCH Option Pricing^a

- Options can be priced when the underlying asset's return follows a GARCH process.
- Let S_t denote the asset price at date t.
- Let h_t^2 be the conditional variance of the return over the period [t, t+1] given the information at date t.
 - "One day" is merely a convenient term for any elapsed time Δt .

^aARCH (autoregressive conditional heteroskedastic) is due to Engle (1982), co-winner of the 2003 Nobel Prize in Economic Sciences. GARCH (generalized ARCH) is due to Bollerslev (1986) and Taylor (1986). A Bloomberg quant said to me on Feb 29, 2008, that GARCH option pricing is seldom used in trading.

GARCH Option Pricing (continued)

• Adopt the following risk-neutral process for the price dynamics:^a

$$\ln \frac{S_{t+1}}{S_t} = r - \frac{h_t^2}{2} + h_t \epsilon_{t+1},$$
(81)

where

$$h_{t+1}^2 = \beta_0 + \beta_1 h_t^2 + \beta_2 h_t^2 (\epsilon_{t+1} - c)^2, \tag{82}$$

 $\epsilon_{t+1} \sim N(0,1)$ given information at date t,

r = daily riskless return,

$$c > 0$$
.

^aDuan (1995).

GARCH Option Pricing (continued)

- The five unknown parameters of the model are c, h_0 , β_0 , β_1 , and β_2 .
- It is postulated that $\beta_0, \beta_1, \beta_2 \geq 0$ to make the conditional variance positive.
- There are other inequalities to satisfy (see text).
- The above process is called the nonlinear asymmetric GARCH (or NGARCH) model.

GARCH Option Pricing (continued)

- It captures the volatility clustering in asset returns first noted by Mandelbrot (1963).^a
 - When c = 0, a large ϵ_{t+1} results in a large h_{t+1} , which in turns tends to yield a large h_{t+2} , and so on.
- It also captures the negative correlation between the asset return and changes in its (conditional) volatility.^b
 - For c > 0, a positive ϵ_{t+1} (good news) tends to decrease h_{t+1} , whereas a negative ϵ_{t+1} (bad news) tends to do the opposite.

a "... large changes tend to be followed by large changes—of either sign—and small changes tend to be followed by small changes ..."

^bNoted by Black (1976): Volatility tends to rise in response to "bad news" and fall in response to "good news."

GARCH Option Pricing (concluded)

• With $y_t \equiv \ln S_t$ denoting the logarithmic price, the model becomes

$$y_{t+1} = y_t + r - \frac{h_t^2}{2} + h_t \epsilon_{t+1}. \tag{83}$$

- The pair (y_t, h_t^2) completely describes the current state.
- The conditional mean and variance of y_{t+1} are clearly

$$E[y_{t+1} | y_t, h_t^2] = y_t + r - \frac{h_t^2}{2}, \qquad (84)$$

$$Var[y_{t+1} | y_t, h_t^2] = h_t^2. (85)$$

GARCH Model: Inferences

- Suppose the parameters $c, h_0, \beta_0, \beta_1, \text{ and } \beta_2$ are given.
- Then we can recover h_1, h_2, \ldots, h_n and $\epsilon_1, \epsilon_2, \ldots, \epsilon_n$ from the prices

$$S_0, S_1, \ldots, S_n$$

under the GARCH model (81) on p. 755.

• This property is useful in statistical inferences.

The Ritchken-Trevor (RT) Algorithm^a

- The GARCH model is a continuous-state model.
- To approximate it, we turn to trees with discrete states.
- Path dependence in GARCH makes the tree for asset prices explode exponentially (why?).
- We need to mitigate this combinatorial explosion.

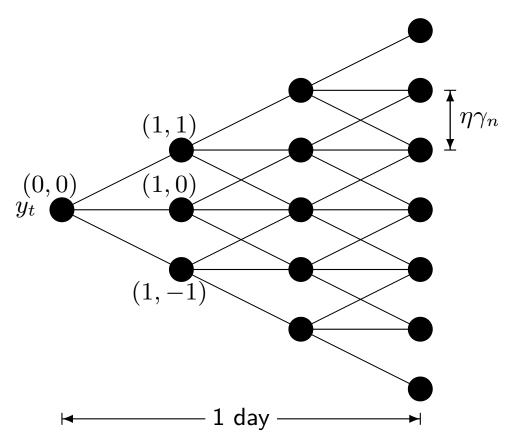
^aRitchken and Trevor (1999).

- Partition a day into *n* periods.
- Three states follow each state (y_t, h_t^2) after a period.
- As the trinomial model combines, 2n + 1 states at date t + 1 follow each state at date t (recall p. 588).
- These 2n + 1 values must approximate the distribution of (y_{t+1}, h_{t+1}^2) .
- So the conditional moments (84)–(85) at date t+1 on p. 758 must be matched by the trinomial model to guarantee convergence to the continuous-state model.

