Multivariate Contingent Claims

- They depend on two or more underlying assets.
- The basket call on m assets has the terminal payoff

$$\max\left(\sum_{i=1}^{m} \alpha_i S_i(\tau) - X, 0\right),$$

where α_i is the percentage of asset *i*.

- Basket options are essentially options on a portfolio of stocks or index options.
- Option on the best of two risky assets and cash has a terminal payoff of $\max(S_1(\tau), S_2(\tau), X)$.

Multivariate Contingent Claims (concluded)

From Lyuu and Teng (R91723054) (2011):

Name	Payoff	
Exchange option	$\max(S_1(\tau) - S_2(\tau), 0)$	
Better-off option	$\max(S_1(\tau),\ldots,S_k(\tau),0)$	
Worst-off option	$\min(S_1(\tau),\ldots,S_k(\tau),0)$	
Binary maximum option	$I\{\max(S_1(\tau),\ldots,S_k(\tau))>X\}$	
Maximum option	$\max(\max(S_1(\tau),\ldots,S_k(\tau))-X,0)$	
Minimum option	$\max(\min(S_1(\tau),\ldots,S_k(\tau))-X,0)$	
Spread option	$\max(S_1(\tau) - S_2(\tau) - X, 0)$	
Basket average option	$\max((S_1(\tau),\ldots,S_k(\tau))/k-X,0)$	
Multi-strike option	$\max(S_1(\tau) - X_1, \dots, S_k(\tau) - X_k, 0)$	
Pyramid rainbow option	$\max(S_1(\tau) - X_1 + \dots + S_k(\tau) - X_k - X$	0)
Madonna option	$\max(\sqrt{(S_1(\tau) - X_1)^2 + \dots + (S_k(\tau) - X_k)^2})$	-X, 0)

Correlated Trinomial Model $^{\rm a}$

• Two risky assets S_1 and S_2 follow $dS_i/S_i = r dt + \sigma_i dW_i$ in a risk-neutral economy, i = 1, 2.

• Let

$$M_i \equiv e^{r\Delta t},$$

$$V_i \equiv M_i^2 (e^{\sigma_i^2 \Delta t} - 1).$$

 $-S_iM_i$ is the mean of S_i at time Δt .

 $-S_i^2 V_i$ the variance of S_i at time Δt .

^aBoyle, Evnine, and Gibbs (1989).

Correlated Trinomial Model (continued)

- The value of S_1S_2 at time Δt has a joint lognormal distribution with mean $S_1S_2M_1M_2e^{\rho\sigma_1\sigma_2\Delta t}$, where ρ is the correlation between dW_1 and dW_2 .
- Next match the 1st and 2nd moments of the approximating discrete distribution to those of the continuous counterpart.
- At time Δt from now, there are five distinct outcomes.

Correlated Trinomial Model (continued)

• The five-point probability distribution of the asset prices is (as usual, we impose $u_i d_i = 1$)

Probability	Asset 1	Asset 2
p_1	S_1u_1	$S_2 u_2$
p_2	S_1u_1	$S_2 d_2$
p_3	S_1d_1	$S_2 d_2$
p_4	S_1d_1	$S_2 u_2$
p_5	S_1	S_2

Correlated Trinomial Model (continued)

• The probabilities must sum to one, and the means must be matched:

$$1 = p_1 + p_2 + p_3 + p_4 + p_5,$$

$$S_1 M_1 = (p_1 + p_2) S_1 u_1 + p_5 S_1 + (p_3 + p_4) S_1 d_1,$$

$$S_2 M_2 = (p_1 + p_4) S_2 u_2 + p_5 S_2 + (p_2 + p_3) S_2 d_2.$$

Correlated Trinomial Model (concluded)

- Let $R \equiv M_1 M_2 e^{\rho \sigma_1 \sigma_2 \Delta t}$.
- Match the variances and covariance:

$$S_{1}^{2}V_{1} = (p_{1} + p_{2})((S_{1}u_{1})^{2} - (S_{1}M_{1})^{2}) + p_{5}(S_{1}^{2} - (S_{1}M_{1})^{2}) + (p_{3} + p_{4})((S_{1}d_{1})^{2} - (S_{1}M_{1})^{2}),$$

$$S_{2}^{2}V_{2} = (p_{1} + p_{4})((S_{2}u_{2})^{2} - (S_{2}M_{2})^{2}) + p_{5}(S_{2}^{2} - (S_{2}M_{2})^{2}) + (p_{2} + p_{3})((S_{2}d_{2})^{2} - (S_{2}M_{2})^{2}),$$

 $S_1 S_2 R = (p_1 u_1 u_2 + p_2 u_1 d_2 + p_3 d_1 d_2 + p_4 d_1 u_2 + p_5) S_1 S_2.$

• The solutions are complex (see text).

Correlated Trinomial Model Simplified^a

• Let
$$\mu'_i \equiv r - \sigma_i^2/2$$
 and $u_i \equiv e^{\lambda \sigma_i \sqrt{\Delta t}}$ for $i = 1, 2$.

• The following simpler scheme is good enough:

$$p_{1} = \frac{1}{4} \left[\frac{1}{\lambda^{2}} + \frac{\sqrt{\Delta t}}{\lambda} \left(\frac{\mu_{1}'}{\sigma_{1}} + \frac{\mu_{2}'}{\sigma_{2}} \right) + \frac{\rho}{\lambda^{2}} \right],$$

$$p_{2} = \frac{1}{4} \left[\frac{1}{\lambda^{2}} + \frac{\sqrt{\Delta t}}{\lambda} \left(\frac{\mu_{1}'}{\sigma_{1}} - \frac{\mu_{2}'}{\sigma_{2}} \right) - \frac{\rho}{\lambda^{2}} \right],$$

$$p_{3} = \frac{1}{4} \left[\frac{1}{\lambda^{2}} + \frac{\sqrt{\Delta t}}{\lambda} \left(-\frac{\mu_{1}'}{\sigma_{1}} - \frac{\mu_{2}'}{\sigma_{2}} \right) + \frac{\rho}{\lambda^{2}} \right]$$

$$p_{4} = \frac{1}{4} \left[\frac{1}{\lambda^{2}} + \frac{\sqrt{\Delta t}}{\lambda} \left(-\frac{\mu_{1}'}{\sigma_{1}} + \frac{\mu_{2}'}{\sigma_{2}} \right) - \frac{\rho}{\lambda^{2}} \right]$$

$$p_{5} = 1 - \frac{1}{\lambda^{2}}.$$

^aMadan, Milne, and Shefrin (1989).

