
Trees
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I love a tree more than a man.

— Ludwig van Beethoven (1770–1827)

And though the holes were rather small,

they had to count them all.

— The Beatles, A Day in the Life (1967)
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The Combinatorial Method

• The combinatorial method can often cut the running

time by an order of magnitude.

• The basic paradigm is to count the number of admissible

paths that lead from the root to any terminal node.

• We first used this method in the linear-time algorithm

for standard European option pricing on p. 244.

• We will now apply it to price barrier options.
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The Reflection Principlea

• Imagine a particle at position (0,−a) on the integral

lattice that is to reach (n,−b).

• Without loss of generality, assume a > 0 and b ≥ 0.

• This particle’s movement:

(i, j)
*(i+ 1, j + 1) up move S → Su

j(i+ 1, j − 1) down move S → Sd

• How many paths touch the x axis?

aAndré (1887).

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 568



(0, a) (n, b)

(0, a)

J
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The Reflection Principle (continued)

• For a path from (0,−a) to (n,−b) that touches the x

axis, let J denote the first point this happens.

• Reflect the portion of the path from (0,−a) to J .

• A path from (0,a) to (n,−b) is constructed.

• It also hits the x axis at J for the first time.

• The one-to-one mapping shows the number of paths

from (0,−a) to (n,−b) that touch the x axis equals

the number of paths from (0,a) to (n,−b).
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The Reflection Principle (concluded)

• A path of this kind has (n+ b+ a)/2 down moves and

(n− b− a)/2 up moves.

• Hence there are (
n

n+a+b
2

)
(59)

such paths for even n+ a+ b.

– Convention:
(
n
k

)
= 0 for k < 0 or k > n.

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 571



Pricing Barrier Options (Lyuu, 1998)

• Focus on the down-and-in call with barrier H < X.

• Assume H < S without loss of generality.

• Define

a ≡
⌈
ln (X/ (Sdn))

ln(u/d)

⌉
=

⌈
ln(X/S)

2σ
√
∆t

+
n

2

⌉
,

h ≡
⌊
ln (H/ (Sdn))

ln(u/d)

⌋
=

⌊
ln(H/S)

2σ
√
∆t

+
n

2

⌋
.

– h is such that H̃ ≡ Suhdn−h is the terminal price

that is closest to, but does not exceed H.

– a is such that X̃ ≡ Suadn−a is the terminal price

that is closest to, but is not exceeded by X.
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Pricing Barrier Options (continued)

• The true barrier is replaced by the effective barrier H̃

in the binomial model.

• A process with n moves hence ends up in the money if

and only if the number of up moves is at least a.

• The price Sukdn−k is at a distance of 2k from the

lowest possible price Sdn on the binomial tree.

–

Sukdn−k = Sd−kdn−k = Sdn−2k. (60)
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Pricing Barrier Options (continued)

• The number of paths from S to the terminal price

Sujdn−j is
(
n
j

)
, each with probability pj(1− p)n−j .

• With reference to p. 574, the reflection principle can be

applied with a = n− 2h and b = 2j − 2h in Eq. (59)

on p. 571 by treating the H̃ line as the x axis.

• Therefore,(
n

n+(n−2h)+(2j−2h)
2

)
=

(
n

n− 2h+ j

)
paths hit H̃ in the process for h ≤ n/2.
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Pricing Barrier Options (concluded)

• The terminal price Sujdn−j is reached by a path that

hits the effective barrier with probability(
n

n− 2h+ j

)
pj(1− p)n−j .

• The option value equals∑2h
j=a

(
n

n−2h+j

)
pj(1− p)n−j

(
Sujdn−j −X

)
Rn

. (61)

– R ≡ erτ/n is the riskless return per period.

• It implies a linear-time algorithm.a

aLyuu (1998).
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Convergence of BOPM

• Equation (61) results in the sawtooth-like convergence

shown on p. 333.

• The reasons are not hard to see.

• The true barrier most likely does not equal the effective

barrier.

• The same holds for the strike price and the effective

strike price.

• The issue of the strike price is less critical.