- It remains to pick the jump size and the three branching probabilities.
- The role of σ in the Black-Scholes option pricing model is played by h_t in the GARCH model.
- As a jump size proportional to σ/\sqrt{n} is picked in the BOPM, a comparable magnitude will be chosen here.
- Define $\gamma \equiv h_0$, though other multiples of h_0 are possible, and

$$\gamma_n \equiv \frac{\gamma}{\sqrt{n}}.$$

- The jump size will be some integer multiple η of γ_n .
- We call η the jump parameter (p. 763).



The seven values on the right approximate the distribution of logarithmic price y_{t+1} .

- The middle branch does not change the underlying asset's price.
- The probabilities for the up, middle, and down branches are

$$p_u = \frac{h_t^2}{2\eta^2\gamma^2} + \frac{r - (h_t^2/2)}{2\eta\gamma\sqrt{n}},$$
 (86)

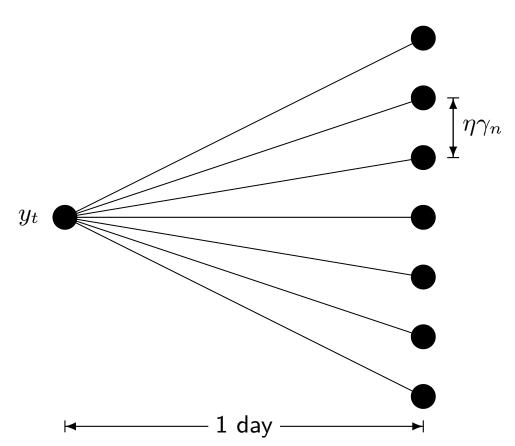
$$p_m = 1 - \frac{h_t^2}{\eta^2 \gamma^2}, \tag{87}$$

$$p_d = \frac{h_t^2}{2\eta^2 \gamma^2} - \frac{r - (h_t^2/2)}{2\eta \gamma \sqrt{n}}.$$
 (88)

- It can be shown that:
 - The trinomial model takes on 2n + 1 values at date t + 1 for y_{t+1} .
 - These values have a matching mean for y_{t+1} .
 - These values have an asymptotically matching variance for y_{t+1} .
- The central limit theorem guarantees the desired convergence as n increases (if the probabilities are valid).

- We can dispense with the intermediate nodes between dates to create a (2n + 1)-nomial tree (p. 767).
- The resulting model is multinomial with 2n + 1 branches from any state (y_t, h_t^2) .
- There are two reasons behind this manipulation.
 - Interdate nodes are created merely to approximate the continuous-state model after one day.
 - Keeping the interdate nodes results in a tree that can be as much as n times larger.^a

^aContrast that with the case on p. 334.



This heptanomial tree is the outcome of the trinomial tree on p. 763 after its intermediate nodes are removed.

• A node with logarithmic price $y_t + \ell \eta \gamma_n$ at date t+1 follows the current node at date t with price y_t , where

$$-n \le \ell \le n$$
.

- To reach that price in n periods, the number of up moves must exceed that of down moves by exactly ℓ .
- The probability that this happens is

$$P(\ell) \equiv \sum_{j_u, j_m, j_d} \frac{n!}{j_u! \, j_m! \, j_d!} \, p_u^{j_u} \, p_m^{j_m} \, p_d^{j_d},$$

with $j_u, j_m, j_d \ge 0$, $n = j_u + j_m + j_d$, and $\ell = j_u - j_d$.

• A particularly simple way to calculate the $P(\ell)$ s starts by noting that

$$(p_u x + p_m + p_d x^{-1})^n = \sum_{\ell=-n}^n P(\ell) x^{\ell}.$$
 (89)

- Convince yourself that this trick does the "accounting" correctly.
- So we expand $(p_u x + p_m + p_d x^{-1})^n$ and retrieve the probabilities by reading off the coefficients.
- It can be computed in $O(n^2)$ time.

- The updating rule (82) on p. 755 must be modified to account for the adoption of the discrete-state model.
- The logarithmic price $y_t + \ell \eta \gamma_n$ at date t+1 following state (y_t, h_t^2) at date t has a variance equal to

$$h_{t+1}^2 = \beta_0 + \beta_1 h_t^2 + \beta_2 h_t^2 (\epsilon_{t+1}' - c)^2, \tag{90}$$

- Above,

$$\epsilon'_{t+1} = \frac{\ell \eta \gamma_n - (r - h_t^2/2)}{h_t}, \quad \ell = 0, \pm 1, \pm 2, \dots, \pm n,$$

is a discrete random variable with 2n+1 values.