Correlated Trinomial Model Simplified (continued)

• All of the probabilities lie between 0 and 1 if and only if

$$-1 + \lambda \sqrt{\Delta t} \left| \frac{\mu_1'}{\sigma_1} + \frac{\mu_2'}{\sigma_2} \right| \le \rho \le 1 - \lambda \sqrt{\Delta t} \left| \frac{\mu_1'}{\sigma_1} - \frac{\mu_2'}{\sigma_2} \right|, (70)$$

$$1 \le \lambda$$

$$(71)$$

• We call a multivariate tree (correlation-) optimal if it guarantees valid probabilities as long as

$$-1 + O(\sqrt{\Delta t}) < \rho < 1 - O(\sqrt{\Delta t}),$$

such as the above one.^a

^aKao (**R98922093**) (2011) and Kao (**R98922093**), Lyuu, and Wen (**D94922003**) (2012).

Correlated Trinomial Model Simplified (concluded)

- But this model cannot price 2-asset 2-barrier options accurately.^a
- Few multivariate trees are both optimal and able to handle multiple barriers.^b
- An alternative is to use orthogonalization.^c

^aSee Chang, Hsu, and Lyuu (2006) and Kao (R98922093), Lyuu and Wen (D94922003) (2012) for solutions.

^bSee Kao (**R98922093**), Lyuu, and Wen (**D94922003**) (2012) for one. ^cHull and White (1990) and Dai (**R86526008**, **D8852600**), Lyuu, and Wang (**F95922018**) (2012).

Extrapolation

- It is a method to speed up numerical convergence.
- Say f(n) converges to an unknown limit f at rate of 1/n:

$$f(n) = f + \frac{c}{n} + o\left(\frac{1}{n}\right). \tag{72}$$

• Assume c is an unknown constant independent of n.

- Convergence is basically monotonic and smooth.

Extrapolation (concluded)

• From two approximations $f(n_1)$ and $f(n_2)$ and ignoring the smaller terms,

$$f(n_1) = f + \frac{c}{n_1},$$

$$f(n_2) = f + \frac{c}{n_2}.$$

• A better approximation to the desired f is

$$f = \frac{n_1 f(n_1) - n_2 f(n_2)}{n_1 - n_2}.$$
 (73)

- This estimate should converge faster than 1/n.
- The Richardson extrapolation uses $n_2 = 2n_1$.

Improving BOPM with Extrapolation

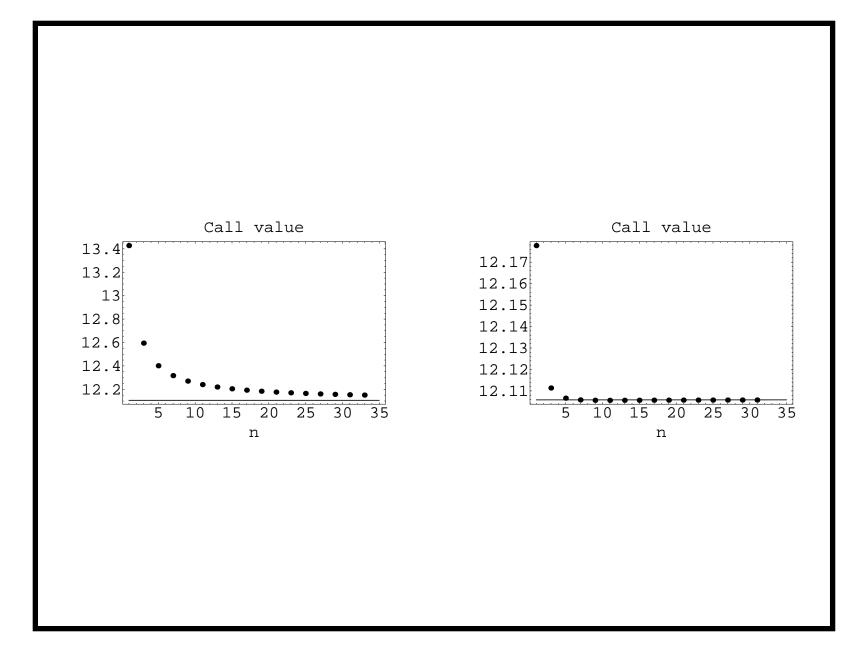
- Consider standard European options.
- Denote the option value under BOPM using n time periods by f(n).
- It is known that BOPM convergences at the rate of 1/n, consistent with Eq. (72) on p. 643.
- But the plots on p. 259 (redrawn on next page) demonstrate that convergence to the true option value oscillates with *n*.
- Extrapolation is inapplicable at this stage.



Improving BOPM with Extrapolation (concluded)

- Take the at-the-money option in the left plot on p. 646.
- The sequence with odd n turns out to be monotonic and smooth (see the left plot on p. 648).^a
- Apply extrapolation (73) on p. 644 with $n_2 = n_1 + 2$, where n_1 is odd.
- Result is shown in the right plot on p. 648.
- The convergence rate is amazing.
- See Exercise 9.3.8 of the text (p. 111) for ideas in the general case.

^aThis can be proved; see Chang and Palmer (2007).

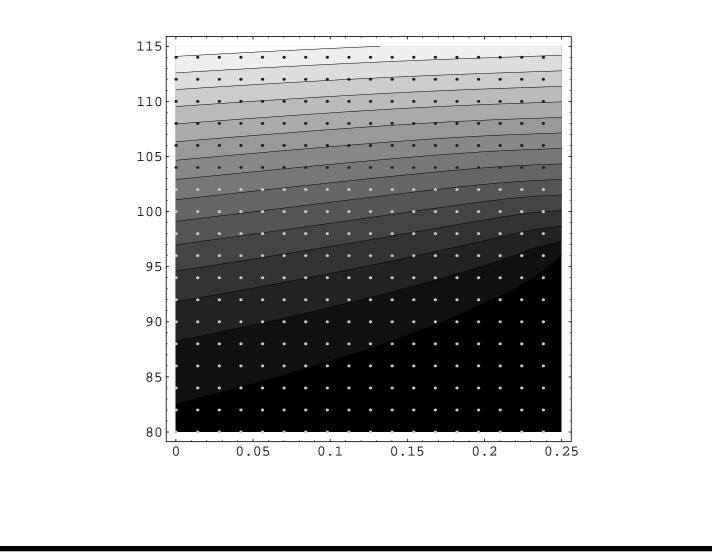


Numerical Methods

All science is dominated by the idea of approximation. — Bertrand Russell

Finite-Difference Methods

- Place a grid of points on the space over which the desired function takes value.
- Then approximate the function value at each of these points (p. 652).
- Solve the equation numerically by introducing difference equations in place of derivatives.