• But the issue of the barrier is not negligible.
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Convergence of BOPM (continued)

• Convergence is actually good if we limit n to certain

values—191, for example.

• These values make the true barrier coincide with or just

above one of the stock price levels, that is,

H ≈ Sdj = Se−jσ
√

τ/n

for some integer j.

• The preferred n’s are thus

n =

⌊
τ

(ln(S/H)/(jσ))
2

⌋
, j = 1, 2, 3, . . .
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Convergence of BOPM (continued)

• There is only one minor technicality left.

• We picked the effective barrier to be one of the n+ 1

possible terminal stock prices.

• However, the effective barrier above, Sdj , corresponds to

a terminal stock price only when n− j is even.a

• To close this gap, we decrement n by one, if necessary,

to make n− j an even number.

aThis is because j = n − 2k for some k by Eq. (60) on p. 573. Of

course we could have adopted the form Sdj (−n ≤ j ≤ n) for the

effective barrier. It makes a good exercise.
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Convergence of BOPM (concluded)

• The preferred n’s are now

n =

 ℓ if ℓ− j is even

ℓ− 1 otherwise
,

j = 1, 2, 3, . . . , where

ℓ ≡

⌊
τ

(ln(S/H)/(jσ))
2

⌋
.

• Evaluate pricing formula (61) on p. 576 only with the

n’s above.
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Practical Implications

• Now that barrier options can be efficiently priced, we

can afford to pick very large n’s (p. 583).

• This has profound consequences (to describe later).
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n Combinatorial method

Value Time (milliseconds)

21 5.507548 0.30

84 5.597597 0.90

191 5.635415 2.00

342 5.655812 3.60

533 5.652253 5.60

768 5.654609 8.00

1047 5.658622 11.10

1368 5.659711 15.00

1731 5.659416 19.40

2138 5.660511 24.70

2587 5.660592 30.20

3078 5.660099 36.70

3613 5.660498 43.70

4190 5.660388 44.10

4809 5.659955 51.60

5472 5.660122 68.70

6177 5.659981 76.70

6926 5.660263 86.90

7717 5.660272 97.20
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Practical Implications (concluded)

• Pricing is prohibitively time consuming when S ≈ H

because n ∼ 1/ ln2(S/H).

– This is called the barrier-too-close problem.

• This observation is indeed true of standard

quadratic-time binomial tree algorithms.

• But it no longer applies to linear-time algorithms (see

p. 585).

• This binomial model is O(1/
√
n) convergent in general

but O(1/n) convergent when the barrier is matched.a

aLin (R95221010) (2008) and Lin (R95221010) and Palmer (2010).
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Barrier at 95.0 Barrier at 99.5 Barrier at 99.9

n Value Time n Value Time n Value Time

.

.

. 795 7.47761 8 19979 8.11304 253

2743 2.56095 31.1 3184 7.47626 38 79920 8.11297 1013

3040 2.56065 35.5 7163 7.47682 88 179819 8.11300 2200

3351 2.56098 40.1 12736 7.47661 166 319680 8.11299 4100

3678 2.56055 43.8 19899 7.47676 253 499499 8.11299 6300

4021 2.56152 48.1 28656 7.47667 368 719280 8.11299 8500

True 2.5615 7.4767 8.1130

(All times in milliseconds.)
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Trinomial Tree

• Set up a trinomial approximation to the geometric

Brownian motion dS/S = r dt+ σ dW .a

• The three stock prices at time ∆t are S, Su, and Sd,

where ud = 1.

• Impose the matching of mean and that of variance:

1 = pu + pm + pd,

SM = (puu+ pm + (pd/u))S,

S2V = pu(Su− SM)2 + pm(S − SM)2 + pd(Sd− SM)2.

aBoyle (1988).

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 586



• Above,

M ≡ er∆t,

V ≡ M2(eσ
2∆t − 1),

by Eqs. (19) on p. 152.
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Trinomial Tree (concluded)

• Use linear algebra to verify that

pu =
u
(
V +M2 −M

)
− (M − 1)

(u− 1) (u2 − 1)
,

pd =
u2

(
V +M2 −M

)
− u3(M − 1)

(u− 1) (u2 − 1)
.