- Different conditional variances h_t^2 may require different η so that the probabilities calculated by Eqs. (86)–(88) on p. 764 lie between 0 and 1.
- This implies varying jump sizes.
- The necessary requirement $p_m \geq 0$ implies $\eta \geq h_t/\gamma$.
- Hence we try

$$\eta = \lceil h_t/\gamma \rceil, \lceil h_t/\gamma \rceil + 1, \lceil h_t/\gamma \rceil + 2, \dots$$

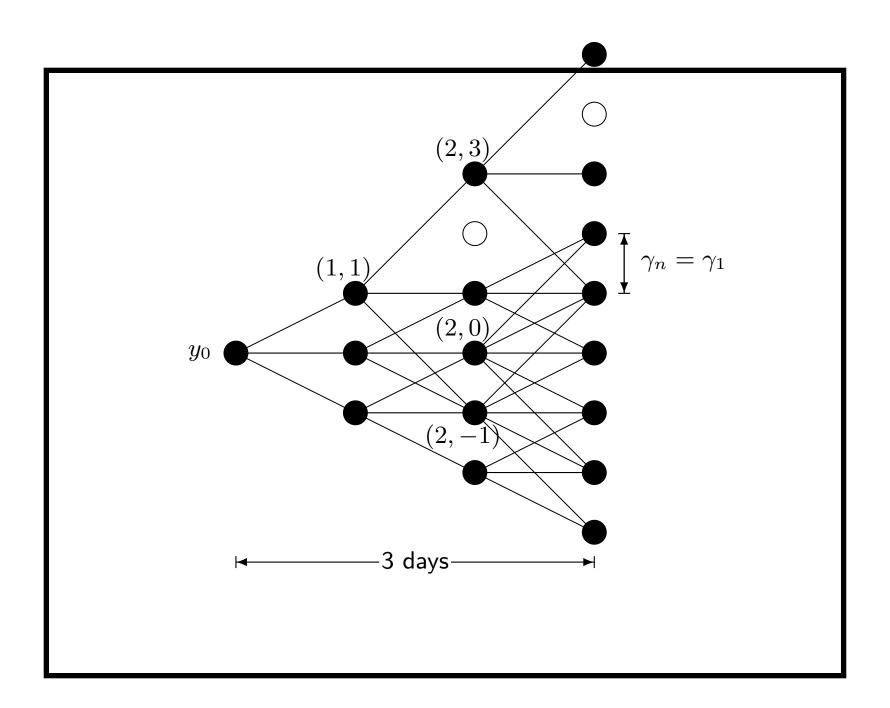
until valid probabilities are obtained or until their nonexistence is confirmed.

• The sufficient and necessary condition for valid probabilities to exist is^a

$$\frac{|r-(h_t^2/2)|}{2\eta\gamma\sqrt{n}} \leq \frac{h_t^2}{2\eta^2\gamma^2} \leq \min\left(1 - \frac{|r-(h_t^2/2)|}{2\eta\gamma\sqrt{n}}, \frac{1}{2}\right).$$

- Obviously, the magnitude of η tends to grow with h_t .
- The plot on p. 773 uses n = 1 to illustrate our points for a 3-day model.
- For example, node (1,1) of date 1 and node (2,3) of date 2 pick $\eta = 2$.

^aLyuu and Wu (R90723065) (2003).



- The topology of the tree is not a standard combining multinomial tree.
- For example, a few nodes on p. 773 such as nodes (2,0) and (2,-1) have multiple jump sizes.
- The reason is the path dependence of the model.
 - Two paths can reach node (2,0) from the root node, each with a different variance for the node.
 - One of the variances results in $\eta = 1$, whereas the other results in $\eta = 2$.

- The number of possible values of h_t^2 at a node can be exponential.
 - Because each path brings with it a different variance h_t^2 .
- To address this problem, we record only the maximum and minimum h_t^2 at each node.^a
- Therefore, each node on the tree contains only two states (y_t, h_{max}^2) and (y_t, h_{min}^2) .
- Each of (y_t, h_{max}^2) and (y_t, h_{min}^2) carries its own η and set of 2n+1 branching probabilities.

^aCakici and Topyan (2000). But see p. 809 for a potential problem.