Example: Poisson's Equation

- It is $\partial^2 \theta / \partial x^2 + \partial^2 \theta / \partial y^2 = -\rho(x, y)$.
- Replace second derivatives with finite differences through central difference.
- Introduce evenly spaced grid points with distance of Δx along the x axis and Δy along the y axis.
- The finite difference form is

$$-\rho(x_i, y_j) = \frac{\theta(x_{i+1}, y_j) - 2\theta(x_i, y_j) + \theta(x_{i-1}, y_j)}{(\Delta x)^2} + \frac{\theta(x_i, y_{j+1}) - 2\theta(x_i, y_j) + \theta(x_i, y_{j-1})}{(\Delta y)^2}.$$

Example: Poisson's Equation (concluded)

- In the above, $\Delta x \equiv x_i x_{i-1}$ and $\Delta y \equiv y_j y_{j-1}$ for $i, j = 1, 2, \dots$
- When the grid points are evenly spaced in both axes so that $\Delta x = \Delta y = h$, the difference equation becomes

$$-h^{2}\rho(x_{i}, y_{j}) = \theta(x_{i+1}, y_{j}) + \theta(x_{i-1}, y_{j}) + \theta(x_{i}, y_{j+1}) + \theta(x_{i}, y_{j-1}) - 4\theta(x_{i}, y_{j}).$$

- Given boundary values, we can solve for the x_i s and the y_j s within the square $[\pm L, \pm L]$.
- From now on, $\theta_{i,j}$ will denote the finite-difference approximation to the exact $\theta(x_i, y_j)$.

Explicit Methods

- Consider the diffusion equation $D(\partial^2 \theta / \partial x^2) - (\partial \theta / \partial t) = 0.$
- Use evenly spaced grid points (x_i, t_j) with distances Δx and Δt , where $\Delta x \equiv x_{i+1} x_i$ and $\Delta t \equiv t_{j+1} t_j$.
- Employ central difference for the second derivative and forward difference for the time derivative to obtain

$$\frac{\partial \theta(x,t)}{\partial t}\Big|_{t=t_j} = \frac{\theta(x,t_{j+1}) - \theta(x,t_j)}{\Delta t} + \cdots, \qquad (74)$$

$$\frac{\partial^2 \theta(x,t)}{\partial x^2}\Big|_{x=x_i} = \frac{\theta(x_{i+1},t) - 2\theta(x_i,t) + \theta(x_{i-1},t)}{(\Delta x)^2} + \cdots . (75)$$

Explicit Methods (continued)

- Next, assemble Eqs. (74) and (75) into a single equation at (x_i, t_j) .
- But we need to decide how to evaluate x in the first equation and t in the second.
- Since central difference around x_i is used in Eq. (75), we might as well use x_i for x in Eq. (74).
- Two choices are possible for t in Eq. (75).
- The first choice uses $t = t_j$ to yield the following finite-difference equation,

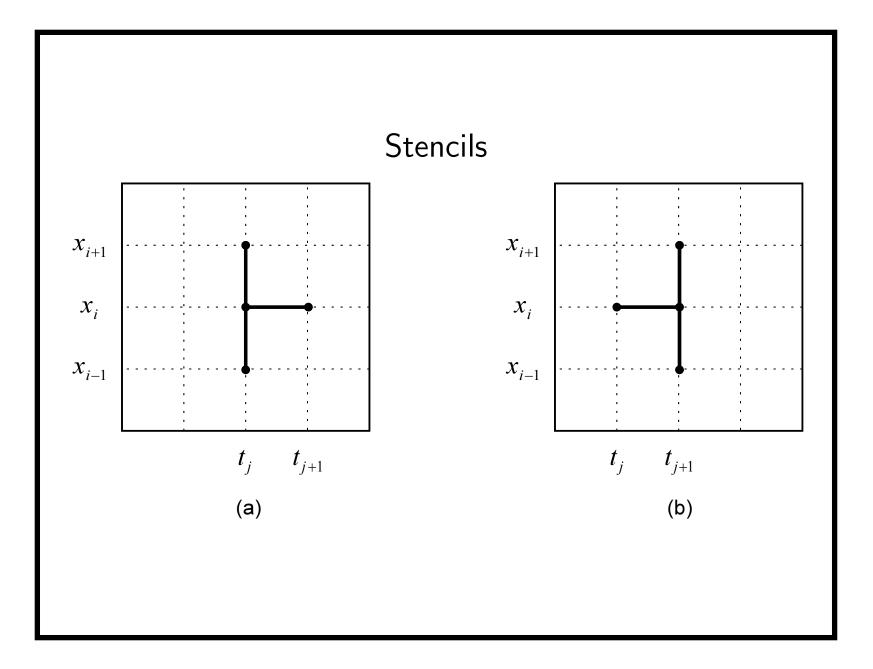
$$\frac{\theta_{i,j+1} - \theta_{i,j}}{\Delta t} = D \frac{\theta_{i+1,j} - 2\theta_{i,j} + \theta_{i-1,j}}{(\Delta x)^2}.$$
 (76)

Explicit Methods (continued)

- The stencil of grid points involves four values, $\theta_{i,j+1}$, $\theta_{i,j}$, $\theta_{i+1,j}$, and $\theta_{i-1,j}$.
- Rearrange Eq. (76) on p. 656 as

$$\theta_{i,j+1} = \frac{D\Delta t}{(\Delta x)^2} \,\theta_{i+1,j} + \left(1 - \frac{2D\Delta t}{(\Delta x)^2}\right) \theta_{i,j} + \frac{D\Delta t}{(\Delta x)^2} \,\theta_{i-1,j}.$$

• We can calculate $\theta_{i,j+1}$ from $\theta_{i,j}, \theta_{i+1,j}, \theta_{i-1,j}$, at the previous time t_j (see exhibit (a) on next page).