– In practice, must make sure the probabilities lie

between 0 and 1.

• Countless variations.
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A Trinomial Tree

• Use u = eλσ
√
∆t, where λ ≥ 1 is a tunable parameter.

• Then

pu → 1

2λ2
+

(
r + σ2

)√
∆t

2λσ
,

pd → 1

2λ2
−

(
r − 2σ2

)√
∆t

2λσ
.

• A nice choice for λ is
√
π/2 .a

aOmberg (1988).
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Barrier Options Revisited

• BOPM introduces a specification error by replacing the

barrier with a nonidentical effective barrier.

• The trinomial model solves the problem by adjusting λ

so that the barrier is hit exactly.a

• It takes

h =
ln(S/H)

λσ
√
∆t

consecutive down moves to go from S to H if h is an

integer, which is easy to achieve by adjusting λ.

– This is because Se−hλσ
√
∆t = H.

aRitchken (1995).
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Barrier Options Revisited (continued)

• Typically, we find the smallest λ ≥ 1 such that h is an

integer.a

• That is, we find the largest integer j ≥ 1 that satisfies
ln(S/H)

jσ
√
∆t

≥ 1 and then let

λ =
ln(S/H)

jσ
√
∆t

.

– Such a λ may not exist for very small n’s.

– This is not hard to check.

aWhy must λ ≥ 1?
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Barrier Options Revisited (concluded)

• This done, one of the layers of the trinomial tree

coincides with the barrier.

• The following probabilities may be used,

pu =
1

2λ2
+

µ′
√
∆t

2λσ
,

pm = 1− 1

λ2
,

pd =
1

2λ2
− µ′

√
∆t

2λσ
.

– µ′ ≡ r − σ2/2.
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Algorithms Comparisona

• So which algorithm is better, binomial or trinomial?

• Algorithms are often compared based on the n value at

which they converge.

– The one with the smallest n wins.

• So giraffes are faster than cheetahs because they take

fewer strides to travel the same distance!

• Performance must be based on actual running times, not

n.

aLyuu (1998).
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Algorithms Comparison (continued)

• Pages 333 and 594 seem to show the trinomial model

converges at a smaller n than BOPM.

• It is in this sense when people say trinomial models

converge faster than binomial ones.

• But does it make the trinomial model better then?
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Algorithms Comparison (concluded)

• The linear-time binomial tree algorithm actually

performs better than the trinomial one.

• See the next page, expanded from p. 583.

• The barrier-too-close problem is too hard for a

quadratic-time trinomial tree algorithm.a

• In fact, the trinomial model also has a linear-time

algorithm!b

aLyuu (1998).
bChen (R94922003) (2007).
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n Combinatorial method Trinomial tree algorithm

Value Time Value Time

21 5.507548 0.30

84 5.597597 0.90 5.634936 35.0

191 5.635415 2.00 5.655082 185.0

342 5.655812 3.60 5.658590 590.0

533 5.652253 5.60 5.659692 1440.0

768 5.654609 8.00 5.660137 3080.0

1047 5.658622 11.10 5.660338 5700.0

1368 5.659711 15.00 5.660432 9500.0

1731 5.659416 19.40 5.660474 15400.0

2138 5.660511 24.70 5.660491 23400.0

2587 5.660592 30.20 5.660493 34800.0

3078 5.660099 36.70 5.660488 48800.0

3613 5.660498 43.70 5.660478 67500.0

4190 5.660388 44.10 5.660466 92000.0

4809 5.659955 51.60 5.660454 130000.0

5472 5.660122 68.70

6177 5.659981 76.70

(All times in milliseconds.)
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Double-Barrier Options

• Double-barrier options are barrier options with two

barriers L < H.

• Assume L < S < H.

• The binomial model produces oscillating option values

(see plot on next page).a

• The combinatorial method gives a linear-time algorithm

(see text).

aChao (R86526053) (1999); Dai (R86526008, D8852600) and Lyuu

(2005).