Negative Aspects of the Ritchken-Trevor Algorithm^a

- \bullet A small n may yield inaccurate option prices.
- But the tree will grow exponentially if n is large enough.
 - Specifically, $n > (1 \beta_1)/\beta_2$ when r = c = 0.
- A large n has another serious problem: The tree cannot grow beyond a certain date.
- Thus the choice of n may be quite limited in practice.
- The RT algorithm can be modified to be free of shortened maturity and exponential complexity.^b

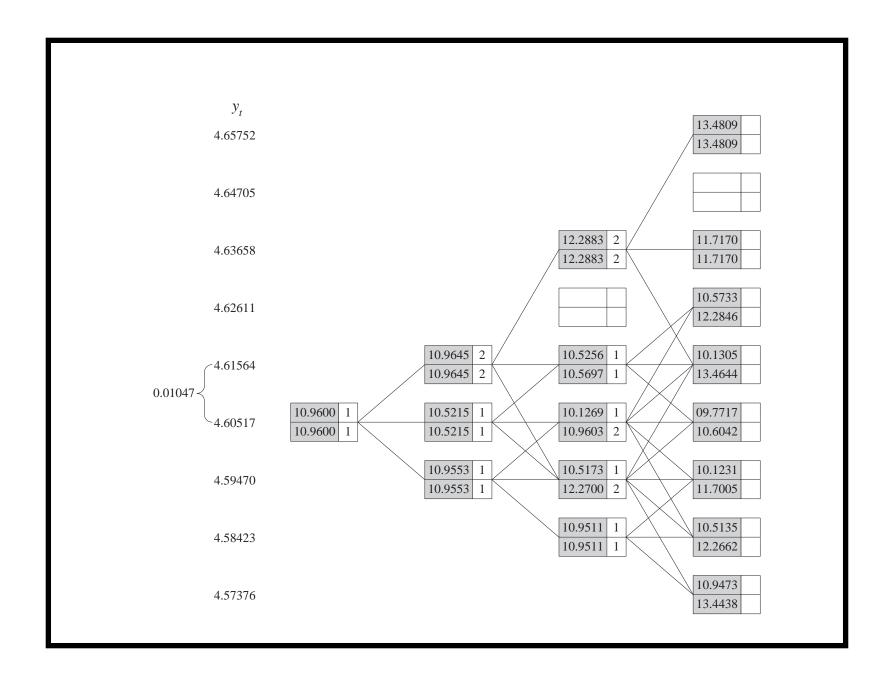
^aLyuu and Wu (R90723065) (2003, 2005).

^bIt is only $O(n^2)$ if $n \leq (\sqrt{(1-\beta_1)/\beta_2} - c)^2$!

Numerical Examples

- Assume $S_0 = 100$, $y_0 = \ln S_0 = 4.60517$, r = 0, $h_0^2 = 0.0001096$, $\gamma = h_0 = 0.010469$, n = 1, $\gamma_n = \gamma/\sqrt{n} = 0.010469$, $\beta_0 = 0.000006575$, $\beta_1 = 0.9$, $\beta_2 = 0.04$, and c = 0.
- A daily variance of 0.0001096 corresponds to an annual volatility of $\sqrt{365 \times 0.0001096} \approx 20\%$.
- Let $h^2(i,j)$ denote the variance at node (i,j).
- Initially, $h^2(0,0) = h_0^2 = 0.0001096$.

- Let $h_{\text{max}}^2(i,j)$ denote the maximum variance at node (i,j).
- Let $h_{\min}^2(i,j)$ denote the minimum variance at node (i,j).
- Initially, $h_{\text{max}}^2(0,0) = h_{\text{min}}^2(0,0) = h_0^2$.
- The resulting three-day tree is depicted on p. 779.



A top (bottom) number inside a gray box refers to the minimum (maximum, resp.) variance h_{\min}^2 (h_{\max}^2 , resp.) for the node. Variances are multiplied by 100,000 for readability. A top (bottom) number inside a white box refers to η corresponding to h_{\min}^2 (h_{\max}^2 , resp.).

- Let us see how the numbers are calculated.
- Start with the root node, node (0,0).
- Try $\eta = 1$ in Eqs. (86)–(88) on p. 764 first to obtain

$$p_u = 0.4974,$$
 $p_m = 0,$
 $p_d = 0.5026.$

• As they are valid probabilities, the three branches from the root node use single jumps.

- Move on to node (1,1).
- It has one predecessor node—node (0,0)—and it takes an up move to reach the current node.
- So apply updating rule (90) on p. 770 with $\ell = 1$ and $h_t^2 = h^2(0,0)$.
- The result is $h^2(1,1) = 0.000109645$.

• Because $\lceil h(1,1)/\gamma \rceil = 2$, we try $\eta = 2$ in Eqs. (86)–(88) on p. 764 first to obtain

$$p_u = 0.1237,$$
 $p_m = 0.7499,$
 $p_d = 0.1264.$

• As they are valid probabilities, the three branches from node (1,1) use double jumps.