Explicit Methods (concluded)

• Starting from the initial conditions at t_0 , that is, $\theta_{i,0} = \theta(x_i, t_0), i = 1, 2, \dots$, we calculate

$$\theta_{i,1}, \quad i=1,2,\ldots$$

• And then

$$\theta_{i,2}, \quad i=1,2,\ldots$$

• And so on.

Stability

• The explicit method is numerically unstable unless

 $\Delta t \le (\Delta x)^2 / (2D).$

- A numerical method is unstable if the solution is highly sensitive to changes in initial conditions.
- The stability condition may lead to high running times and memory requirements.
- For instance, halving Δx would imply quadrupling $(\Delta t)^{-1}$, resulting in a running time 8 times as much.

Explicit Method and Trinomial Tree

• Recall that

$$\theta_{i,j+1} = \frac{D\Delta t}{(\Delta x)^2} \,\theta_{i+1,j} + \left(1 - \frac{2D\Delta t}{(\Delta x)^2}\right) \theta_{i,j} + \frac{D\Delta t}{(\Delta x)^2} \,\theta_{i-1,j}.$$

- When the stability condition is satisfied, the three coefficients for $\theta_{i+1,j}$, $\theta_{i,j}$, and $\theta_{i-1,j}$ all lie between zero and one and sum to one.
- They can be interpreted as probabilities.
- So the finite-difference equation becomes identical to backward induction on trinomial trees!
- The freedom in choosing Δx corresponds to similar freedom in the construction of trinomial trees.

Implicit Methods

- Suppose we use $t = t_{j+1}$ in Eq. (75) on p. 655 instead.
- The finite-difference equation becomes

$$\frac{\theta_{i,j+1} - \theta_{i,j}}{\Delta t} = D \, \frac{\theta_{i+1,j+1} - 2\theta_{i,j+1} + \theta_{i-1,j+1}}{(\Delta x)^2}.$$
(77)

- The stencil involves $\theta_{i,j}$, $\theta_{i,j+1}$, $\theta_{i+1,j+1}$, and $\theta_{i-1,j+1}$.
- This method is implicit:
 - The value of any one of the three quantities at t_{j+1} cannot be calculated unless the other two are known.
 - See exhibit (b) on p. 658.

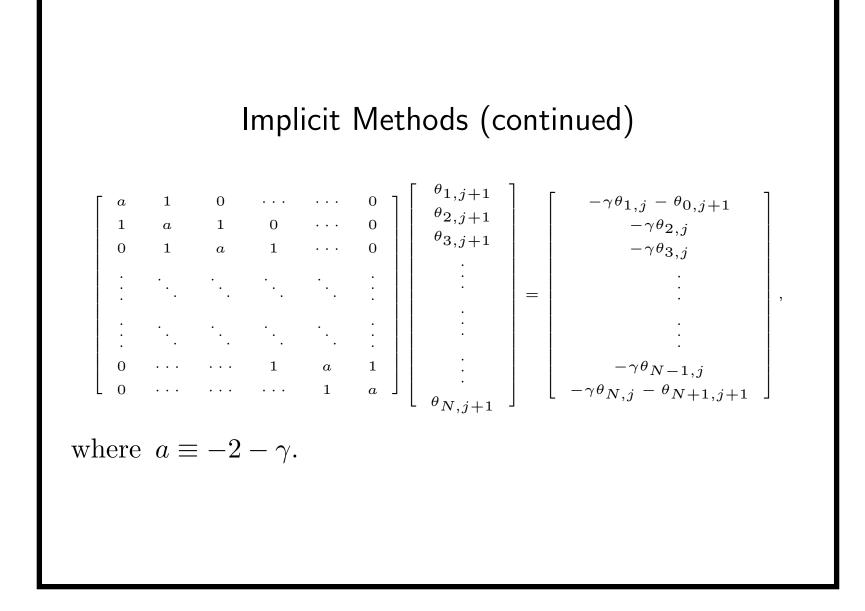
Implicit Methods (continued)

• Equation (77) can be rearranged as

$$\theta_{i-1,j+1} - (2+\gamma) \theta_{i,j+1} + \theta_{i+1,j+1} = -\gamma \theta_{i,j},$$

where $\gamma \equiv (\Delta x)^2 / (D\Delta t)$.

- This equation is unconditionally stable.
- Suppose the boundary conditions are given at $x = x_0$ and $x = x_{N+1}$.
- After $\theta_{i,j}$ has been calculated for i = 1, 2, ..., N, the values of $\theta_{i,j+1}$ at time t_{j+1} can be computed as the solution to the following tridiagonal linear system,



Implicit Methods (concluded)

• Tridiagonal systems can be solved in O(N) time and O(N) space.

- Never invert a matrix to solve a tridiagonal system.

- The matrix above is nonsingular when $\gamma \geq 0$.
 - A square matrix is nonsingular if its inverse exists.

Crank-Nicolson Method

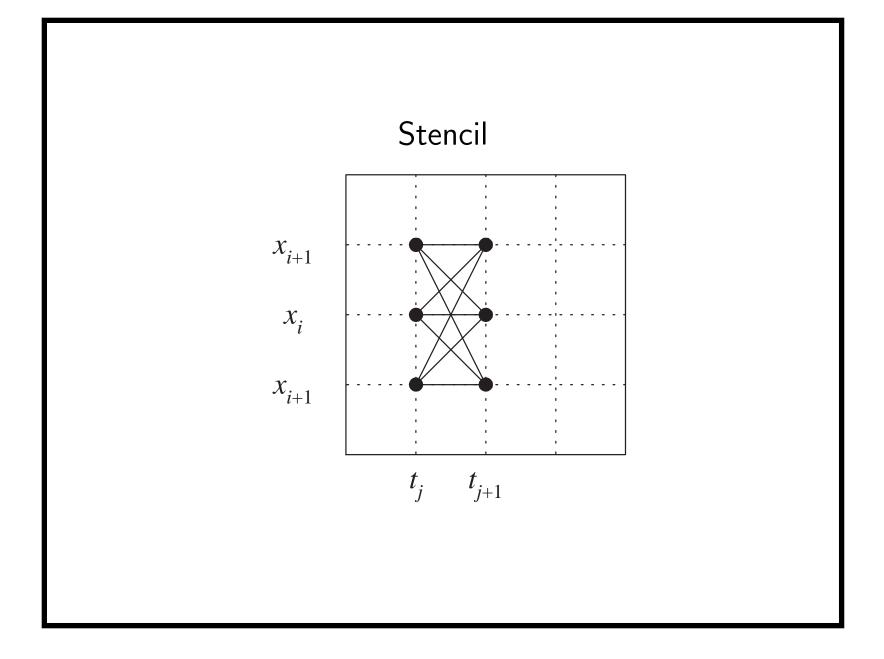
• Take the average of explicit method (76) on p. 656 and implicit method (77) on p. 662:

$$= \frac{\frac{\theta_{i,j+1} - \theta_{i,j}}{\Delta t}}{\left(D \frac{\theta_{i+1,j} - 2\theta_{i,j} + \theta_{i-1,j}}{(\Delta x)^2} + D \frac{\theta_{i+1,j+1} - 2\theta_{i,j+1} + \theta_{i-1,j+1}}{(\Delta x)^2}\right)$$

• After rearrangement,

$$\gamma \theta_{i,j+1} - \frac{\theta_{i+1,j+1} - 2\theta_{i,j+1} + \theta_{i-1,j+1}}{2} = \gamma \theta_{i,j} + \frac{\theta_{i+1,j} - 2\theta_{i,j} + \theta_{i-1,j}}{2}.$$

• This is an unconditionally stable implicit method with excellent rates of convergence.



Numerically Solving the Black-Scholes PDE

• See text.

Monte Carlo Simulation $^{\rm a}$

- Monte Carlo simulation is a sampling scheme.
- In many important applications within finance and without, Monte Carlo is one of the few feasible tools.
- When the time evolution of a stochastic process is not easy to describe analytically, Monte Carlo may very well be the only strategy that succeeds consistently.

^aA top 10 algorithm according to Dongarra and Sullivan (2000).

The Big Idea

- Assume X_1, X_2, \ldots, X_n have a joint distribution.
- $\theta \equiv E[g(X_1, X_2, \dots, X_n)]$ for some function g is desired.
- We generate

$$\left(x_1^{(i)}, x_2^{(i)}, \dots, x_n^{(i)}\right), \quad 1 \le i \le N$$

independently with the same joint distribution as (X_1, X_2, \ldots, X_n) .

• Set

$$Y_i \equiv g\left(x_1^{(i)}, x_2^{(i)}, \dots, x_n^{(i)}\right).$$

The Big Idea (concluded)

- Y_1, Y_2, \ldots, Y_N are independent and identically distributed random variables.
- Each Y_i has the same distribution as

$$Y \equiv g(X_1, X_2, \ldots, X_n).$$

- Since the average of these N random variables, \overline{Y} , satisfies $E[\overline{Y}] = \theta$, it can be used to estimate θ .
- The strong law of large numbers says that this procedure converges almost surely.
- The number of replications (or independent trials), N, is called the sample size.

Accuracy

- The Monte Carlo estimate and true value may differ owing to two reasons:
 - 1. Sampling variation.
 - 2. The discreteness of the sample paths.^a
- The first can be controlled by the number of replications.
- The second can be controlled by the number of observations along the sample path.

^aThis may not be an issue if the financial derivative only requires discrete sampling along the time dimension.

Accuracy and Number of Replications

- The statistical error of the sample mean \overline{Y} of the random variable Y grows as $1/\sqrt{N}$.
 - Because $\operatorname{Var}[\overline{Y}] = \operatorname{Var}[Y]/N$.
- In fact, this convergence rate is asymptotically optimal.^a
- So the variance of the estimator \overline{Y} can be reduced by a factor of 1/N by doing N times as much work.
- This is amazing because the same order of convergence holds independently of the dimension *n*.

^aThe Berry-Esseen theorem.

Accuracy and Number of Replications (concluded)

- In contrast, classic numerical integration schemes have an error bound of O(N^{-c/n}) for some constant c > 0.
 - n is the dimension.
- The required number of evaluations thus grows exponentially in *n* to achieve a given level of accuracy.
 - The curse of dimensionality.
- The Monte Carlo method, for example, is more efficient than alternative procedures for multivariate derivatives.

Monte Carlo Option Pricing

- For the pricing of European options on a dividend-paying stock, we may proceed as follows.
- Assume $dS/S = \mu dt + \sigma dW$.
- Stock prices S_1, S_2, S_3, \ldots at times $\Delta t, 2\Delta t, 3\Delta t, \ldots$ can be generated via

$$S_{i+1} = S_i e^{(\mu - \sigma^2/2) \,\Delta t + \sigma \sqrt{\Delta t} \,\xi}, \quad \xi \sim N(0, 1). \tag{78}$$

Monte Carlo Option Pricing (continued)

• If we discretize $dS/S = \mu dt + \sigma dW$ directly, we will obtain

$$S_{i+1} = S_i + S_i \mu \,\Delta t + S_i \sigma \sqrt{\Delta t} \,\xi.$$

- But this is locally normally distributed, not lognormally, hence biased.^a
- In practice, this is not expected to be a major problem as long as Δt is sufficiently small.

^aContributed by Mr. Tai, Hui-Chin (R97723028) on April 22, 2009.

Monte Carlo Option Pricing (concluded)

Non-dividend-paying stock prices in a risk-neutral economy can be generated by setting μ = r and Δt = T.
1: C := 0;

2: for
$$i = 1, 2, 3, \ldots, m$$
 do

3:
$$P := S \times e^{(r - \sigma^2/2) T + \sigma \sqrt{T} \xi};$$

4:
$$C := C + \max(P - X, 0);$$

5: end for

6: return Ce^{-rT}/m ;

• Pricing Asian options is also easy (see text).

How about American Options?

- Standard Monte Carlo simulation is inappropriate for American options because of early exercise (why?).
- It is difficult to determine the early-exercise point based on one single path.
- But Monte Carlo simulation can be modified to price American options with small biases (pp. 727ff).^a

^aLongstaff and Schwartz (2001).