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 599



20 40 60 80 100

8

10

12

14

16

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 600



Double-Barrier Knock-Out Options

• We knew how to pick the λ so that one of the layers of

the trinomial tree coincides with one barrier, say H.

• This choice, however, does not guarantee that the other

barrier, L, is also hit.

• One way to handle this problem is to lower the layer of

the tree just above L to coincide with L.a

– More general ways to make the trinomial model hit

both barriers are available.b

aRitchken (1995).
bHsu (R7526001) and Lyuu (2006). Dai (R86526008, D8852600) and

Lyuu (2006) combine binomial and trinomial trees to derive an O(n)-

time algorithm for double-barrier options (see pp. 606ff).
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Double-Barrier Knock-Out Options (continued)

• The probabilities of the nodes on the layer above L

must be adjusted.

• Let ℓ be the positive integer such that

Sdℓ+1 < L < Sdℓ.

• Hence the layer of the tree just above L has price Sdℓ.a

aYou probably can do the same thing for binomial models. But the

benefits are most likely nil (why?). Thanks to a lively discussion on April

25, 2012.
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Double-Barrier Knock-Out Options (concluded)

• Define γ > 1 as the number satisfying

L = Sdℓ−1e−γλσ
√
∆t.

– The prices between the barriers are

L, Sdℓ−1, . . . , Sd2, Sd, S, Su, Su2, . . . , Suh−1, Suh = H.

• The probabilities for the nodes with price equal to

Sdℓ−1 are

p′u =
b+ aγ

1 + γ
, p′d =

b− a

γ + γ2
, and p′m = 1− p′u − p′d,

where a ≡ µ′
√
∆t/(λσ) and b ≡ 1/λ2.
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Convergence: Binomial vs. Trinomial
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The Binomial-Trinomial Tree

• Append a trinomial structure to a binomial tree can lead

to improved convergence and efficiency.a

• The resulting tree is called the binomial-trinomial tree.b

• Suppose a binomial tree will be built with ∆t as the

duration of one period.

• Node X at time t needs to pick three nodes on the

binomial tree at time t+∆t′ as its successor nodes.

– ∆t ≤ ∆t′ < 2∆t.

aDai (R86526008, D8852600) and Lyuu (2006, 2008, 2010).
bThe idea first emerged in a hotel in Muroran, Hokkaido, Japan, in

May of 2005.
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The Binomial-Trinomial Tree (continued)
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The Binomial-Trinomial Tree (continued)

• These three nodes should guarantee:

1. The mean and variance of the stock price are

matched.

2. The branching probabilities are between 0 and 1.

• Let S be the stock price at node X.

• Use s(z) to denote the stock price at node z.
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The Binomial-Trinomial Tree (continued)

• Recall (p. 255, e.g.) that the expected value of the

logarithmic return ln(St+∆t′/S) at time t+∆t′ equals

µ ≡
(
r − σ2/2

)
∆t′. (62)

• Its variance equals

Var ≡ σ2∆t′. (63)

• Let node B be the node whose logarithmic return

µ̂ ≡ ln(s(B)/S) is closest to µ among all the nodes on

the binomial tree at time t+∆t′.
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The Binomial-Trinomial Tree (continued)

• The middle branch from node X will end at node B.

• The two nodes A and C, which bracket node B, are the

destinations of the other two branches from node X.

• Recall that adjacent nodes on the binomial tree are

spaced at 2σ
√
∆t apart.

• See the figure on p. 607 for illustration.
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The Binomial-Trinomial Tree (continued)

• The three branching probabilities from node X are

obtained through matching the mean and variance of

the logarithmic return ln(St+∆t′/S).

• Let µ̂ ≡ ln (s(B)/S) be the logarithmic return of the

middle node B.