- Carry out similar calculations for node (1,0) with $\ell = 0$ in updating rule (90) on p. 770.
- Carry out similar calculations for node (1, -1) with $\ell = -1$ in updating rule (90).
- Single jump $\eta = 1$ works for both nodes.
- The resulting variances are

$$h^2(1,0) = 0.000105215,$$

 $h^2(1,-1) = 0.000109553.$

- Node (2,0) has 2 predecessor nodes, (1,0) and (1,-1).
- Both have to be considered in deriving the variances.
- Let us start with node (1,0).
- Because it takes a middle move to reach the current node, we apply updating rule (90) on p. 770 with $\ell = 0$ and $h_t^2 = h^2(1,0)$.
- The result is $h_{t+1}^2 = 0.000101269$.

- Now move on to the other predecessor node (1,-1).
- Because it takes an up move to reach the current node, apply updating rule (90) on p. 770 with $\ell = 1$ and $h_t^2 = h^2(1, -1)$.
- The result is $h_{t+1}^2 = 0.000109603$.
- We hence record

$$h_{\min}^2(2,0) = 0.000101269,$$

 $h_{\max}^2(2,0) = 0.000109603.$

- Consider state $h_{\text{max}}^2(2,0)$ first.
- Because $\lceil h_{\text{max}}(2,0)/\gamma \rceil = 2$, we first try $\eta = 2$ in Eqs. (86)–(88) on p. 764 to obtain

$$p_u = 0.1237,$$
 $p_m = 0.7500,$
 $p_d = 0.1263.$

• As they are valid probabilities, the three branches from node (2,0) with the maximum variance use double jumps.

- Now consider state $h_{\min}^2(2,0)$.
- Because $\lceil h_{\min}(2,0)/\gamma \rceil = 1$, we first try $\eta = 1$ in Eqs. (86)–(88) on p. 764 to obtain

$$p_u = 0.4596,$$
 $p_m = 0.0760,$
 $p_d = 0.4644.$

• As they are valid probabilities, the three branches from node (2,0) with the minimum variance use single jumps.

- Node (2,-1) has 3 predecessor nodes.
- Start with node (1,1).
- Because it takes a down move to reach the current node, we apply updating rule (90) on p. 770 with $\ell=-1$ and $h_t^2=h^2(1,1)$.^a
- The result is $h_{t+1}^2 = 0.0001227$.

^aNote that it is not $\ell = -2$ because $-n \le \ell \le n$.

- Now move on to predecessor node (1,0).
- Because it also takes a down move to reach the current node, we apply updating rule (90) on p. 770 with $\ell = -1$ and $h_t^2 = h^2(1,0)$.
- The result is $h_{t+1}^2 = 0.000105609$.

- Finally, consider predecessor node (1, -1).
- Because it takes a middle move to reach the current node, we apply updating rule (90) on p. 770 with $\ell = 0$ and $h_t^2 = h^2(1, -1)$.
- The result is $h_{t+1}^2 = 0.000105173$.
- We hence record

$$h_{\min}^2(2,-1) = 0.000105173,$$

 $h_{\max}^2(2,-1) = 0.0001227.$

- Consider state $h_{\text{max}}^2(2,-1)$.
- Because $\lceil h_{\text{max}}(2,-1)/\gamma \rceil = 2$, we first try $\eta = 2$ in Eqs. (86)–(88) on p. 764 to obtain

$$p_u = 0.1385,$$
 $p_m = 0.7201,$
 $p_d = 0.1414.$

• As they are valid probabilities, the three branches from node (2,-1) with the maximum variance use double jumps.

- Next, consider state $h_{\min}^2(2,-1)$.
- Because $\lceil h_{\min}(2,-1)/\gamma \rceil = 1$, we first try $\eta = 1$ in Eqs. (86)–(88) on p. 764 to obtain

$$p_u = 0.4773,$$
 $p_m = 0.0404,$
 $p_d = 0.4823.$

• As they are valid probabilities, the three branches from node (2,-1) with the minimum variance use single jumps.

Numerical Examples (concluded)

- Other nodes at dates 2 and 3 can be handled similarly.
- In general, if a node has k predecessor nodes, then 2k variances will be calculated using the updating rule.
 - This is because each predecessor node keeps two variance numbers.
- But only the maximum and minimum variances will be kept.