Delta and Common Random Numbers

• In estimating delta, it is natural to start with the finite-difference estimate

$$e^{-r\tau} \frac{E[P(S+\epsilon)] - E[P(S-\epsilon)]}{2\epsilon}$$

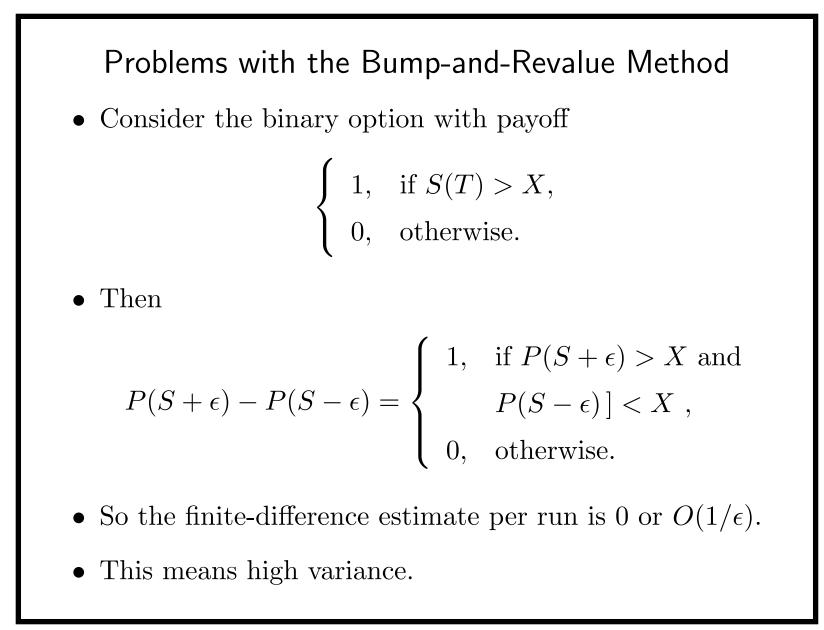
- -P(x) is the terminal payoff of the derivative security when the underlying asset's initial price equals x.
- Use simulation to estimate $E[P(S + \epsilon)]$ first.
- Use another simulation to estimate $E[P(S \epsilon)]$.
- Finally, apply the formula to approximate the delta.
- This is also called the bump-and-revalue method.

Delta and Common Random Numbers (concluded)

- This method is not recommended because of its high variance.
- A much better approach is to use common random numbers to lower the variance:

$$e^{-r\tau} E\left[\frac{P(S+\epsilon) - P(S-\epsilon)}{2\epsilon}\right]$$

- Here, the same random numbers are used for $P(S + \epsilon)$ and $P(S - \epsilon)$.
- This holds for gamma and cross gammas (for multivariate derivatives).



Gamma

• The finite-difference formula for gamma is

$$e^{-r\tau} E\left[\frac{P(S+\epsilon) - 2 \times P(S) + P(S-\epsilon)}{\epsilon^2}\right]$$

• For a correlation option with multiple underlying assets, the finite-difference formula for the cross gamma $\partial^2 P(S_1, S_2, \dots)/(\partial S_1 \partial S_2)$ is:

$$e^{-r\tau} E\left[\frac{P(S_1+\epsilon_1, S_2+\epsilon_2) - P(S_1-\epsilon_1, S_2+\epsilon_2)}{4\epsilon_1\epsilon_2} - P(S_1+\epsilon_1, S_2-\epsilon_2) + P(S_1-\epsilon_1, S_2-\epsilon_2)\right].$$

Gamma (continued)

- Choosing an ϵ of the right magnitude can be challenging.
 - If ϵ is too large, inaccurate Greeks result.
 - If ϵ is too small, unstable Greeks result.
- This phenomenon is sometimes called the curse of differentiation.

Gamma (continued)

• In general, suppose

$$\frac{\partial^{i}}{\partial\theta^{i}}e^{-r\tau}E[P(S)] = e^{-r\tau}E\left[\frac{\partial^{i}P(S)}{\partial\theta^{i}}\right]$$

holds for all i > 0, where θ is a parameter of interest.

- Then formulas for the Greeks become integrals.
- As a result, we avoid ϵ , finite differences, and resimulation.

Gamma (concluded)

- This is indeed possible for a broad class of payoff functions.^a
 - Roughly speaking, any payoff function that is equal to a sum of products of differentiable functions and indicator functions with the right kind of support.
 - For example, the payoff of a call is

 $\max(S(T) - X, 0) = (S(T) - X)I_{\{S(T) - X \ge 0\}}.$

- The results are too technical to cover here.

^aTeng (R91723054) (2004) and Lyuu and Teng (R91723054) (2011).

Biases in Pricing Continuously Monitored Options with Monte Carlo

- We are asked to price a continuously monitored up-and-out call with barrier H.
- The Monte Carlo method samples the stock price at n discrete time points t_1, t_2, \ldots, t_n .
- A sample path $S(t_0), S(t_1), \ldots, S(t_n)$ is produced.
 - Here, $t_0 = 0$ is the current time, and $t_n = T$ is the expiration time of the option.

Biases in Pricing Continuously Monitored Options with Monte Carlo (continued)

- If all of the sampled prices are below the barrier, this sample path pays $\max(S(t_n) X, 0)$.
- Repeating these steps and averaging the payoffs yield a Monte Carlo estimate.