• Also, let α, β, and γ be the differences between µ and

the logarithmic returns ln(s(Z)/S) of nodes

Z = A,B,C, in that order.
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The Binomial-Trinomial Tree (continued)

• In other words,

α ≡ µ̂+ 2σ
√
∆t− µ = β + 2σ

√
∆t , (64)

β ≡ µ̂− µ, (65)

γ ≡ µ̂− 2σ
√
∆t− µ = β − 2σ

√
∆t . (66)

• The three branching probabilities pu, pm, pd then satisfy

puα+ pmβ + pdγ = 0, (67)

puα
2 + pmβ2 + pdγ

2 = Var, (68)

pu + pm + pd = 1. (69)
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The Binomial-Trinomial Tree (concluded)

• Equation (67) matches the mean (62) of the logarithmic

return ln(St+∆t′/S) on p. 609.

• Equation (68) matches its variance (63) on p. 609.

• The three probabilities can be proved to lie between 0

and 1.
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Pricing Double-Barrier Options

• Consider a double-barrier option with two barriers L

and H, where L < S < H.

• We need to make each barrier coincide with a layer of

the binomial tree for better convergence.

• This means choosing a ∆t such that

κ ≡ ln(H/L)

2σ
√
∆t

is a positive integer.

– The distance between two adjacent nodes such as

nodes Y and Z in the figure on p. 615 is 2σ
√
∆t .
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Pricing Double-Barrier Options (continued)
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Pricing Double-Barrier Options (continued)

• Suppose that the goal is a tree with ∼ m periods.

• Suppose we pick ∆τ ≡ T/m for the length of each

period.

• There is no guarantee that ln(H/L)

2σ
√
∆τ

is an integer.

• So we pick a ∆t that is close to, but does not exceed,

∆τ and makes ln(H/L)

2σ
√
∆t

an integer.

• Specifically, we select

∆t =

(
ln(H/L)

2κσ

)2

,

where κ =
⌈
ln(H/L)

2σ
√
∆τ

⌉
.
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Pricing Double-Barrier Options (continued)

• We now proceed to build the binomial-trinomial tree.

• Start with the binomial part.

• Lay out the nodes from the low barrier L upward and

downward.

• Automatically, a layer coincides with the high barrier H.

• It is unlikely that ∆t divides T , however.

• As a consequence, the position at time 0 and with

logarithmic return ln(S/S) = 0 is not occupied by a

binomial node to serve as the root node.
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Pricing Double-Barrier Options (continued)

• The binomial-trinomial structure can address this

problem as follows.

• Between time 0 and time T , the binomial tree spans

T/∆t periods.

• Keep only the last ⌊T/∆t⌋ − 1 periods and let the first

period have a duration equal to

∆t′ = T −
(⌊

T

∆t

⌋
− 1

)
∆t.

• Then these ⌊T/∆t⌋ periods span T years.

• It is easy to verify that ∆t ≤ ∆t′ < 2∆t.
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Pricing Double-Barrier Options (continued)

• Start with the root node at time 0 and at a price with

logarithmic return ln(S/S) = 0.

• Find the three nodes on the binomial tree at time ∆t′

as described earlier.

• Calculate the three branching probabilities to them.

• Grow the binomial tree from these three nodes until

time T to obtain a binomial-trinomial tree with

⌊T/∆t⌋ periods.

• See the figure on p. 615 for illustration.
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Pricing Double-Barrier Options (continued)

• Now the binomial-trinomial tree can be used to price

double-barrier options by backward induction.

• That takes quadratic time.

• But we know a linear-time algorithm exists for

double-barrier options on the binomial tree (see text).

• Apply that algorithm to price the double-barrier

option’s prices at the three nodes at time ∆t′.

– That is, nodes A, B, and C on p. 615.

• Then calculate their expected discounted value for the

root node.

• The overall running time is only linear.
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Pricing Double-Barrier Options (continued)

• Binomial trees have troubles with pricing barrier options

(see p. 333 and p. 605).

• Even pit against the much better trinomial tree, the

binomial-trinomial tree converges faster and smoother

(see p. 622).