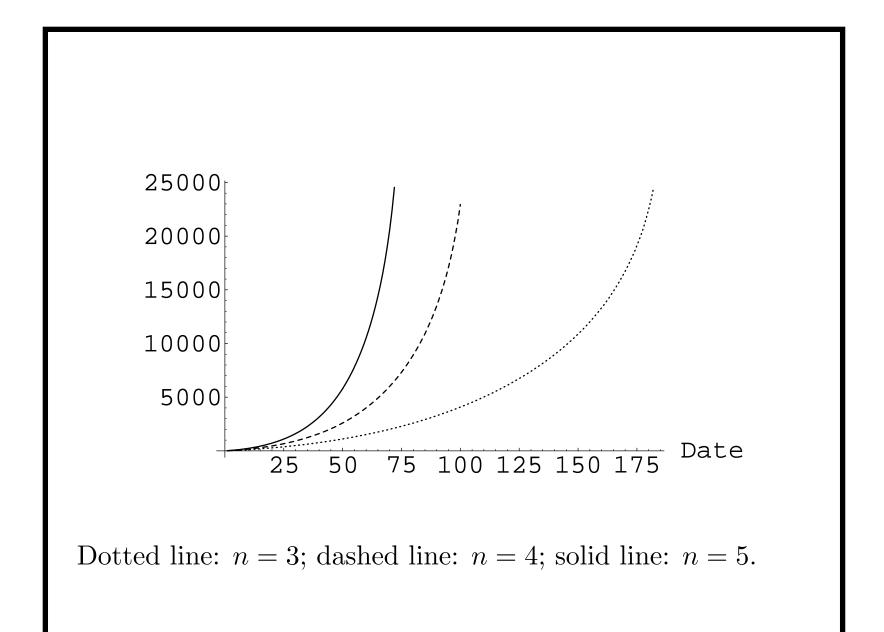
Negative Aspects of the RT Algorithm Revisited^a

- Recall the problems mentioned on p. 776.
- In our case, combinatorial explosion occurs when

$$n > \frac{1 - \beta_1}{\beta_2} = \frac{1 - 0.9}{0.04} = 2.5.$$

- Suppose we are willing to accept the exponential running time and pick n = 100 to seek accuracy.
- But the problem of shortened maturity forces the tree to stop at date 9!

^aLyuu and Wu (R90723065) (2003).



Backward Induction on the RT Tree

- After the RT tree is constructed, it can be used to price options by backward induction.
- Recall that each node keeps two variances h_{max}^2 and h_{min}^2 .
- We now increase that number to K equally spaced variances between h_{max}^2 and h_{min}^2 at each node.
- Besides the minimum and maximum variances, the other K-2 variances in between are linearly interpolated.^a

^aIn practice, log-linear interpolation works better (Lyuu and Wu (R90723065) (2005)). Log-cubic interpolation works even better (Liu (R92922123) (2005)).

Backward Induction on the RT Tree (continued)

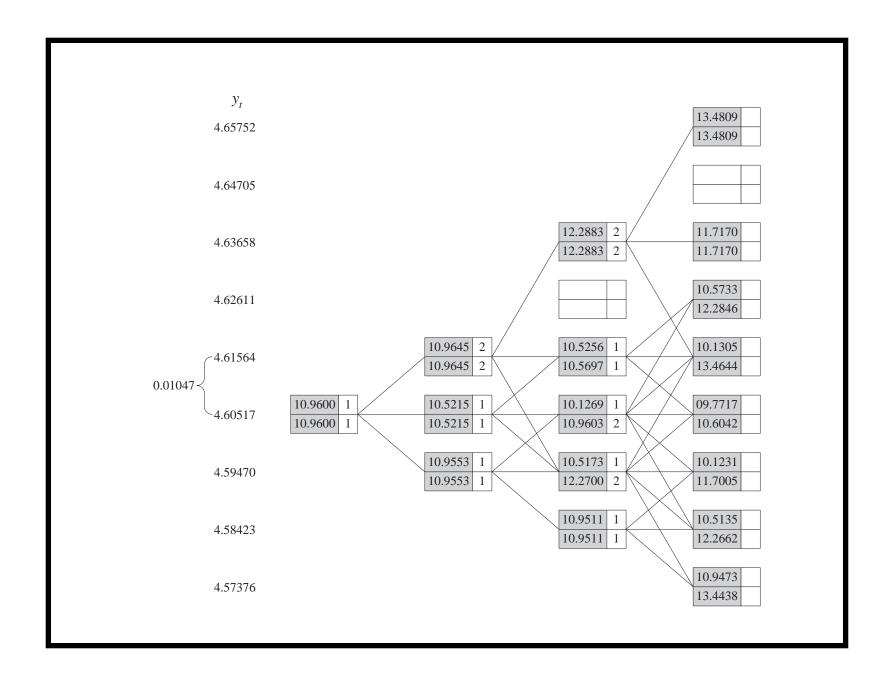
- For example, if K = 3, then a variance of 10.5436×10^{-6} will be added between the maximum and minimum variances at node (2,0) on p. 779.^a
- In general, the kth variance at node (i, j) is

$$h_{\min}^2(i,j) + k \frac{h_{\max}^2(i,j) - h_{\min}^2(i,j)}{K - 1},$$

$$k = 0, 1, \dots, K - 1.$$

• Each interpolated variance's jump parameter and branching probabilities can be computed as before.