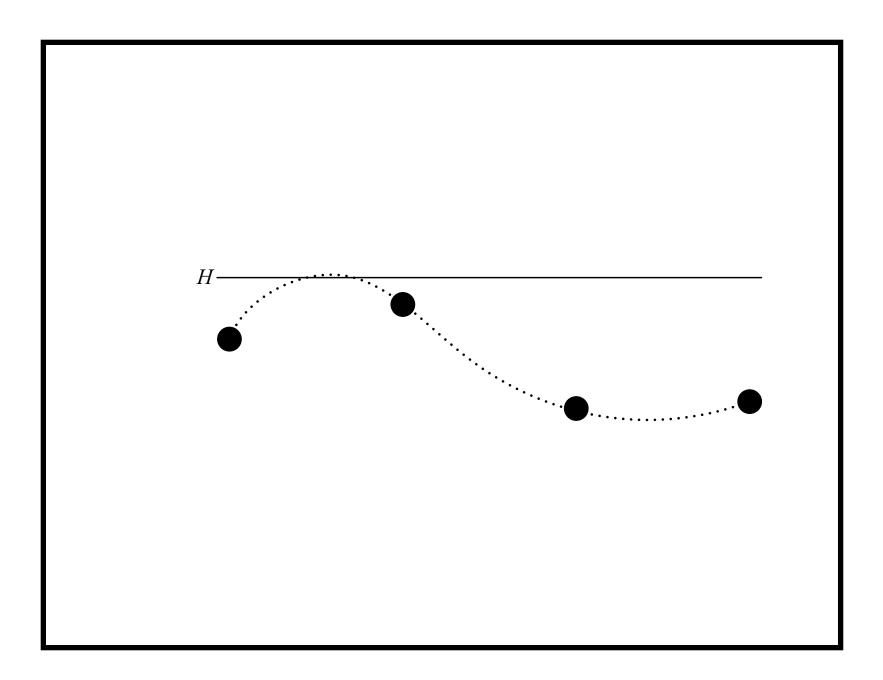
1:
$$C := 0;$$

2: for $i = 1, 2, 3, ..., m$ do
3: $P := S;$ hit $:= 0;$
4: for $j = 1, 2, 3, ..., n$ do
5: $P := P \times e^{(r - \sigma^2/2) (T/n) + \sigma \sqrt{(T/n)} \xi};$
6: if $P \ge H$ then
7: hit $:= 1;$
8: break;
9: end if
10: end for
11: if hit = 0 then
12: $C := C + \max(P - X, 0);$
13: end if
14: end for
15: return $Ce^{-rT}/m;$

Biases in Pricing Continuously Monitored Options with Monte Carlo (continued)

- This estimate is biased.^a
 - Suppose none of the sampled prices on a sample path equals or exceeds the barrier H.
 - It remains possible for the continuous sample path that passes through them to hit the barrier between sampled time points (see plot on next page).

^aShevchenko (2003).



Biases in Pricing Continuously Monitored Options with Monte Carlo (concluded)

- The bias can certainly be lowered by increasing the number of observations along the sample path.
- However, even daily sampling may not suffice.
- The computational cost also rises as a result.

Brownian Bridge Approach to Pricing Barrier Options

- We desire an unbiased estimate efficiently.
- So the above-mentioned payoff should be multiplied by the probability p that a continuous sample path does not hit the barrier conditional on the sampled prices.
- This methodology is called the Brownian bridge approach.
- Formally, we have

 $p \equiv \operatorname{Prob}[S(t) < H, 0 \le t \le T | S(t_0), S(t_1), \dots, S(t_n)].$

• As a barrier is hit over a time interval if and only if the maximum stock price over that period is at least H,

$$p = \operatorname{Prob}\left[\max_{0 \le t \le T} S(t) < H \,|\, S(t_0), S(t_1), \dots, S(t_n)\right].$$

• Luckily, the conditional distribution of the maximum over a time interval given the beginning and ending stock prices is known.

Lemma 21 Assume S follows $dS/S = \mu dt + \sigma dW$ and define $\zeta(x) \equiv \exp\left[-\frac{2\ln(x/S(t))\ln(x/S(t+\Delta t))}{\sigma^2 \Delta t}\right].$ (1) If $H > \max(S(t), S(t+\Delta t))$, then $\operatorname{Prob}\left[\max_{t \le u \le t+\Delta t} S(u) < H \mid S(t), S(t+\Delta t)\right] = 1 - \zeta(H).$ (2) If $h < \min(S(t), S(t+\Delta t))$, then

$$\operatorname{Prob}\left[\left.\min_{t\leq u\leq t+\Delta t}S(u)>h\right|\,S(t),S(t+\Delta t)\right]=1-\zeta(h).$$

- Lemma 21 gives the probability that the barrier is not hit in a time interval, given the starting and ending stock prices.
- For our up-and-out call, choose n = 1.
- As a result,

$$p = \begin{cases} 1 - \exp\left[-\frac{2\ln(H/S(0))\ln(H/S(T))}{\sigma^2 T}\right], & \text{if } H > \max(S(0), S(T)), \\ 0, & \text{otherwise.} \end{cases}$$

1: C := 0;2: for i = 1, 2, 3, ..., m do 3: $P := S \times e^{(r-q-\sigma^2/2)T+\sigma\sqrt{T} \xi()};$ 4: if (S < H and P < H) or (S > H and P > H) then 5: $C := C + \max(P - X, 0) \times \left\{ 1 - \exp\left[-\frac{2\ln(H/S) \times \ln(H/P)}{\sigma^2 T} \right] \right\};$ 6: end if 7: end for 8: return $Ce^{-rT}/m;$

- The idea can be generalized.
- For example, we can handle more complex barrier options.
- Consider an up-and-out call with barrier H_i for the time interval $(t_i, t_{i+1}], 0 \le i < n$.
- This option thus contains n barriers.
- Multiply the probabilities for the *n* time intervals to obtain the desired probability adjustment term.

Variance Reduction

- The statistical efficiency of Monte Carlo simulation can be measured by the variance of its output.
- If this variance can be lowered without changing the expected value, fewer replications are needed.
- Methods that improve efficiency in this manner are called variance-reduction techniques.
- Such techniques become practical when the added costs are outweighed by the reduction in sampling.

Variance Reduction: Antithetic Variates

- We are interested in estimating $E[g(X_1, X_2, \ldots, X_n)]$, where X_1, X_2, \ldots, X_n are independent.
- Let Y_1 and Y_2 be random variables with the same distribution as $g(X_1, X_2, \ldots, X_n)$.
- Then

$$\operatorname{Var}\left[\frac{Y_1 + Y_2}{2}\right] = \frac{\operatorname{Var}[Y_1]}{2} + \frac{\operatorname{Cov}[Y_1, Y_2]}{2}$$

- $\operatorname{Var}[Y_1]/2$ is the variance of the Monte Carlo method with two independent replications.
- The variance $\operatorname{Var}[(Y_1 + Y_2)/2]$ is smaller than $\operatorname{Var}[Y_1]/2$ when Y_1 and Y_2 are negatively correlated.

Variance Reduction: Antithetic Variates (continued)

- For each simulated sample path X, a second one is obtained by reusing the random numbers on which the first path is based.
- This yields a second sample path Y.
- Two estimates are then obtained: One based on X and the other on Y.
- If N independent sample paths are generated, the antithetic-variates estimator averages over 2Nestimates.