• In fact, the binomial-trinomial tree has an error of

O(1/n) for single-barrier options.a

aLyuu and Palmer (2010).
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Pricing Double-Barrier Options (concluded)

10.19

10.195

10.2

10.205

10.21

0.01 0.02 0.03 0.04 0.05 0.06 0.07

Value

Time

A

B

The thin line denotes the double-barrier option prices

computed by the trinomial tree against the running time in

seconds (such as point A). The thick line denotes those

computed by the binomial-trinomial tree (such as point B).
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Pricing Discrete Barrier Options

• Barrier options whose barrier is monitored only at

discrete times are called discrete barrier options.

• They are more common than the continuously

monitored versions.

• The main difficulty with pricing discrete barrier options

lies in matching the monitored times.

• Here is why.

• Suppose each period has a duration of ∆t and the

ℓ > 1 monitored times are t0 = 0, t1, t2, . . . , tℓ = T .
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Pricing Discrete Barrier Options (continued)

• It is unlikely that all monitored times coincide with the

end of a period on the tree, meaning ∆t divides ti for

all i.

• The binomial-trinomial tree can handle discrete options

with ease, however.

• Simply build a binomial-trinomial tree from time 0 to

time t1, followed by one from time t1 to time t2, and so

on until time tℓ.

• See p. 625.
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Pricing Discrete Barrier Options (concluded)

• This procedure works even if each ti is associated with

a distinct barrier or if each window [ ti, ti+1) has its own

continuously monitored barrier or double barriers.
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Options on a Stock That Pays Known Dividends

• Many ad hoc assumptions have been postulated for

option pricing with known dividends.a

1. The one we saw earlier models the stock price minus

the present value of the anticipated dividends as

following geometric Brownian motion.

2. One can also model the stock price plus the forward

values of the dividends as following geometric

Brownian motion.

aFrishling (2002).
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Options on a Stock That Pays Known Dividends (continued)

• The most realistic model assumes the stock price

decreases by the amount of the dividend paid at the

ex-dividend date.

• The stock price follows geometric Brownian motion

between adjacent ex-dividend dates.

• But this model results in binomial trees that grow

exponentially (recall p. 269).

• The binomial-trinomial tree can often avoid the

exponential explosion for the known-dividends case.
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Options on a Stock That Pays Known Dividends (continued)

• Suppose that the known dividend is D dollars and the

ex-dividend date is at time t.

• So there are m ≡ t/∆t periods between time 0 and the

ex-dividend date.

• To avoid negative stock prices, we need to make sure the

lowest stock price at time t is at least D, i.e.,

Se−(t/∆t)σ
√
∆t ≥ D.

– Equivalently,

∆t ≥
[

tσ

ln(S/D)

]2
.
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Options on a Stock That Pays Known Dividends (continued)

• Build a binomial tree from time 0 to time t as before.

• Subtract D from all the stock prices on the tree at time

t to represent the price drop on the ex-dividend date.

• Assume the top node’s price equals S′.

– As usual, its two successor nodes will have prices

S′u and S′u−1.

• The remaining nodes’ successor nodes will have prices

S′u−3, S′u−5, S′u−7, . . . ,

same as the binomial tree.
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Options on a Stock That Pays Known Dividends (concluded)

• For each node at time t below the top node, we build

the trinomial connection.

• Note that the binomial-trinomial structure remains valid

in the special case when ∆t′ = ∆t on p. 607.

• Hence the construction can be completed.

• From time t+∆t onward, the standard binomial tree

will be used until the maturity date or the next

ex-dividend date when the procedure can be repeated.

• The resulting tree is called the stair tree.a

aDai (R86526008, D8852600) and Lyuu (2004).
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Other Applications of Binomial-Trinomial Trees

• Pricing guaranteed minimum withdrawal benefits.a

• Option pricing with stochastic volatilities.b

• Efficient Parisian option pricing.c

• Option pricing with time-varying volatilities and

time-varying barriers.d

• Defaultable bond pricing.e

aWu (R96723058) (2009).
bHuang (R97922073) (2010).
cHuang (R97922081) (2010).
dChou (R97944012) (2010).
eDai (R86526008, D8852600), Lyuu, and Wang (F95922018) (2009,

2010).
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