^aRepeated on p. 799.

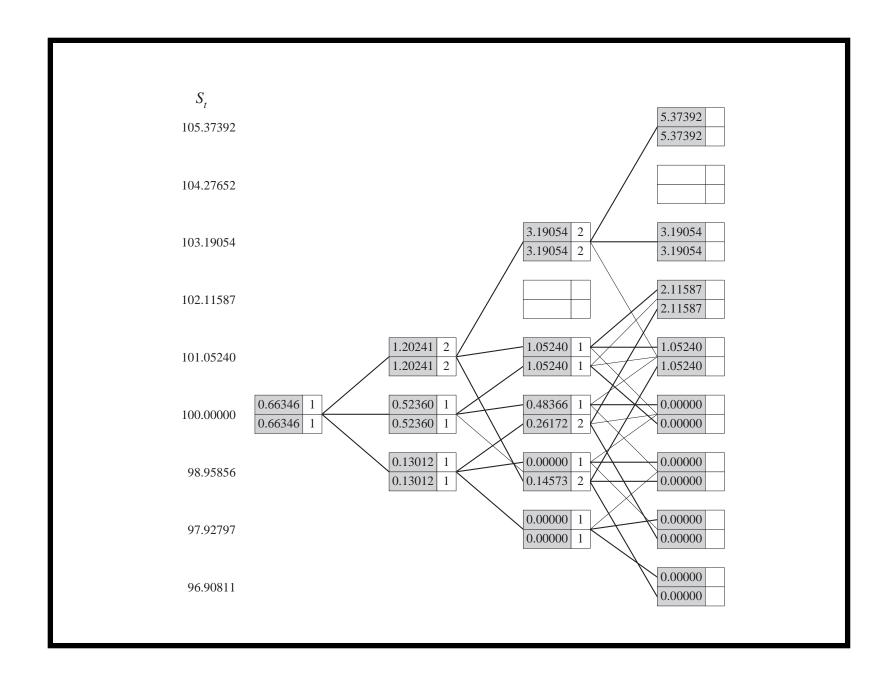


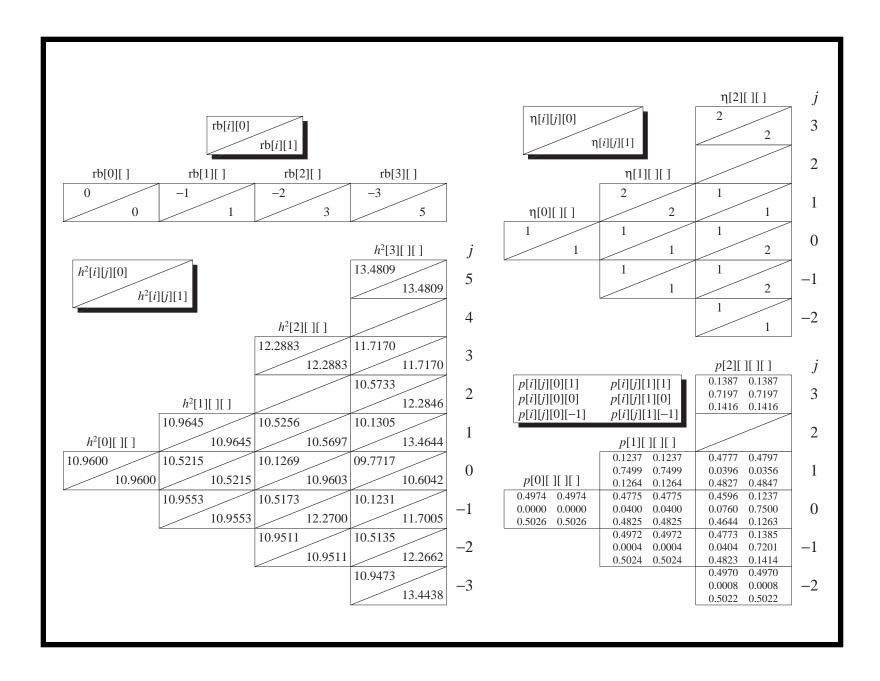
Backward Induction on the RT Tree (concluded)

- Suppose a variance falls between two of the K variances during backward induction.
- Linear interpolation of the option prices corresponding to the two bracketing variances will be used as the approximate option price.
- The above ideas are reminiscent of the ones on p. 355, where we dealt with arithmetic average-rate options.