Variance Reduction: Antithetic Variates (continued)

- Consider process $dX = a_t dt + b_t \sqrt{dt} \xi$.
- Let g be a function of n samples X_1, X_2, \ldots, X_n on the sample path.
- We are interested in $E[g(X_1, X_2, \ldots, X_n)].$
- Suppose one simulation run has realizations
 ξ₁, ξ₂,..., ξ_n for the normally distributed fluctuation term ξ.
- This generates samples x_1, x_2, \ldots, x_n .
- The estimate is then $g(\boldsymbol{x})$, where $\boldsymbol{x} \equiv (x_1, x_2 \dots, x_n)$.

Variance Reduction: Antithetic Variates (concluded)

- The antithetic-variates method does not sample n more numbers from ξ for the second estimate $g(\mathbf{x}')$.
- Instead, generate the sample path $\mathbf{x}' \equiv (x'_1, x'_2 \dots, x'_n)$ from $-\xi_1, -\xi_2, \dots, -\xi_n$.
- Compute $g(\boldsymbol{x}')$.
- Output (g(x) + g(x'))/2.
- Repeat the above steps for as many times as required by accuracy.

Variance Reduction: Conditioning

- We are interested in estimating E[X].
- Suppose here is a random variable Z such that E[X | Z = z] can be efficiently and precisely computed.
- E[X] = E[E[X | Z]] by the law of iterated conditional expectations.
- Hence the random variable E[X | Z] is also an unbiased estimator of E[X].

Variance Reduction: Conditioning (concluded)

• As

```
\operatorname{Var}[E[X | Z]] \leq \operatorname{Var}[X],
```

 $E[X \mid Z]$ has a smaller variance than observing X directly.

- First obtain a random observation z on Z.
- Then calculate E[X | Z = z] as our estimate.
 - There is no need to resort to simulation in computing E[X | Z = z].
- The procedure can be repeated a few times to reduce the variance.

Control Variates

- Use the analytic solution of a similar yet simpler problem to improve the solution.
- Suppose we want to estimate E[X] and there exists a random variable Y with a known mean $\mu \equiv E[Y]$.
- Then $W \equiv X + \beta(Y \mu)$ can serve as a "controlled" estimator of E[X] for any constant β .
 - However β is chosen, W remains an unbiased estimator of E[X] as

$$E[W] = E[X] + \beta E[Y - \mu] = E[X].$$

Control Variates (continued)

• Note that

$$\operatorname{Var}[W] = \operatorname{Var}[X] + \beta^{2} \operatorname{Var}[Y] + 2\beta \operatorname{Cov}[X, Y],$$
(79)

• Hence W is less variable than X if and only if $\beta^2 \operatorname{Var}[Y] + 2\beta \operatorname{Cov}[X, Y] < 0. \tag{80}$

Control Variates (concluded)

- The success of the scheme clearly depends on both β and the choice of Y.
 - For example, arithmetic average-rate options can be priced by choosing Y to be the otherwise identical geometric average-rate option's price and $\beta = -1$.
- This approach is much more effective than the antithetic-variates method.

Choice of Y

- In general, the choice of Y is ad hoc, and experiments must be performed to confirm the wisdom of the choice.
- Try to match calls with calls and puts with puts.^a
- On many occasions, Y is a discretized version of the derivative that gives μ.
 - Discretely monitored geometric average-rate option vs. the continuously monitored geometric average-rate option given by formulas (30) on p. 350.
- For some choices, the discrepancy can be significant, such as the lookback option.^b

 $^{\rm a}{\rm Contributed}$ by Ms. Teng, Huei-Wen (R91723054) on May 25, 2004. $^{\rm b}{\rm Contributed}$ by Mr. Tsai, Hwai (R92723049) on May 12, 2004.

Optimal Choice of β

• Equation (79) on p. 706 is minimized when

$$\beta = -\operatorname{Cov}[X, Y] / \operatorname{Var}[Y].$$

- It is called beta in the book.

• For this specific β ,

$$\operatorname{Var}[W] = \operatorname{Var}[X] - \frac{\operatorname{Cov}[X,Y]^2}{\operatorname{Var}[Y]} = \left(1 - \rho_{X,Y}^2\right) \operatorname{Var}[X],$$

where $\rho_{X,Y}$ is the correlation between X and Y.

• Note that the variance can never be increased with the optimal choice.

Optimal Choice of β (continued)

- Furthermore, the stronger X and Y are correlated, the greater the reduction in variance.
- For example, if this correlation is nearly perfect (± 1) , we could control X almost exactly.
- Typically, neither $\operatorname{Var}[Y]$ nor $\operatorname{Cov}[X, Y]$ is known.
- Therefore, we cannot obtain the maximum reduction in variance.
- We can guess these values and hope that the resulting W does indeed have a smaller variance than X.

Optimal Choice of β (continued)

- A second possibility is to use the simulated data to estimate these quantities.
 - How to do it efficiently in terms of time and space?
- Observe that $-\beta$ has the same sign as the correlation between X and Y.
- Hence, if X and Y are positively correlated, $\beta < 0$, then X is adjusted downward whenever $Y > \mu$ and upward otherwise.
- The opposite is true when X and Y are negatively correlated, in which case $\beta > 0$.

Optimal Choice of β (concluded)

- Suppose a suboptimal $\beta + \epsilon$ is used instead.
- The variance increases by only $\epsilon^2 \operatorname{Var}[Y]$.^a

^aHan and Lai (2010).

A Pitfall

- A potential pitfall is to sample X and Y independently.
- In this case, $\operatorname{Cov}[X, Y] = 0$.
- Equation (79) on p. 706 becomes

 $\operatorname{Var}[W] = \operatorname{Var}[X] + \beta^2 \operatorname{Var}[Y].$

- So whatever Y is, the variance is *increased*!
- Lesson: X and Y must be correlated.

Problems with the Monte Carlo Method

- The error bound is only probabilistic.
- The probabilistic error bound of \sqrt{N} does not benefit from regularity of the integrand function.
- The requirement that the points be independent random samples are wasteful because of clustering.
- In reality, pseudorandom numbers generated by completely deterministic means are used.
- Monte Carlo simulation exhibits a great sensitivity on the seed of the pseudorandom-number generator.