Numerical Examples

- We next use the numerical example on p. 799 to price a European call option with a strike price of 100 and expiring at date 3.
- Recall that the riskless interest rate is zero.
- Assume K = 2; hence there are no interpolated variances.
- The pricing tree is shown on p. 802 with a call price of 0.66346.
 - The branching probabilities needed in backward induction can be found on p. 803.





- Let us derive some of the numbers on p. 802.
- A gray line means the updated variance falls strictly between h_{max}^2 and h_{min}^2 .
- The option price for a terminal node at date 3 equals $\max(S_3 100, 0)$, independent of the variance level.
- Now move on to nodes at date 2.
- The option price at node (2,3) depends on those at nodes (3,5), (3,3), and (3,1).
- It therefore equals

 $0.1387 \times 5.37392 + 0.7197 \times 3.19054 + 0.1416 \times 1.05240 = 3.19054.$

- Option prices for other nodes at date 2 can be computed similarly.
- For node (1,1), the option price for both variances is $0.1237 \times 3.19054 + 0.7499 \times 1.05240 + 0.1264 \times 0.14573 = 1.20241$.
- Node (1,0) is most interesting.
- We knew that a down move from it gives a variance of 0.000105609.
- This number falls between the minimum variance 0.000105173 and the maximum variance 0.0001227 at node (2,-1) on p. 799.

- The option price corresponding to the minimum variance is 0.
- The option price corresponding to the maximum variance is 0.14573.
- The equation

$$x \times 0.000105173 + (1 - x) \times 0.0001227 = 0.000105609$$
 is satisfied by $x = 0.9751$.

• So the option for the down state is approximated by

$$x \times 0 + (1 - x) \times 0.14573 = 0.00362.$$

- The up move leads to the state with option price 1.05240.
- The middle move leads to the state with option price 0.48366.
- The option price at node (1,0) is finally calculated as $0.4775 \times 1.05240 + 0.0400 \times 0.48366 + 0.4825 \times 0.00362 = 0.52360$.

- A variance following an interpolated variance may exceed the maximum variance or be exceeded by the minimum variance.
- When this happens, the option price corresponding to the maximum or minimum variance will be used during backward induction.^a

^aCakici and Topyan (2000).

Numerical Examples (concluded)

- But an interpolated variance may choose a branch that goes into a node that is *not* reached in forward induction.^a
- In this case, the algorithm fails.
- It may be hard to calculate the implied β_1 and β_2 from option prices.^b

 $^{^{\}rm a}{\rm Lyuu}$ and Wu (R90723065) (2005).

^bChang (R93922034) (2006).

Complexities of GARCH Models^a

- The Ritchken-Trevor algorithm explodes exponentially if n is big enough (p. 776).
- The mean-tracking algorithm of Lyuu and Wu (2005) will make sure explosion does not happen if n is not too large.^b
- The next page summarizes the situations for many GARCH option pricing models.
 - Our earlier treatment is for NGARCH only.

^aLyuu and Wu (R90723065) (2003, 2005).

^bSimilar to, but earlier than, the idea behind the binomial-trinomial tree on pp. 606ff.

Complexities of GARCH Models (concluded)^a

Model	Explosion	Non-explosion
NGARCH	$\beta_1 + \beta_2 n > 1$	$\beta_1 + \beta_2(\sqrt{n} + \lambda + c)^2 \le 1$
LGARCH	$\beta_1 + \beta_2 n > 1$	$\beta_1 + \beta_2(\sqrt{n} + \lambda)^2 \le 1$
AGARCH	$\beta_1 + \beta_2 n > 1$	$\beta_1 + \beta_2(\sqrt{n} + \lambda)^2 \le 1$
GJR-GARCH	$\beta_1 + \beta_2 n > 1$	$\beta_1 + (\beta_2 + \beta_3)(\sqrt{n} + \lambda)^2 \le 1$
TS-GARCH	$\beta_1 + \beta_2 \sqrt{n} > 1$	$\beta_1 + \beta_2(\lambda + \sqrt{n}) \le 1$
TGARCH	$\beta_1 + \beta_2 \sqrt{n} > 1$	$\beta_1 + (\beta_2 + \beta_3)(\lambda + \sqrt{n}) \le 1$
Heston-Nandi	$\beta_1 + \beta_2 (c - \frac{1}{2})^2 > 1$	$\beta_1 + \beta_2 c^2 \le 1$
	& $c \leq \frac{1}{2}$	
VGARCH	$\beta_1 + (\beta_2/4) > 1$	$\beta_1 \leq 1$

 $^{^{\}mathrm{a}}$ Chen (R95723051) (2008); Chen (R95723051), Lyuu, and Wen (D94922003) (2011).